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The need for many scales

Physical phenomena often occur on many different scales.

An example: the topography of Earth



Radial basis functions

Radial basis functions (RBFs) in R
3:

Ψ(x, y) = ψ(|x − y|)

RBFs with compact support:

ψ(t) = 0 for t ≥ 1.

Example (Holger Wendland):

ψ(t) = (4t+ 1)(1 − t)4+.



Wendland RBF restricted to the plane



Scaling the RBF

Suppose we replace ψ(t) by

ψ 1
2
(t) := cψ

(
t

1/2

)
= cψ(2t) = c(4 × 2t+ 1)(1 − 2t)4+.

The ‘scaled’ RBF ψ 1
2
(t) has support of radius 1

2
.

We say that ψ 1
2

has the scale δ = 1
2

.



The scaled RBF



RBF approximation

An RBF approximation (with a single scale) has the form

f(x) ≈
M∑

j=1

αjΨ(x, xj), x ∈ R
3.



Example

Here’s an example: It’s a sum of nine RBF’s on a 3 × 3 grid.



Now spherical basis functions

Starting with an RBF Ψ(x, y) in R
3, we obtain a spherical radial

basis function (SBF) by restricting Ψ to the sphere S
2:

Φ(x, y) := Ψ(x, y) if |x| = |y| = 1.

Φ(x, y) depends only on the angle between x and y, thus we can write

Φ(x, y) = φ(x · y).
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αjφ(x · xj), x ∈ S
2.



Positive definite RBFs

We often prefer RBFs that are (strictly) positive definite :

M∑

j=1

M∑
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αjαkΨ(xj, xk) ≥ 0 ∀M, xj, αj,

with equality iff α1 = α2 = · · · = αM = 0.



Positive definite RBFs

We often prefer RBFs that are (strictly) positive definite :

M∑

j=1

M∑

k=1

αjαkΨ(xj, xk) ≥ 0 ∀M, xj, αj,

with equality iff α1 = α2 = · · · = αM = 0.

The Wendland RBF is (strictly) positive definite.

Proof: (Wendland) By showing that its Fourier transform is positive.
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How to choose the coefficients αj?

Recall: an SBF approximation (with a single scale) has the form

f(x) ≈
M∑

j=1

αjφ(x · xj), x ∈ S
2.

How to find good coefficients αj?

One way is to interpolate at the points x1, x2, . . . , xM : then we have

to solve

f(xi) =
M∑

j=1

αjφ(xi · xj), i = 1, . . . ,M,

a linear system with the M ×M symmetric matrix (φ(xj · xi)).
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If we want to do interpolation with a single RBF and a single scale, and

with a given set of centres, the choice of scale is difficult:
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How to choose the scale?

If we want to do interpolation with a single RBF and a single scale, and

with a given set of centres, the choice of scale is difficult:

If δ is too large, then the approximation can be very good, but the

condition of the matrix φ(xj · xi) will be bad.

If δ is too small, then the matrix will be well conditioned but the

approximation will be poor .



Interpolation with δ = 1 and 8000 points

Approximating ‘topo’, with δ = 1.

The approximation is quite good, but the condition number is 4 × 106



Interpolation with δ =
1
16

and 8000 points

Approximating ‘topo’, with δ = 1
16

.

The approximation is terrible, but the condition number is only 8.



Which points?

The examples use Rakhmanov-Saff-Zhou ‘equal-area’ points, rounded

to nearest degree (because that is where the values of ‘topo’ are available.)

The figure shows 8000 equal area points:



Convergence of interpolation for a single scale

The (global) mesh norm of the point set X = {x1, . . . , xN} is:

hX := max
x∈S2

min
1≤j≤M

cos−1(x · xj).



Convergence of interpolation for a single scale

The (global) mesh norm of the point set X = {x1, . . . , xN} is:

hX := max
x∈S2

min
1≤j≤M

cos−1(x · xj).

The following is well known:

Theorem . Let X be a point set on S
2, with mesh norm hX . Then

‖f − IXf‖L2
≤ chσ

X‖f‖Hσ(S2), f ∈ Hσ.

where σ > 0 depends on Φ,

For the Wendland function ψ(t) = (4t+ 1)(1 − t)4+ we have

σ = 5/2. For smoother Wendland functions σ is larger.



What is Hσ?

Think of Hσ(S2) as the space of L2 functions on the sphere with σ

square-integrable derivatives.

For f ∈ L2(S2) we can write

f(x) =
∞∑

ℓ=0

2ℓ+1∑

k=1

f̂ℓ,kYℓ,k(x),

with {Yℓ,k} an orthonormal set of spherical harmonics, and

f̂ℓ,k =

∫

S2

f(x)Yℓ,k(x)dω(x).



What is Hσ?

Think of Hσ(S2) as the space of L2 functions on the sphere with σ

square-integrable derivatives.

For f ∈ L2(S2) we can write

f(x) =
∞∑

ℓ=0

2ℓ+1∑

k=1

f̂ℓ,kYℓ,k(x),

with {Yℓ,k} an orthonormal set of spherical harmonics, and

f̂ℓ,k =

∫

S2

f(x)Yℓ,k(x)dω(x).

Then

‖f‖Hσ(S2) :=

[
∞∑

ℓ=0

2ℓ+1∑

k=1

(1 + ℓ)2σ|f̂ℓ,k|2
]1/2

.



Wendland functions and Sobolev spaces

Each Wendland function is associated with a particular Sobolev space:

Given ψ(|x − y|) = φ(x · y) for x, y ∈ S
2, define φ̂(ℓ) by

φ(t) =
1

4π

∞∑

ℓ=0

(2ℓ+ 1) φ̂(ℓ)Pℓ(t), t ∈ [−1, 1]. (1)

Then the Wendland functions have the property that for some σ > 0

φ̂(ℓ) ≍ (1 + ℓ)−2σ.

Example: σ = 5/2 for φ(t) = (4t+ 1)(1 − t)4+.



The Sobolev space for a Wendland Φ

With a positive definite SBF kernel Φ we can associate a special

Hilbert space (the “native space”), with norm

‖f‖Φ :=

[
∞∑

ℓ=0

2ℓ+1∑

k=1

|f̂ℓ,k|2

φ̂(ℓ)

]1/2

.



The Sobolev space for a Wendland Φ

With a positive definite SBF kernel Φ we can associate a special

Hilbert space (the “native space”), with norm

‖f‖Φ :=

[
∞∑

ℓ=0

2ℓ+1∑

k=1

|f̂ℓ,k|2

φ̂(ℓ)

]1/2

.

Thus for the Wendland functions, if φ̂(ℓ) ≍ (1 + ℓ)−2σ then

‖f‖Φ is equivalent to ‖f‖Hσ(S2).

So each Wendland function is associated with a unique Sobolev

spaces Hσ(S2).



Mixing different scales?

Mixing of different scales is not often tried. The problem is that one

loses symmetry and positive definiteness of the interpolation matrix,

and hence may lose the unique solvability property.

(Bozzini, Lenarduzzi, Rossini and Schaback 2004 showed that unique solvability is

retained if the matrix perturbation is small enough.)



The multiscale approximation

uses scaled versions of a single compactly supported radial

basis function (RBF) Ψ(x, y) = ψ(|x − y|), x, y ∈ R
3

The scaled version, with scale δ, is Ψδ(x, y) = δ−2ψ
(∣∣∣x−y

δ

∣∣∣
)

.
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uses scaled versions of a single compactly supported radial

basis function (RBF) Ψ(x, y) = ψ(|x − y|), x, y ∈ R
3

The scaled version, with scale δ, is Ψδ(x, y) = δ−2ψ
(∣∣∣x−y

δ

∣∣∣
)

.

It uses a sequence of scales δ1, δ2, . . . with δj → 0.

And a sequence of ever denser point sets X1, X2, . . . (which

need not be nested).

At stage j the error from the previous stage is approximated using

radial basis functions of smaller scale δj , and with closer spaced

centres Xj = {x1, . . . , xNj
}.



Multiscale RBF is not a new idea, but . . .

Schaback 1995 and Floater & Iske 1996 considered a special case

with nested point sets (for the radial basis function centres).

Hales & Levesley 2002 used polyharmonic spines and special point

sets.

Narcowich, Schaback & Ward 1999 analysed a different method,

based on repeated convolutions of a single RBF.



Multiscale RBF is not a new idea, but . . .

Schaback 1995 and Floater & Iske 1996 considered a special case

with nested point sets (for the radial basis function centres).

Hales & Levesley 2002 used polyharmonic spines and special point

sets.

Narcowich, Schaback & Ward 1999 analysed a different method,

based on repeated convolutions of a single RBF.

But theory was lacking , for multiscale based on scaled versions of a

single compactly supported RBF on either Euclidean spaces or

spheres, and scattered data points.



Multiscale scheme LeGia, IHS, Wendland 2010

The following multilevel scheme achieves good approximation

AND good (even constant!) condition number:

Suppose we have a sequence of point sets X1, X2, . . . ⊂ S
2, with

mesh norm hXj
of Xj approaching zero.

The mesh norm of X is

hX := max
x∈S2

min
1≤j≤M

cos−1(x · xj).

Correspondingly, we take scales δj = const ×hXj
.

Then the algorithm is . . .



The algorithm

Step 1. The first approximation is f1 = s1 := IX1,δ1
f

IX1,δ1f is the interpolant of f on the point set X1 with scale δ1.

The error is e1 := f − f1.
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The algorithm

Step 1. The first approximation is f1 = s1 := IX1,δ1
f

IX1,δ1f is the interpolant of f on the point set X1 with scale δ1.

The error is e1 := f − f1.

Step 2 computes s2 = IX2,δ2
e1 (interpolant of e1 on X2 at scale δ2).

The new approximation is f2 := f1 + s2 = f1 + IX2,δ2
e1.

The new error is e2 := e1 − IX2,δ2
e1.

Step 3 . . .

Finally, after n steps

f ≈ fn = s1 + s2 + . . .+ sn.



The multiscale convergence theorem

Theorem (LeGia, IHS, Wendland, 2010).

Let X1, X2, . . . be a sequence of point sets belonging to S
2, with

mesh norms h1, h2, . . . satisfying hj+1 = µhj , for µ ∈ (0, 1).

Let δ1, δ2, . . . be scales ≤ 1 satisfying δj = β
µ
hj for some fixed

β > 0.

Let Φ be a Wendland function associated with Hσ(S2), for some

σ > 1.
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The multiscale convergence theorem

Theorem (LeGia, IHS, Wendland, 2010).

Let X1, X2, . . . be a sequence of point sets belonging to S
2, with

mesh norms h1, h2, . . . satisfying hj+1 = µhj , for µ ∈ (0, 1).

Let δ1, δ2, . . . be scales ≤ 1 satisfying δj = β
µ
hj for some fixed

β > 0.

Let Φ be a Wendland function associated with Hσ(S2), for some

σ > 1.

Then with α = Cµσ and C = ... we have

‖f − fn‖L2
≤ cαn‖f‖Hσ for all f ∈ Hσ

.
And hence for µ sufficiently small fn converges to f linearly .



Condition numbers

Theorem

Under the conditions in the theorem above, and provided the sequence

of point sets is quasi-uniform, the condition number of the linear

system at stage j is independent of j.

Quasiuniform means: Minimum separation distance scales like hX .



Condition numbers

Theorem

Under the conditions in the theorem above, and provided the sequence

of point sets is quasi-uniform, the condition number of the linear

system at stage j is independent of j.

Quasiuniform means: Minimum separation distance scales like hX .

Largest eigenvalue : the matrix becomes larger, but the number and

size of non-zero entries in a row remain roughly constant.

Smallest eigenvalue : the smallest eigenvalue is essentially

unchanged because the minimum separation distance between points

scales proportionally to δ.



A multiscale experiment with topo

The following experiment uses these values:

j 1 2 3 4 5

δj 1 1
2

1
4

1
8

1
16

n 32 125 500 2000 8000

and the Wendland basis function ψ(t) = (4t+ 1)(1 − t)4+.



First approximation f1 = s1



Second approximation f2



Third approximation f3



Detail s4

Condition number = 4.1



Fourth approximation f4



Detail s5

Condition number = 7.8



Fifth approximation f5

The total number of points is 8000 + 2000 + 500 + 125 + 32 = 10, 657.



The error e5



The condition numbers are tiny (all ≤ 10), so we could clearly keep on

going indefinitely, but ...
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The condition numbers are tiny (all ≤ 10), so we could clearly keep on

going indefinitely, but ...

We are running out of data!

In any case, do we REALLY want more precision everywhere? Why

not just look only at places where the error is large?

We should be able to “zoom in” anywhere we want to.



Zooming in

Le Gia, IHS and Wendland “Zooming from global to local: a

multiscale RBF approach” (Advances in Computational Math., to

appear).



A new example



The function is

f(x) = 2 +
[
sin t cos(100t) + (1 − πs/144)2+ cos(2000θ)

]
S(θ).

S(θ) is a cubic spline which equals 1 for θ ∈ [0, π/2] and equals

0 for θ ∈ [2π/3, π].

t = cos−1(p · x), with p = (1/
√
3, 1/

√
3, 1/

√
3)T

s = cos−1(q · x), with q = (−0.7476, 0.5069, 0.4289)T

It has both slowly varying and fine scale features.











Some numbers

Level N δj hj ‖ej‖L2(Ω2) κj

1 500 1/4 0.113 4.2e-02 1.7

2 2000 1/8 0.057 4.2e-02 1.7

3 8000 1/16 0.028 3.4e-02 1.7

4 500 1/32 0.019 1.2e-02 3.2

5 2000 1/64 0.0089 9.8e-03 3.4

6 8000 1/128 0.0041 8.9e-03 3.3

7 500 1/256 0.0018 7.9e-03 3.2

8 2000 1/512 0.0009 2.9e-03 3.4

9 8000 1/1024 0.0005 8.0e-04 3.3

Black: the global levels

Blue: The local levels (zooming to the large spherical cap Ω1)

Red: The superlocal levels (zooming to the small spherical cap Ω2)

Here hj is the global mesh norm or local mesh norm, as appropriate.



Algorithm 1: Multiscale global/local algorithm
Data: Right hand side f ,
total number of levels n,
number of zoomed levels m < n,
spherical cap Ω for zooming to,
Xj ∈ S2, δj for j = 1, . . . ,m,
Xj ∈ Ω, δj for j = m + 1, . . . , n.

begin

Set f0 = 0, e0 = f .

for j = 1, 2, . . . , n do

Determine the (global or local) interpolant sj ∈ Wj to ej−1

Set fj = fj−1 + sj .

Set ej = ej−1 − sj .

Result: Approximation solution fn|Ω = s1 + s2 + · · · + sn



Theorem

(LeGia, IHS, Wendland, Adv. Comp. Math., to appear).

Let X1, X2, . . . , Xm be point sets belonging to S
2,

Xm+1, . . . , Xn be point sets belonging to a spherical cap Ω, and

hj be the (global or local) mesh norm of Xj , where the mesh norms

satisfy satisfy hj+1 = µhj , for some µ ∈ (0, 1).

Let δ1, δ2, . . . be scales ≤ 1 satisfying δj = β
µ
hj for some fixed

β > 0.

Let Φ be a Wendland function associated with Hσ(S2), for some

σ > 1.

Then . . .



Theorem (continued)

Then with α = Cµσ and C = ... we have

‖f − fk‖L2(Ω) ≤ cαn‖f‖Hσ for all f ∈ Hσ

.



Theorem (continued)

Then with α = Cµσ and C = ... we have

‖f − fk‖L2(Ω) ≤ cαn‖f‖Hσ for all f ∈ Hσ

.

And hence for µ sufficiently small fn converges to f linearly as

n → ∞.



Main ideas in the proof

First let’s pretend that all levels are global, i.e. Ω = S
2.

1. Define en := f − fn.

Because en(x) = 0 for x ∈ Xn, it follows from the zeros theorem

(Hangelbroek, Narcowich, Ward 2012, Le Gia, Narcowich, Ward, Wendland 2006) that

‖en‖L2(S2) ≤ chσ
n‖en‖Hσ(S2).



Main ideas - scaling

2. Scaling : All the scaled norms Φδj
are equivalent, but different:

c1‖u‖Φδ
≤‖u‖Hσ(S2) ≤ c2δ

−σ‖u‖Φδ

=⇒ ‖en‖L2(S2) ≤ chσ
n‖en‖Hσ(S2) ≤ cc2h

σ
nδ

−σ
n+1‖en‖Φδn+1

and because δn+1 = β
µ
hn+1 = β

µ
· µhn = βhn, we have now

‖en‖L2(S2) ≤ c′‖en‖Φδn+1
.



Main ideas - recursion

3. The key step is a (not-so-obvious) recursion:

‖ej‖Φδj+1
≤ α‖ej−1‖Φδj

, j = n, n− 1, . . . 1,

with α = Cµσ . So α < 1 for µ sufficiently small.

Putting things together, we have ‖en‖L2(Ω) ≤ c′‖en‖Φn+1
, and now

‖en‖Φn+1
≤ α‖en−1‖Φn

. . .

≤ αn‖e0‖Φ1

≤ cαn‖f‖Hσ(S2) .

Except for the local aspect, that’s it !



Main ideas – extension

To get results for errors on bosΩ we need an

extension operator E:

E : Hν(Ω) → Hν(S2), 0 ≤ ν ≤ σ,

with E independent of ν, and such that

Eu|Ω = u|Ω for all u ∈ Hν(Ω),

and

‖Eu‖Hν(S2) ≤ cν‖u‖Hν(Ω).

Proof of existence of E: Hubbert and Morton (2004) for integer ν, plus interpolation.



Applying zeros theorem and extension

So now we have

‖en‖L2(Ω) ≤ chσ
n‖en‖Hσ(Ω)

= chσ
n‖Een‖Hσ(Ω)

≤ chσ
n‖Een‖Hσ(S2)

≤ etc



Two alternative calculations

In the right picture we do one single-scale interpolation at the 9th

level. The graininess is apparent!

In the left picture we do three multiscale levels , all on the superlocal

cap (i.e. levels 7, 8, 9 of the 9-level calculation).





Final L2 errors

9-level: ‖e‖L2(Ω2) = 8.0e−4

3-level: ‖e‖L2(Ω2) = 9.2e−3

1-level: ‖e‖L2(Ω2) = 2.0e−2



Final comments on “zooming in”

The theory combines the ideas of the global theory for the sphere

LeGia,S,Wendland 2010, AND the theory for bounded regions in

Euclidean space Wendland, Numer Math 2010.

The final approxn. uses the points and SBFs from all 9 levels.

The condition number at the 9th level is less than 4!!



Final comments on “zooming in”

The theory combines the ideas of the global theory for the sphere

LeGia,S,Wendland 2010, AND the theory for bounded regions in

Euclidean space Wendland, Numer Math 2010.

The final approxn. uses the points and SBFs from all 9 levels.

The condition number at the 9th level is less than 4!!

In both theory and practice it seems we could continue zooming to

smaller and smaller regions, without limit.
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