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Low-rank matrix recovery

Assume X ∈ Rm×n and rank(X ) = r < min(m, n). We want to
reconstruct X from its linear measurement y ∈ Rp

y = AX ,

where A : Rm×n 7→ Rp is a linear operator.

It is challenging to solve this problem because usually p < mn.
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Example 1: Recommendation System

Netflix problem: Predict the rating of a viewer to a movie based on
available ratings.

X — rating matrix: xij is the rating of viewer i to movie j .

Assume X is of low-rank — the rating is given by a few factors

xij =
r∑

k=1

rating on factor k =
r∑

k=1

pikqjk ,

where pik is the opinion of viewer i on factor k and qjk is the quality
of movie j on factor k .

Only a small portion of entries of X is observed

AX = {xij : (i , j) ∈ Ω}, Ω ⊂ {1, . . . ,m} × {1, . . . , n}

This problem is also called matrix completion.
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Example 2: Phase Retrieval

Only intensities can be recorded by physical instruments. Can we recover
the phase information?

Let x ∈ Cn be an unknown vector.

Intensities of its linear measurements are observed.

yi = |〈ai , x〉| , i = 1, . . . , p.

Instead of recovering x , we reconstruct the rank-1 matrix
X = xx∗ ∈ Cn×n.

The observations are linear with respect to X

y2
i = 〈aia∗i ,X 〉, i = 1, . . . , p

so that
AX = {〈aia∗i ,X 〉}

p
i=1
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More examples

High-dimensional data.

Let X = [x1, x2, . . . , xn], where xi ∈ Rm for all i .
Assume all xi lie on a low dimensional subspace in Rn, which implies X
is of low rank.
Linear inverse problems on high-dimensional data can be formulated by
the problem of low-rank matrix recovery.

Homogeneous quadratic inverse problems.

Besides phase retrieval, some quadratic inverse problem may be
converted to the recovery of a low-rank matrix.
Let x = [x1, x2, . . . , xm]T , and it is measured linear combinations of
xix

∗
j for 1 ≤ i , j ≤ m.

Let X = xx∗. Then the measurements are linear w.r.t. the rank-1
matrix X .
Examples: Phase Retrieval, Blind Deconvolution, Euclidean
Embedding, Sensor Self-Calibration, ....
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Convex Optimization

To find a low-rank solution of AZ = y

Solve
min
Z

rank(Z ), s.t. AZ = y .

Non-convex, NP-hard.

Convex relaxation:
‖Z‖∗ =

∑
i

σi (Z )

where ‖Z‖∗ is the nuclear norm of Z , the sum of all singular values of
Z .

Solve
min
Z
‖Z‖∗, s.t. AZ = y .
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Computation of Nuclear Norm Minimization

min
Z
‖Z‖∗, s.t. AZ = y .

‖ · ‖∗ is non-smooth: the step size will be extremely small when a
forward gradient descent method is used.

It will be faster to use a backward method, where we need the
proximity operator (I + λ∂‖ · ‖∗)−1.

Theorem (C., Candes, Shen, 2010)

The proximal operator of ‖ · ‖∗ is the singular value thresholding (SVT).
More precisely, let Y = UΣV T ∈ Rm×n be a given matrix and its SVD.
Then,

Sλ(Y ) = arg min
Z

1

2
‖Y − Z‖2

F + λ‖Z‖∗,

where
Sλ(Y ) = U max(Σ− λI , 0)+V

T .
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Computation of Nuclear Norm Minimization

SVT is a fundamental element in many popular nuclear norm minimization
algorithms.

SVT algorithm [C., Candes, Shen, 2010]{
Yk+1 = Yk − δA∗(AXk − y)

Xk+1 = Sδ(Yk+1).

Iterative soft-threhsolding [Ma, Goldfarb, Chen, 2011]

Xk+1 = Sλδ(Xk − δA∗(AXk − y))

ADMM [Chen, He, Yuan, 2012] [Lin, Chen, Ma, 2011]

. . .

Many others.
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Computation of Nuclear Norm Minimization

The bottleneck of these algorithms is the computation of SVT Sλ(Y ).

All singular values exceeding λ and their associated singular vectors
are computed.

For large scale computation, a small rank of Sλ(Y ) is needed at each
iteration.

Disadvantage: The computation is expensive, and it consumes large
memory.
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Non-Convex Optimization

Assume the rank r is known or estimated. There are two possible
formulations.

Factorization based methods:

min
L∈Rn×r ,R∈Rm×r

‖A(LRT )− y‖2
2.

Alternating minimization
Gradient descent
Alternating gradient descent
...

Rank constrained methods:

min
Z∈Rm×n

‖AZ − y‖2
2, s.t. rank(Z ) = r .
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Iterative Hard-Thresholding.

We solve the rank constrained minimization

min
Z∈Rm×n

‖AZ − y‖2
2, s.t. rank(Z ) = r .

by projected gradient descent

Xl+1 = Hr (Xl − αlA∗(AXl − y)),

where Hr (·) is the r -truncated SVD.

When αl is fixed, it is known as Singular Value Projection (SVP).

When αl is the steepest descent stepsize, it is called normalized IHT
(NIHT).
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IHT (cont.)

In each iteration, SVD of m × n matrices is still needed in each step.

How to avoid large size SVD?

Our algorithm [Wei, C., Chan, Leung, 2016]

Xl+1 = HrPSl (Xl − αlA∗(AXl − y)).
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No large scale SVD

The subspace

Sl = {UlP
T + QV T

l : P ∈ Rn×r ,Q ∈ Rm×r},

is the tangent space of smooth manifold Mr at Xl = UlΣlV
T
l , where

Mr is the set of all rank-r matrices embedded in Rm×n.

The projection PSl is just matrix products.

SVD of size only 2r × 2r is needed.

Wl ∈ Sl =⇒Wl =

2r︷ ︸︸ ︷
[Ul Q]

[
PT

V T
l

]}
2r,

where Wl is the matrix before the application of Hr .

First compute QR decompostion of [Ul Q] and

[
PT

V T
l

]
respectively.

Then compute SVD of the product of R factors, which is of size
2r × 2r .
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Riemannian optimization

The algorithm

Xl+1 = Hr (Xl − αlPSlA
∗(AXl − y)),

can be interpreted as a Gradient Descent Algorithm on the Riemannian
manifold Mr . [Vandereycken, 2013; Mishra, Apuroop, Sepulchre, 2013; Mishra,

Meyer, Bonnabel, Sepulchre, 2013]

Riemannian Gradient Descent (RGad)

Gl = PSl (A∗(AXl − y)) (Gradient on the tangent space)

αl =
‖Gl‖2

F

‖AGl‖2
2

(Steepest Descent Step Size)

Wl = Xl − αlGl (Update along the gradient)

Xl+1 = Hr (Wl) (Retraction)
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Riemannian Conjugate Gradient

The algorithm can be further improved by conjugate gradient on
Riemannian manifold for solving minZ∈Mr ‖AZ − y‖2

2

Riemannian Conjugate Gradient (RCG)

Gl = PSl (A∗(AXl − y)) (Gradient on the tangent space)

βl = −〈AGl ,APl−1〉
‖APl−1‖2

2

(novel formula for β [Wei, C., Chan, Leung, 2016])

Pl = PSl (Gl + βlPl−1) (Pl is conjugate to Pl−1)

αl =
〈Gl ,Pl〉
‖APl‖2

2

Wl = Xl − αlPl (Update along the search direction)

Xl+1 = Hr (Wl) (Retraction)
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Theoretical Gurantee

Will RGrad and RCG find the true low-rank matrix X from y = AX?

Yes.

Good Initialization + Local Convergence =⇒ Theoretical Guanrantee

The analysis depends on applications.
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Initialization

We choose
X0 = Hr (A∗y)

X0 is one step of IHT with initial guess 0.

A probabilistic explanation: Assume Ai , i = 1, . . . , p have i.i.d.
entries with expectation 0 and variance 1/p. Then

E([A∗y ]jk) = E

(∑
i

〈Ai ,X 〉[Ai ]jk

)
= E

∑
i ,a,b

[Ai ]jk [Ai ]abXab


= E

(
p∑

i=1

[Ai ]
2
jk

)
· Xjk = Xjk
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Case I: Guarantee for A satisfying RIP

Restricted Isometric Property (s-RIP)

There exists a constant Rs ∈ (0, 1) such that

(1− Rs)‖Z‖2
F ≤ ‖AZ‖2

F ≤ (1 + Rs)‖Z‖2
F , ∀Z ∈Ms .

Theorem (Wei, C., Chan, Leung, SIMAX, 2016)

Assume A satisfies RIP with

R3r ≤
1

Cond2(X )

1

25
√
r
.

Then the RGrad algorithm with initial guess X0 = Hr (A∗y) converges
linearly to X , provided the rank of X is r and y = AX.
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When A satisfies RIP

Theorem (Wei, C., Chan, Leung, SIMAX, 2016)

Assume A satisfies RIP with

R3r ≤
1

Cond2(X )

1

40
√
r
.

Then the Riemannian conjugate gradient algorithm with:

Initial guess X0 = Hr (A∗y)

Restarting when either
〈Gl ,Pl−1〉

‖Gl‖F ‖Pl−1‖F ≤ 0.1 or ‖Gl‖F ≤ ‖Pl−1‖F
violated

converges linearly to X , provided the rank of X is r and y = AX.
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Numerical Experiments

A is the random Gaussian.

Table: Average computational time (seconds) and average number of iterations of
RGrad, RCG, RCG restarted, and ASD over ten random rank r matrices per
(m, n, p, r) tuple for m = n ∈ {80, 160}, r ∈ {5, 10} and p/(m + n− r)r ∈ {2, 3};
Gaussian sensing.

r 5 10
1/ρ 2 3 2 3

rel.err iter time rel.err iter time rel.err iter time rel.err iter time

m = n = 80
RGrad 3.3e-05 137 8.52 2.2e-05 58 5.61 3.2e-05 130 24.9 2.1e-05 57 15.5
RCG 2.2e-05 34 2.38 1.4e-05 22 2.71 2.1e-05 34 8.47 1.4e-05 22 7.72

RCG res. 2.2e-05 35 2.81 1.5e-05 22 2.79 2.2e-05 36 8.95 1.3e-05 23 8.12
ASD 2.5e-05 143 10.3 1.7e-05 73 9.37 2.4e-05 210 53.8 1.7e-05 224 82.2

m = n = 160
RGrad 3.3e-05 142 103 2e-05 61 66.2 3.2e-05 135 194 2.1e-05 58 123
RCG 2.3e-05 35 33.0 1.5e-05 22 31.2 2.2e-05 35 65.7 1.4e-05 23 62.9

RCG res. 2.4e-05 36 33.9 1.5e-05 23 32.1 2.2e-05 36 67.7 1.4e-05 24 66.1
ASD 2.5e-05 147 140 1.8e-05 81 117 2.4e-05 213 407 1.6e-05 149 426
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Table: Phase transition table for Gaussian sensing with m = n = 80. For each
(m, n, p) with p = δ ·mn, the algorithm can recover all of the ten random test
matrices when r ≤ rmin, but fails to recover each of the randomly drawn matrices
when r ≥ rmax.

RGrad RCG RCG restarted
δ rmin rmax ρmin ρmax rmin rmax ρmin ρmax rmin rmax ρmin ρmax

0.1 3 4 0.74 0.97 3 4 0.74 0.97 3 4 0.74 0.97
0.15 4 6 0.65 0.96 4 6 0.65 0.96 4 6 0.65 0.96
0.2 6 8 0.72 0.95 6 8 0.72 0.95 6 8 0.72 0.95

0.25 8 10 0.76 0.94 8 10 0.76 0.94 8 10 0.76 0.94
0.3 11 12 0.85 0.93 11 13 0.85 1 11 13 0.85 1

0.35 12 15 0.79 0.97 12 15 0.79 0.97 11 15 0.73 0.97
0.4 14 17 0.8 0.95 14 17 0.8 0.95 14 17 0.8 0.95

0.45 17 19 0.84 0.93 17 19 0.84 0.93 17 19 0.84 0.93
0.5 20 22 0.88 0.95 20 22 0.88 0.95 20 22 0.88 0.95

0.55 22 24 0.86 0.93 22 24 0.86 0.93 22 24 0.86 0.93
0.6 25 27 0.88 0.94 26 28 0.91 0.96 26 28 0.91 0.96

0.65 28 30 0.89 0.94 28 32 0.89 0.98 28 32 0.89 0.98
0.7 31 33 0.89 0.94 31 35 0.89 0.98 31 35 0.89 0.98

0.75 34 36 0.89 0.93 35 38 0.91 0.97 35 38 0.91 0.97
0.8 38 40 0.91 0.94 40 42 0.94 0.97 40 42 0.94 0.97

0.85 42 44 0.91 0.94 44 47 0.94 0.98 44 47 0.94 0.98
0.9 47 50 0.92 0.95 50 53 0.95 0.98 50 53 0.95 0.98

0.95 52 54 0.92 0.94 57 61 0.97 0.99 57 61 0.97 0.99
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Case II: Guarantee for matrix completion

The operator A = PΩ doesn’t satisfies RIP.

Matrix completion may fail for any algorithms.
Example: if the (1, 1)-entry is not sampled, then any algorithm
cannot distinct the following matrices

e1e
T
1 , 2e1e

T
1 , . . .

The singular vectors cannot be too sparse.

Assumption 1 [Candes, Recht, 2009; Candes, Tao, 2010]

Let X be an n × n, rank-r matrix with compact SVD X = UΣV T .
Assume there exist two positive constants µ0 and µ1 such that

n

r
max

1≤i≤n
max

{
‖PU(ei )‖2

2, ‖PV (ei )‖2
2

}
≤ µ0, ‖X‖∞ ≤ µ1

√
r

n2
‖X‖2.
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Matrix completion

Initialization: X0 = Hr (A∗y)

The first O(logN) steps uses resampling and trimming.

Theorem (Wei, C., Chan, Leung, preprint, 2016)

Let X be fixed and satisfying Assumption 1. Suppose Ω is sampled
uniformly at random with |Ω| = m. Then both RGrad and restarted RCG
converges linearly to X with probability at least 1− n−2 provided

m ≥ Cnr2 log2 n

for some constant C > 0.
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Matrix completion

Key inequalities in the proof

RIP in the tangent space of Mr at X∥∥∥∥PT (I − mn

p
PΩ

)
PT
∥∥∥∥ ≤ ε

[Candes, Rechet, 2009; Candes, Tao, 2010]

“asymmetric” isometric property∥∥∥PT̂`
(
I − mn

p
P

Ω̂`+1

)(
PU − PÛ`

)∥∥∥ ≤ ε
[Wei, C., Chan, Leung, 2016]
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Numerical Experiments: Matrix Completion

Table: Average computational time (seconds) and average number of iterations of
RGrad, RCG, RCG restarted, and ASD over ten random rank r matrices per
(m, n, p, r) tuple for m = n ∈ {8000, 16000}, r ∈ {50, 100} and
p/(m + n − r)r ∈ {2, 3}; Entry sensing.

r 50 100
1/ρ 2 3 2 3

rel.err iter time rel.err iter time rel.err iter time rel.err iter time

m = n = 8000
RGrad 3.2e-05 116 58.9 2.1e-05 52 37.9 3.1e-05 107 184 1.9e-05 54 129
RCG 2.2e-05 36 27.59 1.5e-05 23 24.7 2.1e-05 33 82.0 1.1e-05 22 75.2

RCG res. 2.3e-05 36 27.6 1.6e-05 23 24.6 1.9e-05 34 83.0 1.2e-05 22 75.3
ASD 3.2e-05 89 71.4 2.1e-05 40 38.0 3e-05 74 119 1.9e-05 35 70.0

m = n = 16000
RGrad 3.2e-05 116 151 2e-05 48 89.3 3.1e-05 97 453 2.1e-05 55 353
RCG 2.3e-05 36 66.9 1.3e-05 24 61.7 2.2e-05 34 209 1.5e-05 22 187

RCG res. 2.1e-05 37 67.4 1.2e-05 24 62.3 2.2e-05 34 211 1.6e-05 22 187
ASD 3.3e-05 92 262 2.1e-05 41 132 3.1e-05 76 351 1.9e-05 36 204
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Table: Phase transition table for entry sensing with m = n = 800. For each
(m, n, p) with p = δ ·mn, the algorithm can recover all of the ten random test
matrices when r ≤ rmin, but failes to recover each of the randomly drawn matrices
when r ≥ rmax.

RGrad RCG RCG restarted
δ rmin rmax ρmin ρmax rmin rmax ρmin ρmax rmin rmax ρmin ρmax

0.1 36 38 0.88 0.93 35 37 0.86 0.9 36 37 0.88 0.9
0.15 55 59 0.89 0.95 55 57 0.89 0.92 55 57 0.89 0.92
0.2 76 78 0.9 0.93 74 77 0.88 0.92 74 77 0.88 0.92

0.25 97 99 0.91 0.93 96 98 0.9 0.92 96 98 0.9 0.92
0.3 119 121 0.92 0.93 117 119 0.9 0.92 117 119 0.9 0.92

0.35 142 143 0.92 0.93 140 142 0.91 0.92 140 142 0.91 0.92
0.4 166 167 0.93 0.93 163 166 0.91 0.93 163 166 0.91 0.93

0.45 190 192 0.93 0.94 188 191 0.92 0.93 188 191 0.92 0.93
0.5 217 219 0.94 0.95 214 217 0.93 0.94 214 217 0.93 0.94

0.55 244 248 0.94 0.95 242 246 0.93 0.95 242 245 0.93 0.94
0.6 274 276 0.95 0.95 272 274 0.94 0.95 272 274 0.94 0.95

0.65 306 308 0.95 0.96 302 306 0.94 0.95 304 306 0.95 0.95
0.7 340 343 0.96 0.96 338 340 0.95 0.96 338 340 0.95 0.96

0.75 378 380 0.96 0.97 374 378 0.96 0.96 374 378 0.96 0.96
0.8 418 422 0.96 0.97 416 420 0.96 0.97 416 420 0.96 0.97

0.85 466 470 0.97 0.98 464 468 0.97 0.97 464 468 0.97 0.97
0.9 524 527 0.98 0.98 522 526 0.98 0.98 522 526 0.98 0.98

0.95 600 604 0.99 0.99 600 604 0.99 0.99 600 604 0.99 0.99
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Case III: Guarantee for Phase Retrieval

Phase Retrieval: Solve x ∈ Cn from |Ax | = y with known A ∈ Cm×n

and y ∈ Rm
+.

The problem can be reformulated as

AX = b,

where X = xx∗, [AX ]i = a∗i Xai , and b = y2.

A doesn’t satisfies RIP.
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Phase Retrieval

Initialization: X0 = H1(A∗y)

Use only “good” measurements at each iteration.

Theorem (C., Wei, working paper, 2017)

Assume entries of A ∈ Cm×n are i.i.d. complex Gaussian. Then the RGrad
algorithm converges linearly to X with probability at least 1− c0e

−c1n,
provided m ≥ Cn.

Experimental results show RCG is much faster than popular
non-convex methods, e.g., Wirtinger flow, truncated Wirtinger flow.
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Spectrally Sparse Signal Reconstruction

Spectrally Sparse Signal:

x(t) =
r∑

k=1

dke
2πıfk te−τk t

r ∈ Z+ — sparsity
fk ∈ [0, 1), k = 1, . . . , r — (normalized) frequencies.
dk ∈ C, k = 1, . . . , r — complex magnitudes.
τk ∈ R+, k = 1, . . . , r — damping factors. When τk = 0 for all k , no
damping.

The signal is uniquely determined by its uniform samples at integer
times.

x = [x(0), x(1), x(2), . . . , x(n − 1)]T ∈ Cn.

In many applications, only partial entries of x can be observed. We
need to

Find x from its partial entries xΩ

where Ω ⊂ {0, 1, . . . , n − 1} and |Ω| = m < n.
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Motivating Example: NMR spectroscopy

The signal can be modelled well by a multidimensional spectrally
sparse signal with damping.

Unfortunately, the full sampling of x for a specimen may take a few
weeks.

To save time and cost, non-uniform sampling (NUS) is popular in
NMR spectroscopy.

Some other examples include band limited signal sampling, where the
frequency of the signal is ultra high and the sampling hardware may not
work reliably.
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Finite vs. Infinite Dictionary

Conventional Compressed Sensing (for undamped signals).
[CandesRombergTao2006]

Use a finite dictionary by discretizing the frequency domain [0, 1) with
a uniform grid.
However, it suffers basis mismatch of the discrete dictionary, and using
finer grid doesn’t help too much.

Off-the-grid approaches

Uses an infinite dictionary with atoms of frequencies on the continuous
domain [0, 1), and no gridding is needed.
Spectral Super resolution
Solved by semi-definite programming (SDP).
Atomic Norm Minimization [TangBhaskarShahRecht2013], Enhanced
Matrix Completion [ChenChi2014], Super Resolution
[CandesFernandez-Granda2012]...
They need to solve problems with O(n2) unknowns. Slow, and
intractable for multidimensional signals of moderate size.
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From Spectrally Sparsity to Low-Rank Hankel Matrix

Define the Hankel matrix formed by x as

Hx =
[
xj+k

]
j ,k
∈ Cn1×n2 ,

where n1 and n2 are prescribed integers satisfying n1 + n2 = n − 1.

Then rank(Hx) = r because of the following Vandermonde
decomposition:

Hx = VL︸︷︷︸
n1×r

D︸︷︷︸
r×r

V T
R︸︷︷︸

r×n2

,

where VL = [e2πıfk je−τk j ]j ,k , VR = [e2πıfk je−τk j ]j ,k are Vandermonde
matrices, and D = diag(d1, d2, . . . , dr )

The spectrally sparse signal reconstruction can be converted to
Low-rank Hankel Matrix Completion:

Find the rank-r Hankel matrix Hx
from its partially known anti-diagonals xΩ.
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Our algorithms

We solve the non-convex optimization

min
z

∑
j∈Ω

|zj − xj |2 s.t. rank(Hz) = r .

Iterative Hard Thresholding (IHT)

x`+1 = H†TrH(x` − p−1PΩ(x` − x)),

To avoid large scale SVD, we apply our new framework for low-rank
matrix reconstruction to get Fast IHT (FIHT)

x`+1 = H†TrPS`H(x` − p−1PΩ(x` − x)),

Every step can be implemented by FFTs.
Can use Takagi decompostion to save half computational cost when
the matrix is square.
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Theoretical Guarantee of FIHT

We will show that FIHT converges to x linearly provided m ∼ O(r2 log2 n)

Assumptions:

The elements of Ω is sampled independently and uniformly from
{0, 1, . . . , n − 1} with replacement.
Hx is µ0-incoherent, which may be viewed as a condition on the
separation of frequencies.

Definition

The Hankel matrix Hx with the Vandermonde decomposition Hx = VLDV T
R is

said of µ0-incoherent if

σmin(V ∗
L VL) ≥ n1

µ0
, σmin(V ∗

RVR) ≥ n2

µ0

JF Cai (HKUST Math) Low-Rank Matrix Recovery May 19, 2017 40 / 44



Guarantee of FIHT

FIHT converges linearly to the correct solution when it is initialized by
L = O(log n) resampling and trimming, provided m ∼ O(r2 log2 n).

Theorem (Theoretical Guarantee of FIHT,[C., Wang, Wei, 2016])

Assume Hx is µ0-incoherent. Let 0 < ε0 <
1

10 and L =
⌈

6 log
(√

n log(n)
16ε0

)⌉
.

Define ν = 10ε0 < 1. Then with probability at least 1− (2L + 3) n−2, the
iterates generated by FIHT with our initialization satisfies

‖x` − x‖ ≤ ν`‖L0 −Hx‖F ,

provided

m ≥ Cµ0csκ
6r2 log(n) log

(√
n log(n)

16ε0

)
for some universal constant C > 0.
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Conclusion

The new framework of combining Hr with PS` is better than Hr

solely for low-rank matrix recovery problems.

The projection PS` onto the tangent space helps

Computationally: reduce SVD of size n × n to O(r)× O(r).
Theoretically: help to prove the theoretical guarantee, because the
isometric property holds true only in the tangent space.
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Thanks for your attention!

Questions?
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