### Approximation Properties of Reproducing Kernels

#### M. Eberts (Meister), S. Fischer, N. Schmid, P. Thomann, & I. Steinwart

Institute of Stochastics and Applications University of Stuttgart

> Guangzhou May 20th, 2017

- Approximation theoretic questions related to kernel-based learning
- More flexible kernels: spatial decompositions
- More flexible kernels: deeper compositions

- X space of input samples Y space of labels, usually  $Y \subset \mathbb{R}$ .
- Already observed samples

$$D = ((x_1, y_1), \ldots, (x_n, y_n)) \in (X \times Y)^n$$

- X space of input samples Y space of labels, usually  $Y \subset \mathbb{R}$ .
- Already observed samples

$$D = ((x_1, y_1), \ldots, (x_n, y_n)) \in (X \times Y)^n$$

#### Goal:

With the help of D find a function  $f_D : X \to \mathbb{R}$  such that  $f_D(x)$  is a good prediction of the label y for new, unseen x.

#### • Learning method:

Assigns to every training set *D* a predictor  $f_D : X \to \mathbb{R}$ .

#### Problem:

The labels y are  $\mathbb{R}$ -valued.

#### Goal:

Estimate label y for new data x as accurate as possible.

# Example:



#### Assumptions

- We have bounded labels Y = [-1, 1].
- *P* is an unknown probability measure on  $X \times [-1, 1]$ .
- $D = ((x_1, y_1), \dots, (x_n, y_n)) \in (X \times Y)^n$  is sampled from  $P^n$ .
- Future samples (x, y) will also be sampled from *P*.
- (For this talk) we mostly use the least squares loss

$$L(y,t) := (y-t)^2$$

to assess quality of a prediction t for y.

• The risk of a predictor  $f: X \to \mathbb{R}$  is the average loss

$$\mathcal{R}_{L,P}(f) := \int_{X \times Y} L(y, f(x)) dP(x, y) .$$

• The Bayes risk is the smallest possible risk

$$\mathcal{R}^*_{L,P}:= \infig\{ \, \mathcal{R}_{L,P}(f) \mid f: X o \mathbb{R} \; (\mathsf{measurable}) \; ig\} \; .$$

• The Bayes predictor for the least squares loss is  $f_{L,P}^*(x) := \mathbb{E}(Y|x)$ , i.e.

$$\mathcal{R}_{L,P}(f_{L,P}^*) = \mathcal{R}_{L,P}^*$$

• The excess risk satisfies

$$\mathcal{R}_{L,P}(f) - \mathcal{R}^*_{L,P} = \|f - f^*_{L,P}\|^2_{L_2(P_X)}.$$

# Kernel-based learning methods

- Let *H* be a reproducing kernel Hilbert space, here with bounded kernel
- Let  $L: Y \times \mathbb{R} \to [0,\infty)$  be a *convex* loss

## Kernel-based learning methods

- Let H be a reproducing kernel Hilbert space, here with bounded kernel
- Let  $L: Y \times \mathbb{R} \to [0,\infty)$  be a *convex* loss
- Kernel-based learning methods (e.g. SVMs) solve the problem

$$f_{D,\lambda} = \arg\min_{f \in H} \lambda \|f\|_{H}^{2} + \frac{1}{n} \sum_{i=1}^{n} L(y_{i}, f(x_{i})) , \qquad (1)$$

where  $\lambda > 0$  is a free regularization parameter. Solution is of the form

$$f_{D,\lambda} = \sum_{i=1}^n \alpha_i k(x_i, \cdot).$$

#### Historical Notes

- G. Wahba (1971 –): Least squares loss
- V. Vapnik et al. (1992 –): Hinge loss
- Other losses in the last decade or so.

# A Typical Oracle Inequality

• Consider the approximation (regularization) error

$$A(\lambda) := \inf_{f \in H} \lambda \|f\|_{H}^{2} + \mathcal{R}_{L,P}(f) - \mathcal{R}_{L,P}^{*}(f)$$

• Assume an (dyadic) entropy number behavior

$$e_i(I:H\to L_2(P_X)) \preceq i^{-1/(2p)}$$

Then with probability  $P^n$  not smaller than  $1 - e^{-\tau}$  we have

$$\mathcal{R}_{L,P}(f_{D,\lambda}) - \mathcal{R}^*_{L,P} \leq K\Big(A(\lambda) + \frac{1}{\lambda^p n} + \frac{\tau A(\lambda)}{\lambda n}\Big)$$

#### **Remarks:**

- If rate  $A(\lambda) \rightarrow 0$  for  $\lambda \rightarrow 0$  known, we obtain learning rates.
- Entropy behaviour is equivalent to a similar eigenvalue behaviour of

$$egin{aligned} T_k &: L_2(P_X) o L_2(P_X) \ &T_k f &:= \int_X k(x,\cdot) f(x) \, dP_X(x) \end{aligned}$$

• For Banach spaces  $F \hookrightarrow E$  and  $x \in E$ , the K-functional is

$$K(x,t) := \inf_{y \in F} ||x - y||_E + t ||y||_F, \qquad t > 0.$$

For 0 < β < 1, 1 ≤ r ≤ ∞, the interpolation space [E, F]<sub>β,r</sub> consists of those x ∈ E with finite ||x||<sub>β,r</sub>, where

$$\|x\|_{\beta,r} := \begin{cases} \left(\int_{0}^{\infty} (t^{-\beta} K(x,t))^{r} t^{-1} dt\right)^{1/r} & \text{if } 1 \leq r < \infty \\ \sup_{t>0} t^{-\beta} K(x,t) & \text{if } r = \infty \,. \end{cases}$$

• We are interested in the spaces  $[L_2(P_X), [H]_{\sim}]_{\beta,r}$ .

# Interpolation Spaces vs. Approximation Properties

Smale & Zhou, 2003  $A(\lambda) \preceq \lambda^{\beta}$  if and only if  $f_{L,P}^* \in [L_2(P_X), [H]_{\sim}]_{\beta,\infty}$ .

**Operator techniques (Caponnetto and De Vito, 2007, ...)** Rates for  $\mathcal{R}_{L,P}(f_{D,\lambda}) \rightarrow \mathcal{R}^*_{L,P}$  are obtained if

$$f^*_{L,P} \in \operatorname{im} T^{\beta/2}_k$$

**Smale & Zhou, 2003** If X is compact, supp  $P_X = X$  and k continuous, then

$$\left[L_2(P_X),[H]_{\sim}\right]_{\beta+\varepsilon,\infty}\,\subset\,\operatorname{im}\,T_k^{\beta/2}\,\subset\,\left[L_2(P_X),[H]_{\sim}\right]_{\beta,\infty},$$

Both approximation assumptions are almost the same, since

$$[L_2(P_X), [H]_{\sim}]_{\beta+\varepsilon,\infty} \hookrightarrow [L_2(P_X), [H]_{\sim}]_{\beta,1} \hookrightarrow [L_2(P_X), [H]_{\sim}]_{\beta,\infty}$$

# Spectral Theorem, Revisited

- Let k be a reproducing kernel with compact  $I_{k,\nu}: H \to L_2(\nu)$ .
- Then  $T_{k,\nu} = I_{k,\nu} \circ I_{k,\nu}^*$  is selfadjoint, positive, and compact.
- Let (µ<sub>i</sub>)<sub>i∈I</sub> be the family of non-zero eigenvalues of T<sub>k,ν</sub> and ([ẽ<sub>i</sub>]<sub>∼</sub>) be a corresponding ONS of eigenfunctions in L<sub>2</sub>(ν).

Then  $e_i := \mu_i^{-1} I_{k,\nu}^* [\tilde{e}_i]_{\sim} \in H$  satisfies  $[e_i]_{\sim} = [\tilde{e}_i]_{\sim}$  and we have:

# Spectral Theorem, Revisited

- Let k be a reproducing kernel with compact  $I_{k,\nu}: H \to L_2(\nu)$ .
- Then  $T_{k,\nu} = I_{k,\nu} \circ I_{k,\nu}^*$  is selfadjoint, positive, and compact.
- Let (µ<sub>i</sub>)<sub>i∈I</sub> be the family of non-zero eigenvalues of T<sub>k,ν</sub> and ([ẽ<sub>i</sub>]<sub>∼</sub>) be a corresponding ONS of eigenfunctions in L<sub>2</sub>(ν).

Then  $e_i := \mu_i^{-1} I_{k,\nu}^* [\tilde{e}_i]_{\sim} \in H$  satisfies  $[e_i]_{\sim} = [\tilde{e}_i]_{\sim}$  and we have:

- $([e_i]_{\sim})$  is an ONS in  $L_2(\nu)$ .
- $(\sqrt{\mu_i}e_i)$  is an ONS in *H*.

$$(\ker I_{k,\nu})^{\perp} = \overline{\operatorname{im} I_{k,\nu}^*} = \overline{\operatorname{span}}\{\sqrt{\mu_i}e_i : i \in I\}$$
$$(\ker T_{k,\nu})^{\perp} = (\ker I_{k,\nu}^*)^{\perp} = \overline{\operatorname{im} I_{k,\nu}} = \overline{\operatorname{span}}\{[e_i]_{\sim} : i \in I\}$$

#### Consequence.

 $L_2(\nu)$  and H "share a subspace" described by  $(e_i)$ .

**Isometric Copy of** *H* **in**  $L_2(\nu)$ 

$$[H]_{\sim} = \left\{ \sum_{i \in I} a_i \mu_i^{1/2} [e_i]_{\sim} : (a_i) \in \ell_2(I) \right\}$$

Closure of *H* in  $L_2(\nu)$ 

$$\overline{[H]}_{\sim}^{L_2(\nu)} = \left\{ \sum_{i \in I} a_i [e_i]_{\sim} : (a_i) \in \ell_2(I) \right\}$$

# **Question** What is in between?

## **Power Spaces**

• For  $\beta \in [0,1]$  we can consider the following subspace of  $L_2(\nu)$ :

$$\begin{split} [H]^{\beta}_{\sim} &:= \left\{ \sum_{i \in I} a_i \mu_i^{\beta/2} [e_i]_{\sim} : (a_i) \in \ell_2(I) \right\} \\ &= \left\{ \sum_{i \in I} b_i [e_i]_{\sim} : (b_i) \in \ell_2(\mu^{-\beta}) \right\}, \end{split}$$

where  $\ell_2(\mu^{-\beta})$  is a weighted sequence space with norm:  $\|(b_i)\|_{\ell_2(\mu^{-\beta})}^2 := \sum_{i \in I} b_i^2 \mu_i^{-\beta}$ 

## **Power Spaces**

• For  $\beta \in [0,1]$  we can consider the following subspace of  $L_2(\nu)$ :

$$\begin{split} [H]^{\beta}_{\sim} &:= \left\{ \sum_{i \in I} a_i \mu_i^{\beta/2} [e_i]_{\sim} : (a_i) \in \ell_2(I) \right\} \\ &= \left\{ \sum_{i \in I} b_i [e_i]_{\sim} : (b_i) \in \ell_2(\mu^{-\beta}) \right\}, \end{split}$$

where  $\ell_2(\mu^{-\beta})$  is a weighted sequence space with norm:

$$\|(b_i)\|^2_{\ell_2(\mu^{-\beta})} := \sum_{i \in I} b_i^2 \mu_i^{-\beta}$$

• By construction,  $(\mu_i^{\beta/2}[e_i]_{\sim})_{i\in I}$  is an ONB of  $[H]_{\sim}^{\beta}$  and

$$[H]^{0}_{\sim} = \overline{[H]}^{L}_{\sim 2}(\nu)$$
$$[H]^{1}_{\sim} = [H]_{\sim}$$
$$[H]^{\beta}_{\sim} = \operatorname{im} T^{\beta/2}_{k,\nu}$$

#### S. & Scovel, 2012

If  $I_{k,\nu}: H \to L_2(\nu)$  is compact, then, for  $\beta \in (0,1)$ , we have

im 
$$T_{k,\nu}^{\beta/2} = [H]_{\sim}^{\beta} \cong [L_2(\nu), [H]_{\sim}]_{\beta,2}$$

S. & Scovel, 2012 If  $I_{k,\nu}: H \to L_2(\nu)$  is compact, then, for  $\beta \in (0,1)$ , we have

im 
$$T_{k,\nu}^{\beta/2} = [H]_{\sim}^{\beta} \cong [L_2(\nu), [H]_{\sim}]_{\beta,2}.$$

#### Idea of the Proof.

- Interpolating  $L_2(\nu)$  and  $[H]_{\sim}$  is the same as interpolating  $\ell_2(I)$  and  $\ell_2(\mu^{-1})$ .
- We have  $[\ell_2(I), \ell_2(\mu^{-1})]_{\beta,2} \cong \ell_2(\mu^{-\beta}).$

# Rates for Fixed Kernel

# Generic Setting (S., Scovel, & Hush, 2009 + S. & Scovel, 2012)

- Assume  $\mu_i \preceq i^{-1/p}$
- Assume  $f_{L,P}^* \in [L_2(P_X), H]_{\beta,\infty}$  for some  $\beta \in (0, 1]$ .
- Assume  $[L_2(P_X), H]_{s,1} \hookrightarrow L_{\infty}(P_X)$  for  $s = \min\{1, p/(1-\beta)\}$ . This is equivalent to

$$\|f\|_{\infty} \leq c \|f\|_{H}^{s} \|f\|_{L_{2}(P_{X})}^{1-s}, \qquad f \in H$$

Then kernel method can learn with the optimal rate  $n^{-\frac{\beta}{\beta+p}}$ .

#### Special Case: Sobolev Setting (e.g. Kohler)

- X ball in ℝ<sup>d</sup> and H := W<sup>m</sup>(X) Sobolev space with m > d/2.
   → Least squares with splines.
- $P_X$  uniform distribution and  $f^*_{L,P} \in B^s_{2,2}(X)$  for some  $s \in (d/2, m]$ .

The kernel method can learn with the optimal rate  $n^{-\frac{2s}{2s+d}}$ 

# Improved Convergence

#### Fischer & S., 2017

- Assume  $\mu_i \preceq i^{-1/p}$
- Assume  $f_{L,P}^* \in [L_2(P_X), H]_{\beta,2}$  for some  $\beta \in (0, 1]$ .
- Assume  $[L_2(P_X), H]_{\alpha,2} \hookrightarrow L_{\infty}(P_X)$  for some  $\alpha \in (0, 1)$ .

Then, for a suitable sequence  $(\lambda_n)$  the decision functions  $f_{D,\lambda_n}$  converges to  $f_{L,P}^*$ in the norm of  $[L_2(P_X), H]_{\gamma,2}$  for  $\gamma \in [0, \beta]$  with rate  $n^{-r}$ , where

$$r = rac{eta - \gamma}{\max\{lpha, eta\} + p}$$

#### Example.

Let  $H = W^m(X)$  and  $f_{L,P}^* \in B_{2,2}^s(X)$  for some  $s \in (d/2, m]$ . For  $t \in (0, s)$ , the rate in  $B_{2,2}^t(X)$  is  $n^{-r}$ , where

$$r = \frac{2s - 2t}{2s + d}$$

This improves and generalizes results by Smale & Zhou (2007), Capaonetto & de Vito (2007), S. et al (2009), and Blanchard & Mücke (2016)

#### Smale & Zhou, 2003 Consider Gaussian RKHS $H_{\gamma}(X)$ with kernel

$$k_{\gamma}(x,x') := \exp(-\gamma^{-2}||x-x'||_2^2), \qquad x,x' \in X.$$

Then  $A_{\gamma}(\lambda) \preceq \lambda^{\beta}$  for some  $\beta \in (0,1]$  implies  $f_{L,P}^* \in C^{\infty}(X)$ .

#### Solution

Consider width  $\gamma$  as a free parameter.  $\rightsquigarrow$  Theory presented so far does not work anymore.

#### Eberts & S., 2011/3

- X ball in  $\mathbb{R}^d$  and  $H_\gamma$  is RKHS of Gaussian kernel  $k_\gamma$ .
- $P_X$  has bounded Lebesgue density.
- Pick  $\lambda$  and  $\gamma$  by a training/validation approach.

Then, for  $s \ge 1$ , every  $f_{L,P}^* \in W_2^s(X)$  is learned with the rate  $n^{-\frac{2s}{2s+d}+\varepsilon}$  without knowing s.

The extra factor  $n^{\varepsilon}$  can be replaced by a logarithmic factor.

#### Key idea of the proof

Bound approximation error by convoluting  $f_{L,P}^*$  with weighted sum of kernels  $k_{\gamma_1}, \ldots k_{\gamma_m}$ .

# Spatial Decompositions

#### **Optimization Problem**

$$f_{D,\lambda} = \arg\min_{f \in H} \lambda \|f\|_{H}^{2} + \frac{1}{n} \sum_{i=1}^{n} L(y_{i}, f(x_{i}))$$

**Example: Dual Problem for Hinge Loss** 

$$\alpha^* \in \arg \max_{\alpha \in [0, \frac{1}{2\lambda_n}]^d} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n y_i y_j \alpha_i \alpha_j k(x_i, x_j)$$

**Re-substitution** 

$$f_{D,\lambda} = \sum_{i=1}^{n} y_i \alpha_i^* k(\cdot, x_i),$$

#### **Computational Requirements**

- The size of the optimization problem grows linearly in *n*.
- The kernel matrix  $(k(x_i, x_j))$  grows quadratically in n.
- Computing the decision functions grows linearly in *n*.
- Solving the optimization problem costs between  $O(n^2)$  and  $O(n^3)$

#### **Computational Requirements**

- The size of the optimization problem grows linearly in *n*.
- The kernel matrix  $(k(x_i, x_j))$  grows quadratically in n.
- Computing the decision functions grows linearly in *n*.
- Solving the optimization problem costs between  $O(n^2)$  and  $O(n^3)$

#### Consequences

- For 64GB machines, kernel matrices for n > 100.000 cannot be stored.
- Training for such sample sizes, even if only a fixed parameter pair  $(\lambda, \sigma)$  is considered, may take up to hours.
- Using kernel methods without tricks is impossible for data sizes ranging in the millions.

- Nyström Method (Williams & Seeger, 2001): Approximate matrix by low-rank matrix. Theoretical analysis by Rudi, Camariano, & Rosasco (2015)
- Random Fourier Features (Rahimi & Recht, 2007): Approximate kernel by finite dimensional kernel. Bounds for approximation by Sriperumbudur & Szabo (2015)
- Chunking: Devide data into smaller subsets. Analysis for random splits: Zhang, Duchi & Wainwright (2014), Zhou, Guo & Lin (2015). next talk! Spatial splits: now

- Split bounded  $X \subset \mathbb{R}^d$  into cells  $A_1, \ldots, A_m$  of diameter  $\leq r$ .
- On each cell A<sub>j</sub> train a kernel method with Gaussian kernel and the data in A<sub>j</sub>, i.e.

$$D_j := \{(x_i, y_i) \in D : x_i \in A_j\}$$
.

- The hyper-parameters  $\lambda$  and  $\sigma$  are found by training/validation on each cell separately.
- To predict y for some test sample x, only take the decision function that is constructed on the cell A<sub>j</sub> with x ∈ A<sub>j</sub>.

#### Rates for Localized kernel methods (Meister & S., 2016)

• Pick some 
$$eta > 0$$
 and  $r_n \sim n^{-1/eta}$ 

• Assume that  $f_{L,P}^* \in W_2^s(X)$  for some  $s < \frac{\beta-d}{2}$ .

Then the localized kernel method learns with rate  $n^{-\frac{2s}{2s+d}+\varepsilon}$ .

#### Rates for Localized kernel methods (Meister & S., 2016)

• Pick some 
$$eta > 0$$
 and  $r_{\it n} \sim {\it n}^{-1/eta}$ 

• Assume that  $f_{L,P}^* \in W_2^s(X)$  for some  $s < \frac{\beta-d}{2}$ .

Then the localized kernel method learns with rate  $n^{-\frac{2s}{2s+d}+\varepsilon}$ .

#### Remarks

- Good adaptivity requires large  $\beta$ .
- Large β leads to large cells.

   → Trade-off between statistics and computational complexity.
- Similar results for quantile regression.

• The split kernel method can be viewed as an ordinary kernel method using the RKHS

$$\mathcal{H} = igoplus_{j=1}^m \sqrt{\lambda_j} \mathcal{H}_{\mathcal{A}_j,\sigma_j}$$

- Investigate how properties of the local RKHS influence properties of the global *H* in view of *P*.
- Again we are facing a kernel more complex than usual.

Data: covertype in binary classification from LIBSVM site, d = 54
 Method: Hinge loss and number of samples in cells are controlled



# **Deeper Compositions**

# Structure of a Neural Network



At each non-input node, we perform the operation

$$x \mapsto \sigma(\langle w, x \rangle + b)$$

- Do we need the network structure on the right to classify?
- Can we replace the feature modification on the left by something else?

## A simple Network with One Hidden Layer

• Input space X = [0, 1]

• One hidden layer with *m* ReLU-units each performing

$$x \mapsto \Phi_j(x) := |w_j x + b_j|_+, \qquad j = 1, \ldots, m.$$

• Output layer creates a function

$$egin{aligned} &x\mapsto \langle v,\Phi(x)
angle_{\ell_2^d} = \sum_{j=1}^m v_j ig| w_j x + b_j ig|_+ \end{aligned}$$

Thus it realizes an element in the RKHS with FM  $\Phi := (\Phi_1, \dots, \Phi_m)$ .

# A simple Network with One Hidden Layer

• Input space X = [0, 1]

• One hidden layer with *m* ReLU-units each performing

$$x \mapsto \Phi_j(x) := |w_j x + b_j|_+, \qquad j = 1, \ldots, m.$$

• Output layer creates a function

$$egin{aligned} &x\mapsto \langle v,\Phi(x)
angle_{\ell_2^d} = \sum_{j=1}^m v_j ig| w_j x + b_j ig|_+ \end{aligned}$$

Thus it realizes an element in the RKHS with FM  $\Phi := (\Phi_1, \dots, \Phi_m)$ .

• For fixed  $w, b \in \mathbb{R}^m$  this RKHS is a set of piecewise linear functions with kinks at

$$-\frac{b_1}{w_1},\ldots,-\frac{b_m}{w_m}$$

• The NN represents all piecewise linear functions with at most m-1 kinks and most with m kinks .

 $\rightsquigarrow$  nonlinear structure, parametric method for each fixed design

#### Observation

Each layer performs a non-linear transformation

 $\mathbb{R}^{m_i} \to \mathbb{R}^{m_{i+1}}$  $x \mapsto \Phi_{w_i, b_i}(x)$ 

Entire feature map is  $\Phi := \Phi_{w_L, b_L} \circ \cdots \circ \Phi_{w_1, b_1}$ 

#### Idea for Rest of the Talk

Replace finite-dimensional spaces by infinite dimensional Hilbert spaces

$$H_i 
ightarrow H_{i+1}$$
  
 $x \mapsto \Phi_{w_i}(x)$ 

Use the kernel of the resulting feature map  $\Phi := \Phi_{w_l} \circ \cdots \circ \Phi_{w_1}$ 

# **Bach, Lanckriet, and Jordan 2004** L = 2, linear kernel in second layer $\rightsquigarrow$ Multiple kernel learning

**Cho and Saul, 2009** General setup and some examples

# **Zhuang, Tsang, and Hoi, 2011** L = 2, sum of kernels in composition step, pseudo-dimension bound

#### **Strobl and Visweswaran, 2013** Sums of kernels in each composition step, VC-bounds

Tang, 2013

 $\Phi_{L-1} \circ \cdots \circ \Phi_1$  is a neural net with *M* output nodes,  $\Phi_L$  is linear "SVM".

#### Wilson, Hu, Salakhutdinov, and Xing, 2016

 $\Phi_{L-1} \circ \cdots \circ \Phi_1$  is a neural net with *M* output nodes,  $\Phi_L$  is non-linear.

#### Observations

Let *H* be a Hilbert space and  $\Phi : X \to H$ .

• We obtain a new kernel on X by

$$k_{\gamma,H,X}(x,x') := \expigl(-\gamma^{-2} \|\Phi(x) - \Phi(x')\|_H^2igr), \qquad x,x' \in X\,,$$

• If  $k(x,x') := \langle \Phi(x), \Phi(x') \rangle$  with  $k(x,x) \equiv c$ , then

$$k_{\gamma,X,H}(x,x') = \exp\left(-2\gamma^{-2}(c-k(x,x'))\right)$$

• If  $\Phi_{\gamma,H}: H o H_{\gamma,H}$  is a feature map of  $k_{\gamma,H}$  on H, then

 $\Phi_{\gamma,H} \circ \Phi$ 

is a feature map of  $k_{\gamma,H,X}$ .

#### Idea

So far we have

$$k_{\gamma,X,H}(x,x') = \exp(-2\gamma^{-2}(c-k(x,x')))$$
(2)

• For 
$$I \subset \{1, \ldots, d\}$$
 we write  $x_I := (x_i)_{i \in I}$ .

- For  $I_1, \ldots I_m \subset \{1, \ldots, d\}$ , let  $k_1, \ldots, k_m$  be kernels on  $\mathbb{R}^{|I_1|}, \ldots, \mathbb{R}^{|I_1|}$ .
- Assume that  $k_i(x,x) \equiv 1$ .

For  $I := I_1 \cup \cdots \cup I_m$  consider the kernel

$$k(x,x') := \sum_{i=1}^{m} w_i^2 k_i(x_{I_i},x'_{I_i}), \qquad x,x' \in X_I.$$

in (2). This kernel is denoted by  $k_w$ . This can be iterated!

#### Definition

Let H be the RKHS of the kernel

$$k(x, x') := \sum_{i=1}^{m} w_i^2 k_i(x_{I_i}, x'_{I_i}), \qquad x, x' \in X_I.$$

Then the resulting hierarchical Gaussian kernel  $k_{\gamma,X_I,H}$ , that is

$$k_{\gamma,X,H}(x,x') = \exp\left(-2\gamma^{-2}(c-k(x,x'))\right)$$

is said to be:

- of depth 1, if all kernels  $k_1, \ldots, k_m$  are linear kernels.
- of depth L > 1, if all k<sub>1</sub>,..., k<sub>m</sub> are hierarchical Gaussian kernels of depth L − 1.

# Construction III

#### Example 1

Hierarchical Gaussian kernels of depth L = 1 are of the form

$$k_{\mathbf{w}}(x,x') := \exp\left(-\sum_{i\in I} w_i^2 (x_i - x_i')^2
ight), \qquad x,x'\in X,$$

ARD kernel

#### Example 2

Hierarchical Gaussian kernels of depth L = 2 are of the form

$$k_{\mathbf{W}^{(1)},\mathbf{w},\gamma}(x,x') = \exp\left(-2\gamma^{-2}\sum_{i=1}^{m} w_i^2 (1 - k_{\mathbf{w}_i}(x_{l_i},x'_{l_i}))\right)$$
$$= \exp\left(-2\gamma^{-2}\sum_{i=1}^{m} w_i^2 \left(1 - \exp\left(-\sum_{j \in I_i} w_{j,i}^2 (x_j - x'_j)^2\right)\right)\right)$$

# Structure of a Hierarchical Gaussian Kernel



Example of a hierarchical Gaussian kernels of depth L = 3.

#### Definition

A continuous kernel on a compact metric space X is universal, if its RKHS is dense in C(X).

# Theorem (Christmann & S., 2010)

A kernel of the form

$$k_{\gamma,H,X}(x,x') := \exp\left(-\gamma^{-2} \|\Phi(x) - \Phi(x')\|_H^2\right), \qquad x,x' \in X,$$

is universal, if  $\boldsymbol{\Phi}$  is continuous and injective.

# A Bit Theory II

#### Theorem (S. & Thomann, 2016)

A hierarchical Gaussian kernel of depth  $L \ge 1$  is universal, if it does not ignore coordinates.

### Corollary (S. & Thomann, 2016)

Every SVM using a fixed hierarchical Gaussian kernel of depth  $L \ge 1$  that does not ignore coordinates is universally consistent.

#### Remarks

- Learning rates for weights changing with sample size *n*?
- For which distributions do hierarchical Gaussian kernels help?
- Learning the kernel can be, in principle, decoupled from learning a classifier/regressor.

# A Bit Theory III

#### A few words on the proof ...

- Induction over L
- At the highest level we have

$$k_{\gamma,X_I,H}(x,x') = \prod_{i=1}^{I} k_{\gamma/w_i,X,H_i}(x_{I_i},x'_{I_i}), \qquad x,x' \in X_I.$$

 If k₁ and k₂ are universal kernels on X₁ and X₂, then k₁ ⊗ k₂ defined by

$$k_I \otimes k_J(x,x') := k_I(x_I,x_I') \cdot k_J(x_J,x_J'), \qquad x,x' \in X_{I \cup J}$$

is a universal kernel on  $X_{I\cup J}$ . Use Stone-Weierstraß.

• Universal kernels have injective feature maps.  $\rightsquigarrow k_{\gamma/w_i, X, H_i}$  are universal by induction assumption

| Data Set  | SVM               | HKL               | Ours              | RF                | DNN               |
|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|
| BANK      | .2978 ±.0024      | $.2939 \pm .0028$ | .2596 ±.0039      | .2687 ±.0027      | $.2931 \pm .0025$ |
| CADATA    | $.0538 \pm .0016$ | $.0625 \pm .0014$ | .0525 ±.0019      | .0509 ±.0015      | $.0550 \pm .0015$ |
| COD       | $.1574 \pm .0023$ | $.1734 \pm .0013$ | .1309 ±.0050      | $.1725 \pm .0020$ | .1154 ±.0013      |
| COVTYPE   | $.5205 \pm .0043$ | $.6100 \pm .0042$ | .3995 ±.0148      | .4878 ±.0041      | $.5027 \pm .0063$ |
| CPUSMALL  | $.0036 \pm .0002$ | $.0046 \pm .0004$ | .0034 ±.0002      | .0032 ±.0002      | $.0038 \pm .0001$ |
| CYCLE     | $.0105 \pm .0003$ | $.0122 \pm .0003$ | .0098 ±.0005      | .0084 ±.0003      | $.0121 \pm .0003$ |
| HIGGS     | $.9021 \pm .0017$ | $.8178 \pm .0074$ | $.8023 \pm .0175$ | .7770 ±.0024      | $.9162 \pm .0024$ |
| LETTER    | .0451 ±.0015      | $.1151 \pm .0018$ | .0339 ±.0014      | $.0577 \pm .0015$ | .0448 ±.0018      |
| MAGIC     | .4007 ±.0083      | $.4282 \pm .0082$ | $.3900 \pm .0093$ | .3772 ±.0079      | .3783 ±.0085      |
| PENDIGITS | .0079 ±.0007      | $.0243 \pm .0012$ | .0070 ±.0007      | $.0127 \pm .0012$ | .0079 ±.0010      |
| SATIMAGE  | .0488 ±.0029      | $.1078 \pm .0059$ | .0467 ±.0030      | $.0525 \pm .0026$ | $.0525 \pm .0033$ |
| SEISMIC   | $.3113 \pm .0013$ | $.3189 \pm .0022$ | .2981 ±.0016      | .2955 ±.0012      | .2975 ±.0014      |
| SHUTTLE   | $.0046 \pm .0003$ | $.0129 \pm .0007$ | .0042 ±.0004      | .0008 ±.0002      | $.0059 \pm .0004$ |
| THYROID   | $.1750 \pm .0081$ | $.1637 \pm .0083$ | .1538 ±.0080      | .0251 ±.0031      | .1522 ±.0080      |
| UPDRS     | $.0537 \pm .0052$ | $.1774 \pm .0090$ | .0059 ±.0021      | .0305 ±.0016      | $.0531 \pm .0042$ |

# Detailed Comparison of 3 Best Methods



#### Paper

M. Eberts and I. Steinwart, *Optimal regression rates for SVMs using Gaussian kernels*, Electron. J. Stat. 7, 1-42, 2013.

M. Meister and I. Steinwart, *Optimal learning rates for localized kernel methods,* J. Mach. Learn. Res. 17, 1-44, 2016.

S. Fischer and I. Steinwart, *Sobolev norm learning rates for regularized least-squares algorithm*, https://arxiv.org/abs/1702.07254

I. Steinwart, P. Thomann, and N. Schmid, *Learning with hierarchical Gaussian kernels*, http://arxiv.org/abs/1612.00824, 2016

I. Steinwart, D. Hush, and C. Scovel, *Optimal rates for regularized least squares regression*, 22nd Annual Conference on Learning Theory (COLT), 79-93, 2009.

I. Steinwart and C. Scovel, Mercer's theorem on general domains: on the interaction between measures, kernels, and RKHSs, Constr. Approx. 35, 363-417, 2012.

#### Software

I. Steinwart, LiquidSVM, http://www.isa.uni-stuttgart.de/Steinwart/software, R, Java, and Python interface by P. Thomann, Matlab interface by N. Schmid Paper at https://arxiv.org/abs/1702.06899