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Overview

Approximation theoretic questions related to kernel-based learning

More flexible kernels: spatial decompositions

More flexible kernels: deeper compositions



Informal Description of Supervised Learning

X space of input samples
Y space of labels, usually Y ⊂ R.

Already observed samples

D =
(
(x1, y1), . . . , (xn, yn)

)
∈ (X × Y )n

Goal:
With the help of D find a function fD : X → R such that fD(x) is a
good prediction of the label y for new, unseen x .

Learning method:
Assigns to every training set D a predictor fD : X → R.
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Illustration: Regression

Problem:
The labels y are R-valued.

Goal:
Estimate label y for new data x as accurate as possible.

Example:
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Data Generation

Assumptions

We have bounded labels Y = [−1, 1].

P is an unknown probability measure on X × [−1, 1].

D =
(
(x1, y1), . . . , (xn, yn)

)
∈ (X × Y )n is sampled from Pn.

Future samples (x , y) will also be sampled from P.

(For this talk) we mostly use the least squares loss

L(y , t) := (y − t)2

to assess quality of a prediction t for y .



Risks

The risk of a predictor f : X → R is the average loss

RL,P(f ) :=

∫
X×Y

L
(
y , f (x)

)
dP(x , y) .

The Bayes risk is the smallest possible risk

R∗L,P := inf
{
RL,P(f ) | f : X → R (measurable)

}
.

The Bayes predictor for the least squares loss is f ∗L,P(x) := E(Y |x), i.e.

RL,P(f ∗L,P) = R∗L,P .

The excess risk satisfies

RL,P(f )−R∗L,P = ‖f − f ∗L,P‖2L2(PX )
.



Kernel-based learning methods

Let H be a reproducing kernel Hilbert space, here with bounded kernel

Let L : Y × R→ [0,∞) be a convex loss

Kernel-based learning methods (e.g. SVMs) solve the problem

fD,λ = arg min
f ∈H

λ‖f ‖2H +
1

n

n∑
i=1

L
(
yi , f (xi )

)
, (1)

where λ > 0 is a free regularization parameter. Solution is of the form

fD,λ =
n∑

i=1

αik(xi , · ) .

Historical Notes
G. Wahba (1971 –): Least squares loss
V. Vapnik et al. (1992 –): Hinge loss
Other losses in the last decade or so.
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A Typical Oracle Inequality

Consider the approximation (regularization) error

A(λ) := inf
f∈H

λ‖f ‖2H +RL,P(f )−R∗L,P
Assume an (dyadic) entropy number behavior

ei
(
I : H → L2(PX )

)
� i−1/(2p)

Then with probability Pn not smaller than 1− e−τ we have

RL,P(fD,λ)−R∗L,P ≤ K
(
A(λ) +

1

λpn
+
τA(λ)

λn

)
Remarks:

If rate A(λ)→ 0 for λ→ 0 known, we obtain learning rates.

Entropy behaviour is equivalent to a similar eigenvalue behaviour of

Tk : L2(PX )→ L2(PX )

Tk f :=

∫
X

k(x , ·)f (x) dPX (x)



Interpolation Spaces: Definition

For Banach spaces F ↪→ E and x ∈ E , the K-functional is

K (x , t) := inf
y∈F
‖x − y‖E + t‖y‖F , t > 0.

For 0 < β < 1, 1 ≤ r ≤ ∞, the interpolation space [E ,F ]β,r consists
of those x ∈ E with finite ‖x‖β,r , where

‖x‖β,r :=


(∞∫

0

(t−βK (x , t))r t−1dt

)1/r

if 1 ≤ r <∞

supt>0 t
−βK (x , t) if r =∞ .

We are interested in the spaces [L2(PX ), [H]∼]β,r .



Interpolation Spaces vs. Approximation Properties

Smale & Zhou, 2003
A(λ) � λβ if and only if f ∗L,P ∈ [L2(PX ), [H]∼]β,∞.

Operator techniques (Caponnetto and De Vito, 2007, . . . )
Rates for RL,P(fD,λ)→ R∗L,P are obtained if

f ∗L,P ∈ imT
β/2
k

Smale & Zhou, 2003
If X is compact, suppPX = X and k continuous, then[

L2(PX ), [H]∼
]
β+ε,∞ ⊂ imT

β/2
k ⊂

[
L2(PX ), [H]∼

]
β,∞ ,

Both approximation assumptions are almost the same, since

[L2(PX ), [H]∼]β+ε,∞ ↪→ [L2(PX ), [H]∼]β,1 ↪→ [L2(PX ), [H]∼]β,∞



Spectral Theorem, Revisited

Let k be a reproducing kernel with compact Ik,ν : H → L2(ν).

Then Tk,ν = Ik,ν ◦ I ∗k,ν is selfadjoint, positive, and compact.

Let (µi )i∈I be the family of non-zero eigenvalues of Tk,ν and ([ẽi ]∼)
be a corresponding ONS of eigenfunctions in L2(ν).

Then ei := µ−1i I ∗k,ν [ẽi ]∼ ∈ H satisfies [ei ]∼ = [ẽi ]∼ and we have:

([ei ]∼) is an ONS in L2(ν).

(
√
µiei ) is an ONS in H.

(ker Ik,ν)⊥ = im I ∗k,ν = span{√µiei : i ∈ I}

(kerTk,ν)⊥ = (ker I ∗k,ν)⊥ = im Ik,ν = span{[ei ]∼ : i ∈ I}

Consequence.
L2(ν) and H “share a subspace” described by (ei ).
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The Situation so far

Isometric Copy of H in L2(ν)

[H]∼ =

{∑
i∈I

aiµ
1/2
i [ei ]∼ : (ai ) ∈ `2(I )

}

Closure of H in L2(ν)

[H]∼
L2(ν)

=

{∑
i∈I

ai [ei ]∼ : (ai ) ∈ `2(I )

}

Question
What is in between?



Power Spaces

For β ∈ [0, 1] we can consider the following subspace of L2(ν):

[H]β∼ :=

{∑
i∈I

aiµ
β/2
i [ei ]∼ : (ai ) ∈ `2(I )

}
=

{∑
i∈I

bi [ei ]∼ : (bi ) ∈ `2(µ−β)

}
,

where `2(µ−β) is a weighted sequence space with norm:

‖(bi )‖2`2(µ−β) :=
∑
i∈I

b2i µ
−β
i

By construction, (µ
β/2
i [ei ]∼)i∈I is an ONB of [H]β∼ and

[H]0∼ = [H]∼
L

2(ν)

[H]1∼ = [H]∼

[H]β∼ = imT
β/2
k,ν
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Power Spaces are Interpolation Spaces

S. & Scovel, 2012
If Ik,ν : H → L2(ν) is compact, then, for β ∈ (0, 1), we have

imT
β/2
k,ν = [H]β∼

∼=
[
L2(ν), [H]∼

]
β,2
.

Idea of the Proof.

Interpolating L2(ν) and [H]∼ is the same as interpolating `2(I ) and
`2(µ−1).

We have [`2(I ), `2(µ−1)]β,2 ∼= `2(µ−β).
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Rates for Fixed Kernel

Generic Setting (S., Scovel, & Hush, 2009 + S. & Scovel, 2012)

Assume µi � i−1/p

Assume f ∗L,P ∈ [L2(PX ),H]β,∞ for some β ∈ (0, 1].

Assume [L2(PX ),H]s,1 ↪→ L∞(PX ) for s = min{1, p/(1− β)}. This is
equivalent to

‖f ‖∞ ≤ c‖f ‖sH‖f ‖1−sL2(PX )
, f ∈ H

Then kernel method can learn with the optimal rate n−
β

β+p .

Special Case: Sobolev Setting (e.g. Kohler)

X ball in Rd and H := Wm(X ) Sobolev space with m > d/2.
 Least squares with splines.

PX uniform distribution and f ∗L,P ∈ Bs
2,2(X ) for some s ∈ (d/2,m].

The kernel method can learn with the optimal rate n−
2s

2s+d



Improved Convergence

Fischer & S., 2017

Assume µi � i−1/p

Assume f ∗L,P ∈ [L2(PX ),H]β,2 for some β ∈ (0, 1].

Assume [L2(PX ),H]α,2 ↪→ L∞(PX ) for some α ∈ (0, 1).

Then, for a suitable sequence (λn) the decision functions fD,λn converges to f ∗L,P
in the norm of [L2(PX ),H]γ,2 for γ ∈ [0, β] with rate n−r , where

r =
β − γ

max{α, β}+ p

Example.
Let H = Wm(X ) and f ∗L,P ∈ Bs

2,2(X ) for some s ∈ (d/2,m]. For t ∈ (0, s), the

rate in B t
2,2(X ) is n−r , where

r =
2s − 2t

2s + d

This improves and generalizes results by Smale & Zhou (2007), Capaonetto & de
Vito (2007), S. et al (2009), and Blanchard & Mücke (2016)



Gaussian Kernels

Smale & Zhou, 2003
Consider Gaussian RKHS Hγ(X ) with kernel

kγ(x , x ′) := exp
(
−γ−2‖x − x ′‖22

)
, x , x ′ ∈ X .

Then Aγ(λ) � λβ for some β ∈ (0, 1] implies f ∗L,P ∈ C∞(X ).

Solution
Consider width γ as a free parameter.
 Theory presented so far does not work anymore.



Rates for Gaussian Kernels

Eberts & S., 2011/3

X ball in Rd and Hγ is RKHS of Gaussian kernel kγ .

PX has bounded Lebesgue density.

Pick λ and γ by a training/validation approach.

Then, for s ≥ 1, every f ∗L,P ∈W s
2 (X ) is learned with the rate n−

2s
2s+d

+ε

without knowing s.

The extra factor nε can be replaced by a logarithmic factor.

Key idea of the proof
Bound approximation error by convoluting f ∗L,P with weighted sum of
kernels kγ1 , . . . kγm .



Spatial Decompositions



Computational Requirements for the Optimization Problem

Optimization Problem

fD,λ = arg min
f ∈H

λ‖f ‖2H +
1

n

n∑
i=1

L
(
yi , f (xi )

)
Example: Dual Problem for Hinge Loss

α∗ ∈ arg max
α∈[0, 1

2λn
]d

n∑
i=1

αi −
1

2

n∑
i ,j=1

yiyjαiαjk(xi , xj)

Re-substitution

fD,λ =
n∑

i=1

yiα
∗
i k( · , xi ) ,



Problems for Large Data

Computational Requirements

The size of the optimization problem grows linearly in n.

The kernel matrix (k(xi , xj)) grows quadratically in n.

Computing the decision functions grows linearly in n.

Solving the optimization problem costs between O(n2) and O(n3)

Consequences

For 64GB machines, kernel matrices for n > 100.000 cannot be stored.

Training for such sample sizes, even if only a fixed parameter pair
(λ, σ) is considered, may take up to hours.

Using kernel methods without tricks is impossible for data sizes
ranging in the millions.
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Solution Strategies

Nyström Method (Williams & Seeger, 2001):
Approximate matrix by low-rank matrix.
Theoretical analysis by Rudi, Camariano, & Rosasco (2015)

Random Fourier Features (Rahimi & Recht, 2007):
Approximate kernel by finite dimensional kernel.
Bounds for approximation by Sriperumbudur & Szabo (2015)

Chunking: Devide data into smaller subsets.
Analysis for random splits: Zhang, Duchi & Wainwright (2014),
Zhou, Guo & Lin (2015). next talk!
Spatial splits: now



Construction

Split bounded X ⊂ Rd into cells A1, . . . ,Am of diameter ≤ r .

On each cell Aj train a kernel method with Gaussian kernel and the
data in Aj , i.e.

Dj := {(xi , yi ) ∈ D : xi ∈ Aj} .

The hyper-parameters λ and σ are found by training/validation on
each cell separately.

To predict y for some test sample x , only take the decision function
that is constructed on the cell Aj with x ∈ Aj .



Main Result

Rates for Localized kernel methods (Meister & S., 2016)

Pick some β > 0 and rn ∼ n−1/β.

Assume that f ∗L,P ∈W s
2 (X ) for some s < β−d

2 .

Then the localized kernel method learns with rate n−
2s

2s+d
+ε.

Remarks

Good adaptivity requires large β.

Large β leads to large cells.
 Trade-off between statistics and computational complexity.

Similar results for quantile regression.
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Idea of the Proof

The split kernel method can be viewed as an ordinary kernel method
using the RKHS

H =
m⊕
j=1

√
λjHAj ,σj

Investigate how properties of the local RKHS influence properties of
the global H in view of P.

Again we are facing a kernel more complex than usual.



Controlling the Size of the Cells

I Data: covertype in binary classification from LIBSVM site, d = 54

I Method: Hinge loss and number of samples in cells are controlled



Deeper Compositions



Structure of a Neural Network

feature #1

feature #2

feature #3

Output

At each non-input node, we perform the operation

x 7→ σ
(
〈w , x〉+ b

)
Do we need the network structure on the right to classify?

Can we replace the feature modification on the left by something else?



A simple Network with One Hidden Layer

Input space X = [0, 1]

One hidden layer with m ReLU-units each performing

x 7→ Φj(x) :=
∣∣wjx + bj

∣∣
+
, j = 1, . . . ,m.

Output layer creates a function

x 7→ 〈v ,Φ(x)〉`d2 =
m∑
j=1

vj
∣∣wjx + bj

∣∣
+

Thus it realizes an element in the RKHS with FM Φ := (Φ1, . . . ,Φm).

For fixed w , b ∈ Rm this RKHS is a set of piecewise linear functions
with kinks at

− b1
w1

, . . . ,− bm
wm

The NN represents all piecewise linear functions with at most m − 1
kinks and most with m kinks .
 nonlinear structure, parametric method for each fixed design
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From Deep Neural Networks to Deep Kernels

Observation
Each layer performs a non-linear transformation

Rmi → Rmi+1

x 7→ Φwi ,bi (x)

Entire feature map is Φ := ΦwL,bL ◦ · · · ◦ Φw1,b1

Idea for Rest of the Talk
Replace finite-dimensional spaces by infinite dimensional Hilbert spaces

Hi → Hi+1

x 7→ Φwi (x)

Use the kernel of the resulting feature map Φ := ΦwL
◦ · · · ◦ Φw1



“Historical Remarks”

Bach, Lanckriet, and Jordan 2004
L = 2, linear kernel in second layer  Multiple kernel learning

Cho and Saul, 2009
General setup and some examples

Zhuang, Tsang, and Hoi, 2011
L = 2, sum of kernels in composition step, pseudo-dimension bound

Strobl and Visweswaran, 2013
Sums of kernels in each composition step, VC-bounds

Tang, 2013
ΦL−1 ◦ · · · ◦ Φ1 is a neural net with M output nodes, ΦL is linear “SVM”.

Wilson, Hu, Salakhutdinov, and Xing, 2016
ΦL−1 ◦ · · · ◦ Φ1 is a neural net with M output nodes, ΦL is non-linear.



Construction I

Observations
Let H be a Hilbert space and Φ : X → H.

We obtain a new kernel on X by

kγ,H,X (x , x ′) := exp
(
−γ−2‖Φ(x)− Φ(x ′)‖2H

)
, x , x ′ ∈ X ,

If k(x , x ′) := 〈Φ(x),Φ(x ′)〉 with k(x , x) ≡ c , then

kγ,X ,H(x , x ′) = exp
(
−2γ−2(c − k(x , x ′))

)
If Φγ,H : H → Hγ,H is a feature map of kγ,H on H, then

Φγ,H ◦ Φ

is a feature map of kγ,H,X .



Construction II

Idea

So far we have

kγ,X ,H(x , x ′) = exp
(
−2γ−2(c − k(x , x ′))

)
(2)

For I ⊂ {1, . . . , d} we write xI := (xi )i∈I .

For I1, . . . Im ⊂ {1, . . . , d}, let k1, . . . , km be kernels on R|I1|, . . . ,R|I1|.
Assume that ki (x , x) ≡ 1.

For I := I1 ∪ · · · ∪ Im consider the kernel

k(x , x ′) :=
m∑
i=1

w2
i ki
(
xIi , x

′
Ii

)
, x , x ′ ∈ XI .

in (2). This kernel is denoted by kw . This can be iterated!



Construction II

Definition
Let H be the RKHS of the kernel

k(x , x ′) :=
m∑
i=1

w2
i ki
(
xIi , x

′
Ii

)
, x , x ′ ∈ XI .

Then the resulting hierarchical Gaussian kernel kγ,XI ,H , that is

kγ,X ,H(x , x ′) = exp
(
−2γ−2(c − k(x , x ′))

)
is said to be:

of depth 1, if all kernels k1, . . . , km are linear kernels.

of depth L > 1, if all k1, . . . , km are hierarchical Gaussian kernels of
depth L− 1.



Construction III

Example 1
Hierarchical Gaussian kernels of depth L = 1 are of the form

kw(x , x ′) := exp
(
−
∑
i∈I

wi
2(xi − x ′i )

2
)
, x , x ′ ∈ X ,

ARD kernel

Example 2
Hierarchical Gaussian kernels of depth L = 2 are of the form

kW(1),w,γ(x , x ′) = exp

(
−2γ−2

m∑
i=1

w2
i

(
1− kwi (xIi , x

′
Ii

)
))

= exp

(
−2γ−2

m∑
i=1

wi
2

(
1− exp

(
−
∑
j∈Ii

wj ,i
2(xj − x ′j )

2
)))

.



Structure of a Hierarchical Gaussian Kernel

x1

x2

x3

x4

x5

x6

k
W

(1)
1

k
W

(1)
2

k
W

(1)
3

k
W

(1)
4

k
W

(1)
5

k
W

(1)
6

k
W

(1)
7

k
W

(1)
8

k
W(1),w

(2)
1

k
W(1),w

(2)
2

kW(1),W(2),w

w
(1)
1,3

w
(1)
6,7

w
(2)
1,1

w
(2)
6,1

w
(2)
8,1

w1

w2

W(1) W(2) w

Example of a hierarchical Gaussian kernels of depth L = 3.



A Bit Theory I

Definition
A continuous kernel on a compact metric space X is universal, if its RKHS
is dense in C (X ).

Theorem (Christmann & S., 2010)
A kernel of the form

kγ,H,X (x , x ′) := exp
(
−γ−2‖Φ(x)− Φ(x ′)‖2H

)
, x , x ′ ∈ X ,

is universal, if Φ is continuous and injective.



A Bit Theory II

Theorem (S. & Thomann, 2016)
A hierarchical Gaussian kernel of depth L ≥ 1 is universal, if it does not
ignore coordinates.

Corollary (S. & Thomann, 2016)
Every SVM using a fixed hierarchical Gaussian kernel of depth L ≥ 1 that
does not ignore coordinates is universally consistent.

Remarks

Learning rates for weights changing with sample size n?

For which distributions do hierarchical Gaussian kernels help?

Learning the kernel can be, in principle, decoupled from learning a
classifier/regressor.



A Bit Theory III

A few words on the proof . . .

Induction over L

At the highest level we have

kγ,XI ,H(x , x ′) =
l∏

i=1

kγ/wi ,X ,Hi

(
xIi , x

′
Ii

)
, x , x ′ ∈ XI .

If kI and kJ are universal kernels on XI and XJ , then kI ⊗ kJ defined
by

kI ⊗ kJ(x , x ′) := kI (xI , x
′
I ) · kJ(xJ , x

′
J) , x , x ′ ∈ XI∪J

is a universal kernel on XI∪J . Use Stone-Weierstraß.

Universal kernels have injective feature maps.
 kγ/wi ,X ,Hi

are universal by induction assumption



LS Error for Automated Learning Procedures

Data Set SVM HKL Ours RF DNN

bank .2978 ± .0024 .2939 ± .0028 .2596 ± .0039 .2687 ± .0027 .2931 ± .0025
cadata .0538 ± .0016 .0625 ± .0014 .0525 ± .0019 .0509 ± .0015 .0550 ± .0015

cod .1574 ± .0023 .1734 ± .0013 .1309 ± .0050 .1725 ± .0020 .1154 ± .0013
covtype .5205 ± .0043 .6100 ± .0042 .3995 ± .0148 .4878 ± .0041 .5027 ± .0063
cpusmall .0036 ± .0002 .0046 ± .0004 .0034 ± .0002 .0032 ± .0002 .0038 ± .0001

cycle .0105 ± .0003 .0122 ± .0003 .0098 ± .0005 .0084 ± .0003 .0121 ± .0003
higgs .9021 ± .0017 .8178 ± .0074 .8023 ± .0175 .7770 ± .0024 .9162 ± .0024

letter .0451 ± .0015 .1151 ± .0018 .0339 ± .0014 .0577 ± .0015 .0448 ± .0018
magic .4007 ± .0083 .4282 ± .0082 .3900 ± .0093 .3772 ± .0079 .3783 ± .0085

pendigits .0079 ± .0007 .0243 ± .0012 .0070 ± .0007 .0127 ± .0012 .0079 ± .0010
satimage .0488 ± .0029 .1078 ± .0059 .0467 ± .0030 .0525 ± .0026 .0525 ± .0033

seismic .3113 ± .0013 .3189 ± .0022 .2981 ± .0016 .2955 ± .0012 .2975 ± .0014
shuttle .0046 ± .0003 .0129 ± .0007 .0042 ± .0004 .0008 ± .0002 .0059 ± .0004
thyroid .1750 ± .0081 .1637 ± .0083 .1538 ± .0080 .0251 ± .0031 .1522 ± .0080

updrs .0537 ± .0052 .1774 ± .0090 .0059 ± .0021 .0305 ± .0016 .0531 ± .0042
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