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Overview

o Approximation theoretic questions related to kernel-based learning
o More flexible kernels: spatial decompositions

o More flexible kernels: deeper compositions



Informal Description of Supervised Learning

o X space of input samples
Y space of labels, usually Y C R.

o Already observed samples

D= ((x,51)s--,(Xn,yn)) € (X x Y)"



Informal Description of Supervised Learning

o X space of input samples
Y space of labels, usually Y C R.

o Already observed samples
D= ((x1,51),- -, (xn,¥n)) € (X x Y)"

o Goal:
With the help of D find a function fp : X — R such that fp(x) is a
good prediction of the label y for new, unseen x.

o Learning method:
Assigns to every training set D a predictor fp : X — R.



lllustration: Regression

Problem:
The labels y are R-valued.

Goal:
Estimate label y for new data x as accurate as possible.

Example:




Data Generation

Assumptions

o We have bounded labels Y = [-1,1].

@ P is an unknown probability measure on X x [—-1,1].

o D= ((x1,51),---5(Xn,¥n)) € (X x Y)" is sampled from P".
o Future samples (x,y) will also be sampled from P.
°

(For this talk) we mostly use the least squares loss

L(y,t) == (y — t)?

to assess quality of a prediction t for y.



@ The risk of a predictor f : X — R is the average loss

Replf)i= [ Ly F(x)) dPlxy)
XxY
o The Bayes risk is the smallest possible risk

Rip:=inf{ R p(f)|f: X — R (measurable) } .

o The Bayes predictor for the least squares loss is " p(x) := E(Yx), i.e.

RL,P(fL*,P) = i,P :

o The excess risk satisfies

Rva(f) — Rz,p =||f - fL*,P”i(Px) )



Kernel-based learning methods

o Let H be a reproducing kernel Hilbert space, here with bounded kernel
o Let L: Y xR —[0,00) be a convex loss



Kernel-based learning methods

o Let H be a reproducing kernel Hilbert space, here with bounded kernel
o Let L: Y xR — [0,00) be a convex loss
o Kernel-based learning methods (e.g. SVMs) solve the problem

n

. 1
oA :arg?yn )\HfH%,—i-;ZL(Yi; f(Xi)) 5 (1)
i=1

where A > 0 is a free regularization parameter. Solution is of the form
n
for =Y aik(x, ).
i=1

o Historical Notes
o G. Wahba (1971 -): Least squares loss
o V. Vapnik et al. (1992 —): Hinge loss
o Other losses in the last decade or so.



A Typical Oracle Inequality

o Consider the approximation (regularization) error
A(N) = QQLMVH?L/ +Rip(f) = Rip
@ Assume an (dyadic) entropy number behavior
ei(l: H— Ly(Px)) < i~/(P)
Then with probability P" not smaller than 1 — e™" we have

1 TAA
Rip(for) —Rip < K(A()\) + N + )\(n ))

Remarks:
o If rate A(A) — 0 for A — 0 known, we obtain learning rates.

@ Entropy behaviour is equivalent to a similar eigenvalue behaviour of
Tk ! L2(Px) — Lg(Px)

Tef = /X k(x, ) (x) dPx(x)



Interpolation Spaces: Definition

o For Banach spaces F < E and x € E, the K-functional is

KO 1) = inf [lx = ylle + tlylle, t>0.

o For 0 < <1, 1< r < oo, the interpolation space [E, F]g . consists
of those x € E with finite ||x||g ,, where

00 1/r
(f(t—BK(x, t))’t—ldt) ifl<r<oo
Ixllgr = 0
supso t PK(x, t) if r=o00.

o We are interested in the spaces [L>(Px), [H]~]s,.



Interpolation Spaces vs. Approximation Properties

Smale & Zhou, 2003
A(X) < X if and only if £/ p € [La(Px), [H]~]g,00-

Operator techniques (Caponnetto and De Vito, 2007, ...)
Rates for Ry p(fpr) — R’LP are obtained if

fipecimT)/>

Smale & Zhou, 2003

If X is compact, supp Px = X and k continuous, then

. 2
[La(Px), [H]] 4, oo © i T2 C [La(Px), [HI] 5
Both approximation assumptions are almost the same, since

[L2(Px), [H]~]g+e,00 < [L2(Px), [H]~]g1 = [L2(Px), [H]~] 8,00



Spectral Theorem, Revisited

o Let k be a reproducing kernel with compact /, : H — Lo(v).

o Then Ty, = I, 0 I,:V is selfadjoint, positive, and compact.

o Let (pi)ics be the family of non-zero eigenvalues of Ty, and ([&]~)
be a corresponding ONS of eigenfunctions in L(v).

Then ¢ = /,Li_ll,f’y[é,-]w € H satisfies [ej]~ = [&]~ and we have:



Spectral Theorem, Revisited

o Let k be a reproducing kernel with compact /, : H — Lo(v).
o Then Ty, = I, ol is selfadjoint, positive, and compact.

o Let (pi)ics be the family of non-zero eigenvalues of Ty, and ([&]~)
be a corresponding ONS of eigenfunctions in L(v).

1/;’],[é,-]N € H satisfies [ej]~ = [&]~ and we have:

o ([ei]~) is an ONS in L(v).

o (\/mie;) isan ONS in H.

Then e =y

(ker I, )" =im Ii, =span{\/pnjei : i € I}
(ker Ti )™ = (ker I,f’l,)L =im Iy, = span{[e]]~ : i € I}

Consequence.
Ly(v) and H “share a subspace” described by (e;).



The Situation so far

Isometric Copy of H in Ly(v)

H = { ot el s ) € (1)}

iel

Closure of H in Ly(v)

[H]NLz(V) {Z ai[ei]N : (a,') € 52(/)}

iel

Question
What is in between?



o For 5 € [0,1] we can consider the following subspace of Lp(v):

H2 = { S ol (a0 € 200}

{gb[e,]N: )€t}

where £5(11~?) is a weighted sequence space with norm:

(b ||ez(ﬂ By = Zb :“:

iel



o For 5 € [0,1] we can consider the following subspace of Lp(v):

H2 = { S ol (a0 € 200}

{gb[e,]N: )€t}

where £5(11~?) is a weighted sequence space with norm:

(b ||ez(ﬂ By = Zb :“:

i€l
e By construction, (u}B/z[e,-]N),-e, is an ONB of [H]? and

[H°. = TH]<5(»)
[HIL = [H].
[H)? = im T}/2



Power Spaces are Interpolation Spaces

S. & Scovel, 2012
If I, : H— Ly(v) is compact, then, for 3 € (0,1), we have

O = M 01,



Power Spaces are Interpolation Spaces

S. & Scovel, 2012
If I, : H— Ly(v) is compact, then, for 3 € (0,1), we have

O = M 01,

Idea of the Proof.

o Interpolating Ly(v) and [H]~ is the same as interpolating ¢»(/) and
b(ph).

o We have [fz(/),gz(lu_l)]/j’g = fz(,u_ﬁ).



Rates for Fixed Kernel

Generic Setting (S., Scovel, & Hush, 2009 + S. & Scovel, 2012)
o Assume pj < i~/
o Assume f]"p € [L2(Px), H]p,00 for some 3 € (0,1].

o Assume [Lp(Px), Hls1 < Loo(Px) for s = min{1,p/(1 — B)}. Thisis
equivalent to

1flloe < cllF 5N Ry feH

__B8
Then kernel method can learn with the optimal rate n= B+r.

Special Case: Sobolev Setting (e.g. Kohler)

o X ballin RY and H := W™(X) Sobolev space with m > d/2.
~> Least squares with splines.

© Px uniform distribution and ", € B5 ,(X) for some s € (d/2, m].

2s
The kernel method can learn with the optimal rate n= 2s+d



Improved Convergence

Fischer & S., 2017

o Assume p; < i~1/P

o Assume fp € [La(Px), H]p,2 for some 3 € (0,1].

o Assume [Ly(Px), H]a,2 < Loo(Px) for some a € (0, 1).
Then, for a suitable sequence (\,) the decision functions fp », converges to f"p
in the norm of [L,(Px), H], for v € [0, 5] with rate n=", where

__ B=n
max{a, B} + p

Example.
Let H= W™(X) and f]"p € B5,(X) for some s € (d/2,m]. For t € (0,s), the
rate in B ,(X) is n™", where
252t
T st d

This improves and generalizes results by Smale & Zhou (2007), Capaonetto & de
Vito (2007), S. et al (2009), and Blanchard & Miicke (2016)



Gaussian Kernels

Smale & Zhou, 2003
Consider Gaussian RKHS H,(X) with kernel

ky(x,x") := exp (=77 2||x — X|I3), x,x' € X.
Then A, (\) < M for some 3 € (0, 1] implies f'p € C(X).
Solution

Consider width v as a free parameter.
~~ Theory presented so far does not work anymore.



Rates for Gaussian Kernels

Eberts & S., 2011/3

o X ball in RY and H, is RKHS of Gaussian kernel k..
@ Px has bounded Lebesgue density.
@ Pick A and v by a training/validation approach.

2s ~
Then, for s > 1, every f*p € W5(X) is learned with the rate n”2std ' °
without knowing s.

The extra factor n® can be replaced by a logarithmic factor.
Key idea of the proof

Bound approximation error by convoluting f" 5 with weighted sum of
kernels Ky, ... ky,,.



Spatial Decompositions



Computational Requirements for the Optimization Problem

Optimization Problem

1 n
D = argmin \| ”H+n; (vir f(x))

Example: Dual Problem for Hinge Loss

n

1 n
o* € arg  max aj — = iyiaiogk(xp, x;
gae[o,ﬁln]d — i 5 Zy,yj 11871 ( i _/)

ij=1
Re-substitution

n
for =Y yiark(-,x),
i=1



Problems for Large Data

Computational Requirements
The size of the optimization problem grows linearly in n.
The kernel matrix (k(x;, x;)) grows quadratically in n.

Computing the decision functions grows linearly in n.

e 6 o o

Solving the optimization problem costs between O(n?) and O(n®)



Problems for Large Data

Computational Requirements
The size of the optimization problem grows linearly in n.
The kernel matrix (k(x;, x;)) grows quadratically in n.

Computing the decision functions grows linearly in n.

e 6 o o

Solving the optimization problem costs between O(n?) and O(n®)

Consequences
o For 64GB machines, kernel matrices for n > 100.000 cannot be stored.
o Training for such sample sizes, even if only a fixed parameter pair
(A, 0) is considered, may take up to hours.
o Using kernel methods without tricks is impossible for data sizes
ranging in the millions.



Solution Strategies

o Nystrom Method (Williams & Seeger, 2001):
Approximate matrix by low-rank matrix.
Theoretical analysis by Rudi, Camariano, & Rosasco (2015)
o Random Fourier Features (Rahimi & Recht, 2007):
Approximate kernel by finite dimensional kernel.
Bounds for approximation by Sriperumbudur & Szabo (2015)
o Chunking: Devide data into smaller subsets.
Analysis for random splits: Zhang, Duchi & Wainwright (2014),
Zhou, Guo & Lin (2015). next talk!
Spatial splits: now



(]

Split bounded X C R into cells Ay, ..., Ay of diameter < r.

On each cell A; train a kernel method with Gaussian kernel and the
data in A;, i.e.

(4]

Dj :={(xi,yi) e D:x; € Aj} .

(~]

The hyper-parameters A and o are found by training/validation on
each cell separately.

(]

To predict y for some test sample x, only take the decision function
that is constructed on the cell A; with x € A;.



Main Result

Rates for Localized kernel methods (Meister & S., 2016)
o Pick some 3> 0and r, ~ n1/5.
o Assume that f"p, € W3(X) for some s < Bg—d.

25
Then the localized kernel method learns with rate n~2s+d <.



Main Result

Rates for Localized kernel methods (Meister & S., 2016)
o Pick some 3> 0and r, ~ n1/5.

o Assume that f"p, € W3(X) for some s < Bg—d.

25
Then the localized kernel method learns with rate n~2s+d <.

Remarks
o Good adaptivity requires large 5.

o Large (3 leads to large cells.
~> Trade-off between statistics and computational complexity.

o Similar results for quantile regression.



Idea of the Proof

o The split kernel method can be viewed as an ordinary kernel method
using the RKHS

m
H= @ \/TJ'HAW/
j=1

o Investigate how properties of the local RKHS influence properties of
the global H in view of P.

o Again we are facing a kernel more complex than usual.



Controlling the Size of the Cells

training time (in secs)

» Data: covertype in binary classification from LIBSVM site, d = 54

v

3600

Method: Hinge loss and number of samples in cells are controlled

017

~
Methods N
global 9
o cells with fixed radius 2
£1 -+ cells with fixed size £
- regions with fixed size <] 8
100 random chunks & °
’ 5 5
3 S o
84 = 2 @
2 g s 8
= 3
2 N T
< N 2
g4 RSN g
T, =
T, 7
ST L
Y =
° S
S

training set size (in thousand)

100 200 300 400 500

training set size (in thousand)

training set size (in thousand)



Deeper Compositions



Structure of a Neural Network

_e————=8_"
feature #1 — @ o \.H Output

feature #2 — @ ® 7
feature #3 H.\.

At each non-input node, we perform the operation

x = o ({w,x) + b)

@ Do we need the network structure on the right to classify?

o Can we replace the feature modification on the left by something else?



A simple Network with One Hidden Layer

@ Input space X =[0,1]
@ One hidden layer with m RelLU-units each performing

X'_>¢j(x)::|WjX+bj‘+7 j=1....m.

o OQutput layer creates a function

m

X (v, 0(x)) g = D viwix + by,
j=1

Thus it realizes an element in the RKHS with FM & 1= (®4,..., ).



A simple Network with One Hidden Layer

@ Input space X =[0,1]
@ One hidden layer with m RelLU-units each performing

X'_>¢j(x)::|WjX+bj‘+, j=1....m.

o Output layer creates a function

m

X (v, 0(x)) g = D viwix + by,
j=1

Thus it realizes an element in the RKHS with FM & 1= (®4,..., ).
o For fixed w, b € R™ this RKHS is a set of piecewise linear functions

with kinks at
by bm
T W
@ The NN represents all piecewise linear functions with at most m — 1
kinks and most with m kinks .

~» nonlinear structure, parametric method for each fixed design



From Deep Neural Networks to Deep Kernels

Observation
Each layer performs a non-linear transformation

R™Mi s RMi+1

x = Oy, p(x)

Entire feature map is ® :=®,, , o---0®d,, 5

Idea for Rest of the Talk
Replace finite-dimensional spaces by infinite dimensional Hilbert spaces

Hi — Hi1
x = ®y.(x)

Use the kernel of the resulting feature map ® := ®,,, o--- 0 ®,,



“Historical Remarks”

Bach, Lanckriet, and Jordan 2004
L = 2, linear kernel in second layer ~» Multiple kernel learning

Cho and Saul, 2009
General setup and some examples

Zhuang, Tsang, and Hoi, 2011
L = 2, sum of kernels in composition step, pseudo-dimension bound

Strobl and Visweswaran, 2013
Sums of kernels in each composition step, VC-bounds

Tang, 2013
®;_10---0®y is a neural net with M output nodes, ¢, is linear “"SVM".

Wilson, Hu, Salakhutdinov, and Xing, 2016
®;_10---0d; is a neural net with M output nodes, ®; is non-linear.



Construction |

Observations
Let H be a Hilbert space and ® : X — H.

o We obtain a new kernel on X by
k%H’X(x,x') = exp(—’y_2]|¢(x) — ¢(X')||%_,) , x,x' e X,
o If k(x,x") := (®(x), d(x")) with k(x, x) = c, then
ky x,H(x,x") = exp(—2’y*2(c — k(x,x")))
o If®, y: H— H,pis a feature map of k, 1y on H, then
.0 ®

is a feature map of k, y x.



Construction I

Idea

o So far we have

ky x H(x,X') = exp(—2'y_2(c — k(x, X'))) (2)

o For I C {1,...,d} we write x; 1= (xi)jes.
o For h,...Im C {1,...,d}, let ky,..., kn be kernels on RIAI . RIAI
o Assume that k;i(x,x) = 1.

For | .= I U---U I, consider the kernel
k(x,x") = Z W,-2k,- (x/,.,x,'i) , x,x € X;.
i=1

in (2). This kernel is denoted by k,,. This can be iterated!



Construction I

Definition
Let H be the RKHS of the kernel

m
k(x,x") := Z W,?k;(x/i,x,/’_) , x,x' € X.
i=1

Then the resulting hierarchical Gaussian kernel k, x, 4, that is

kyx, 1 (x: X') = exp(=2772(c — k(x,x')))

is said to be:
o of depth 1, if all kernels ki, ..., ky, are linear kernels.
o of depth L > 1, if all kq,..., k, are hierarchical Gaussian kernels of

depth L — 1.



Construction |l

Example 1
Hierarchical Gaussian kernels of depth L = 1 are of the form
Kl x') = exp (= = w2(x — X)) | x,x € X,
iel
ARD kernel
Example 2

Hierarchical Gaussian kernels of depth L = 2 are of the form

m

kW(l),w,fy(X’ x') = exp (—27_2 Z W,-2(1 — kw;(xi,, X;,)))

i=1

— exp <—2’y_2 zm: w2 (1 —exp (=D w2 - x;)2)>> .

i=1 JEI;



Structure of a Hierarchical Gaussian Kernel

W W

k 2
W w?

kww we w

Example of a hierarchical Gaussian kernels of depth L = 3.



A Bit Theory |

Definition
A continuous kernel on a compact metric space X is universal, if its RKHS
is dense in C(X).

Theorem (Christmann & S., 2010)
A kernel of the form

ky,tx (%, x') = exp(—y 2 D(x) — ©(x)13) x,x' €X,

is universal, if ® is continuous and injective.



A Bit Theory Il

Theorem (S. & Thomann, 2016)
A hierarchical Gaussian kernel of depth L > 1 is universal, if it does not
ignore coordinates.

Corollary (S. & Thomann, 2016)
Every SVM using a fixed hierarchical Gaussian kernel of depth L > 1 that
does not ignore coordinates is universally consistent.

Remarks
o Learning rates for weights changing with sample size n?
o For which distributions do hierarchical Gaussian kernels help?

o Learning the kernel can be, in principle, decoupled from learning a
classifier/regressor.



A Bit Theory IlI

A few words on the proof ...
@ Induction over L

o At the highest level we have

/
k%X/, H v/ wi, X, Hi XI,X/) x,x" € Xj.

o If k; and kj are universal kernels on X; and X}, then k; ® k; defined
by

k/®kJ(X,X/) = k/(X/,XII)-kJ(XJ,X_//), X,XIGX[U_]

is a universal kernel on X; . Use Stone-WeierstraB3.

o Universal kernels have injective feature maps.

/wi,X,H; are universal by induction assumption



LS Error for Automated Learning Procedures

Data Set

SVM

HKL

Ours

RF

DNN

BANK

.2978 +.0024

.2939 +.0028

.2596 +.0039

.2687 +.0027

.2931 4+.0025

CADATA

.0538 +.0016

.0625 £.0014

.0525 +.0019

.0509 +.0015

.0550 +.0015

COD

.1574 £.0023

1734 £.0013

.1309 £+.0050

.1725 £.0020

.1154 £.0013

COVTYPE

.5205 +.0043

.6100 £.0042

.3995 +.0148

4878 +.0041

.5027 +.0063

CPUSMALL

.0036 +.0002

.0046 +.0004

.0034 £.0002

.0032 £+.0002

.0038 +.0001

CYCLE

.0105 +.0003

.0122 £.0003

.0098 £.0005

.0084 +.0003

.0121 £.0003

HIGGS

.9021 +.0017

.8178 +.0074

.8023 £.0175

7770 £.0024

.9162 +.0024

LETTER

.0451 +.0015

.1151 £.0018

.0339 £.0014

.0577 £.0015

.0448 +.0018

MAGIC

.4007 £+.0083

4282 £.0082

.3900 +.0093

.3772 £.0079

.3783 £.0085

PENDIGITS

.0079 +.0007

.0243 +.0012

.0070 £.0007

.0127 +.0012

.0079 +.0010

SATIMAGE

.0488 £.0029

.1078 £.0059

.0467 £.0030

.0525 £.0026

.0525 £.0033

SEISMIC

.3113 +£.0013

.3189 £.0022

.2081 +.0016

.2955 £.0012

.2975 £.0014

SHUTTLE

.0046 +.0003

.0129 +.0007

.0042 +.0004

.0008 £.0002

.0059 +.0004

THYROID

.1750 £.0081

.1637 £.0083

.1538 £.0080

.0251 £.0031

.1522 £.0080

UPDRS

.0537 £.0052

1774 +.0090

.0059 £.0021

.0305 +.0016

.0531 £.0042




Detailed Comparison

©
Nq ©q 5\3.\—‘
| Methods Methods Methods
8] — sw —— Ours = Ours
S <] — ous — RF — RF
@ — RF ol — DNN ol — DNN
e 8] — ow 2 2
- o o
g /\/\ £ £
g 8 |} @
g - g ¢
o 0 <4 0 o4
2 el s 5
§ s 5 g
o Q Qo
28 5 5
"_(—i =] Z 4 Z o4
o
c g
°
8 —r ° r r v ) ° r y y r .
S 5 7 9 11 13 15 5 10 15 20 2 5 10 15 20 25
Data set number Improvements in % compared to 2nd best method Worsening in % compared to best error
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Software
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