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Why Proximity Algorithms?

I Many inference tasks in data analysis are now routinely
formulated as composite convex optimization problems.

I The composite functions often comprise non-smooth
regularization functions that capture structural assumptions
about the inference tasks and for which proximity operators
are readily available.

I The resulting optimization problems are then amenable to
modern proximal algorithms.
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Incomplete Image Recovery

Incomplete Image Data

⇓

Recovery/Reconstruction scheme ⇐ A priori knowledge

⇓

Processing algorithm ⇐ Proximity algorithm

⇓

Recovered/reconstructed image
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Example: Incomplete image data{
PΛf = PΛg, ⇐= available data in image domain

PΓAf = PΓx. ⇐= available data in transform domain

where

f :the original image in RN

g :the observed image in RN

A :an M × N transform matrix satisfying ATA = I

x :the transform of f under the transformation A in RM

PΛ[i , j ] =

{
1 if i = j ∈ Λ ⊂ N := {1, . . . ,N},
0 otherwise.

PΓ[i , j ] =

{
1 if i = j ∈ Γ ⊂M = {1, . . . ,M},
0 otherwise.
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Example: Incomplete image data

{
PΛf = PΛg, ⇐= available data in image domain

PΓAf = PΓx. ⇐= available data in transform domain

Motivated by the following identity

f = (I− PΛ)AT
(
PΓx + (I− PΓ)Af︸ ︷︷ ︸ )+ PΛg,

we proposed the following iterative Algorithm:

f(n+1) = (I− PΛ)AT Softu
(
PΓx + (I− PΓ)Af(n)

)︸ ︷︷ ︸+PΛg

References: Chan-Chan-Shen-Shen (SISC03, LAA03),
Chan-Riemenschneider-Shen-Shen (ACHA04),
Cai-Chan-Shen-Shen (SISC08, ACM 09, NM09)
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Proximity operators

Definition (Moreau, 1962)

For a proper, lower semi-continuous, convex function f , the
proximity operator of f at x is

proxf (x) := arg min

{
1

2
‖u − x‖2

2 + f (u) : u ∈ Rd

}
.

The Moreau envelope of f at x is

envf (x) =
1

2
‖proxf (x)− x‖2

2 + f (proxf (x))

Definition
For a proper, lower semi-continuous, convex function f , the
proximity operator of f w.r.t a given matrix H ∈ Sd

+ at x is

proxf ,H(x) := arg min

{
1

2
‖u − x‖2

H + f (u) : u ∈ Rd

}
.
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Examples of proximity operators

Indicate function
If C ⊂ Rn is closed and convex, define

ιC (x) :=

{
0, x ∈ C ,

+∞, x 6∈ C ,

then proxιC (x) = PC (x), the projection on to C .

The `1-norm

If f (·) := λ‖ · ‖1, then

proxf (x) = max{0, |x | − λ}sign(x).

The closed-form formulation of the proximity operator is useful in
developing efficient numerical algorithm.
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Proximity Operators

Many common convex functions in data processing (image
recovery, compressive sensing, machine learning, statistics) have
explicit proximity operators:

I nuclear norm

I Huber’s function

I elastic net regularizer

I hinge loss

I distance function

I Vapnik’s ε-insensitive loss
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Revisit the previous iterative algorithm
The iterative algorithm

f(n+1) = (I− PΛ)ATSoftu
(
PΓx + (I− PΓ)Af(n)

)
+ PΛg

can be re-written as follows

f(n+1) = proxιI
(
f(n) −∇envξ(Af(n))

)
where

I I :=
{
f ∈ RN : PΛf = PΛg

}
I T :=

{
y ∈ RM : PΓy = PΓTux

}
, and

I ξ = ‖diag(u) · ‖1 + ιT .

Thus our iterative algorithm is just the forward-backward algorithm
for

min
f∈I

envξ(Af) = min
f∈I

{
min
y∈T

{
1

2
‖Af − y‖2

2 + ‖diag(u)y‖1

}}
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Proximity operator is an effective tool

inf
u
J(u)

m

0 ∈ ∂J(u?)

m

u? = proxλJ(u?) ≡ (I − proxλJ)(u?) = 0

Note: ∇envλJ = 1
λ

(I − proxλJ). Mathematical optimization is
about the strategies of splitting the monotone operator ∂J .
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Convex problems

Two block convex problems

min{ϕ(x) + ψ(Bx) : x ∈ Rn}

where

I B is an m × n matrix

I ϕ and ψ are proper, l.s.c., and convex

I Difficulty: ϕ or ψ is non-differentiable
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The characterization

Proximity characterization

If x ∈ Rn is a solution of the problem, then for any P ∈ Sn+ and
Q ∈ Sm+ there exists a vector y ∈ Rm such that

x = proxϕ,P(x − P−1B>y),

y = proxψ∗,Q(y + Q−1Bx).

Conversely, if there exist P ∈ Sn+, Q ∈ Sm+, x ∈ Rn and y ∈ Rm

satisfying the above equations, then x is a solution of the problem

I ψ∗(y) := sup{〈y , z〉 − ψ(z) : z ∈ Rm} conjugate function of
ψ∗
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Fixed-point characterization

min{ϕ(x) + ψ(Bx) : x ∈ Rn}

A fixed-point characterization

v = T ◦ E (v),

where

I v := (x , y)

I T (v) := (proxαϕ(x),proxβψ∗(y))

I E :=

[
I −αB>
βB I

]
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Fixed-point iteration

It is naturally to perform fixed-point iteration

vk+1 = T ◦ E (vk)

Convergence analysis:

I T is firmly nonexpansive

I ‖E‖2 > 1

I T ◦ E is not necessarily nonexpansive

The sequence vk may not converge
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A simple observation
Finding fixed points of the operator E : x → −2x .

Scheme 1: Consider the following implicit scheme

xn+1 = −2xn.

Then xn+1 = (−2)nx0 and |xn| → ∞ as n→∞ if x0 6= 0.

Scheme 2: Consider the following implicit scheme

xn+1 = −xn+1 − xn.

Then xn+1 = (−1/2)nx0 and xn → 0 as n→∞.

Scheme 3: We propose the following iterative scheme

xn+1 = −xn − xn−1.

Given x0 = x1 = 1, then x2 = −2, x3 = 1, x4 = 1, x5 = −2.
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One-step proximity algorithms

Key idea: Choose an appropriate matrix M and decompose the
matrix E as

E = (E −M) + M

We then have

v = T ◦ E (v)
m

v = T ◦ ((E −M)v + Mv)
⇓

vk+1 = T ◦ ((E −M)vk+1 + Mvk)

When E −M is a strictly block upper (or lower) triangular matrix,
it leads to an explicit iterative scheme.
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Convergence analysis (Li-Shen-Xu-Zhang 14)

Let v∗ be a fixed-point of T ◦ E , x∗ be a solution of the convex
optimization problem and

R := diag (P,Q) .

Convergence Theorem

If RM is symmetric positive definite, then

I vk → v∗,

I xk → x∗.
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Special cases

The fixed-point proximity iteration

vk+1 = T ((E −M)vk+1 + Mvk),

matrix M condition RM

SBIA/ADMM

[
βB>B B>

βB Im

]
β > 0 S.P.S-D

Linearized-ADMM

[
S + αβB>B αB>

βB Im

]
S is S.P.D S.P.D

PDEA

[
In αB>

βB Im

]
αβ < 1

‖B‖2 S.P.D

Doublely ALM

[
γIn + αβB>B αB>

βB (1 + γ)Im

]
γ > 0 S.P.D

SBIA: split Bregman iteration; PDEA: Primal-dual extrapolation algorithm; ALM: Augmented Lagrangian Method

These algorithms choose different M
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Two-step iteration

The two-step iteration scheme uses iterates of two previous steps
to compute the current step.

v = T ◦ E (v)

m

v = T ◦ ((E −M0)v + M1v + M2v)

where M0 = M1 + M2

⇓

vk+1 = T ◦ ((E −M0)vk+1 + M1v
k + M2v

k−1)
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Convergence analysis

vk+1 = T ◦ ((E −M0)vk+1 + M1v
k + M2v

k−1)

Convergence Theorem

If the following conditions are satisfied:

I M0 = M1 + M2

I H := R(M0 + M2) is symmetric positive definite

I ‖H−1/2RM2H
−1/2‖2 <

1
2 ,

then the sequence {vk : k ∈ N} generated by the two-step
iteration converges to a fixed-point of the map T ◦ E .
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New algorithms

In the two-step iteration scheme

vk+1 = T ((E −M0)vk+1 + M1v
k + M2v

k−1)

choosing

M0 =

[
αIn −B>
−θB βIm

]
, M1 =

[
αIn (θ − 2)B>

−θB βIm

]
,

M2 =

[
0 (1− θ)B>

0 0

]
leads to 

xk+1 = proxαϕ(xk − αB>ȳk),
x̄k+1 = xk+1 + θ(xk+1 − xk),
yk+1 = proxβψ∗(y

k + βBx̄k+1)),
ȳk+1 = yk+1 + (1− θ)(yk+1 − yk).
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New algorithms

Convergence analysis:

For θ ∈ [0, 1], if one of the following statements hold

I α, β > 2(1− θ)‖B‖2 and
θ(α− 2(1− θ)‖B‖2)(β − 2(1− θ)‖B‖2) < 1

‖B‖2
2
;

I α, β > 2θ‖B‖2 and
((1− θ)α− 2(θ)‖B‖2)(β − 2θ‖B‖2) < 1

‖B‖2
2
;

then

I M0,M1,M2 satisfy condition-M

I {xk : k ∈ N} converges to a solution of the original problem
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What is Image Inpainting?

I Image inpainting refers to the process of restoring missing or
damaged areas in an image.

I Image inpainting is an ill-posed inverse problem that has no
well-defined unique solution.

All methods for image impainting are guided by the assumption
that

I pixels in the known and unknown parts of the image share the
same statistical properties or geometric structures.

The goal of image inpainting: an inpainted image is as physically
plausible and visually pleasing as possible.

25 / 45



Methods for Image Inpainting

I Diffusion-based inpainting: introducing smoothness priors via
PDEs to propagate (or diffuse) local structures from the
exterior to the interior of the regions to be inpainted. Suitable
for completing lines, curves, and small regions, not for
recovering textures of large areas.

I Examplar-based methods: refers to methods that synthesize
entire patches by learning from patches in the known part of
the image.

I Sparse priors for inpainting: The image or the patch is
assumed to be sparse in a given basis. Known and unknown
parts of the image are assumed to share the same sparse
representation.

26 / 45



Methods for Image Inpainting

I Diffusion-based inpainting: introducing smoothness priors via
PDEs to propagate (or diffuse) local structures from the
exterior to the interior of the regions to be inpainted. Suitable
for completing lines, curves, and small regions, not for
recovering textures of large areas.

I Examplar-based methods: refers to methods that synthesize
entire patches by learning from patches in the known part of
the image.

I Sparse priors for inpainting: The image or the patch is
assumed to be sparse in a given basis. Known and unknown
parts of the image are assumed to share the same sparse
representation.

26 / 45



Methods for Image Inpainting

I Diffusion-based inpainting: introducing smoothness priors via
PDEs to propagate (or diffuse) local structures from the
exterior to the interior of the regions to be inpainted. Suitable
for completing lines, curves, and small regions, not for
recovering textures of large areas.

I Examplar-based methods: refers to methods that synthesize
entire patches by learning from patches in the known part of
the image.

I Sparse priors for inpainting: The image or the patch is
assumed to be sparse in a given basis. Known and unknown
parts of the image are assumed to share the same sparse
representation.

26 / 45



Framework of Patch-Based Inpainting

I Find a patch with the highest priority on the boundary

I Construct a dictionary from the selected similar patches

I Fill the unknown pixels through an optimization model
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Proposed Scheme for Adaptive Dictionary

We use a metric to measure the similarity between the patch Pj

and the target patch Px . The sum of squared differences by the `2

norm (SSDL2), is defined as SSDL2(Px ,Pj) = ‖Px − Pj‖2.

I From left to right the similarities measured by SSDL2 are
5.0× 102, 8.1× 102, 8.9× 102, 1.1× 103, 1.2× 103, and
1.3× 103, respectively;

I By the SSDL2 index, the uniform patch P6 is more similar to
the target patch than the P2 patch, which is not consistent
with our human visual system.
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Patch in DCT-Haar Tight Frame System
A similarity metric between target patch Px and the similar patch
Pj is proposed to be the `2 difference of Laplace probability
distributions (LPDL2) of the patches in DCT-Haar domain as

LPDL2(Px ,Pj) = ‖P̃x − P̃j‖2, (1)

where P̃x and P̃j are probability distributions of Px and Pj ,
respectively.

I Similar patches sorted by two different metrics. In the first
row, the similarities measured in DCT-Haar domain by
LPDL2; In the second row, the similarities measured by
SSDL2.
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Dictionary by DCT-Haar Domain

I The patches found by SSDL2 in the left image can be
efficiently separated into two groups by LDPL2 in the right
image.
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Patch Inpainting Model

For a dictionary based on patches D ∈ Rm×n, we need to get
sparse coefficients α ∈ Rn to approximate the observed patch
x ∈ Rm by the following optimization model

min
α

{
1

2
‖Dα− x‖2

2 + λ(‖α‖1 +
γ

2
‖α‖2

2), s.t. a>α = 1

}
(2)

where λ is a nonnegative parameter and a =


1
1
...
1

.
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Inpainting Result

I Observed image with a 31x31 missing block;

I The results from left to right are by Xu’s Alg., Photoshop and
Our Alg., respectively.
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Inpainting Result

I Observed image with 1224 missing pixels;

I The results from left to right are by Xu’s Alg., Photoshop and
Our Alg., respectively.
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Inpainting Result

I Observed image;

I The results from left to right are by Photoshop and Our Alg.,
respectively.
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pMRI Problem

Figure: Multi-coil Parallel Magnetic Resonance Imaging (pMRI) Problem
by subsampling parts of k-space date to accelerate imaging.
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1.2 Observation Model
The coil image from the `-th coil is modeled as follows:

g` = F−1PFS`u + η`, (3)

where

I u is the desired image

I η` is the additive noise

I F is the discrete Fourier transform matrix

I P, called sampling matrix, is a diagonal matrix with 0 and 1

I S` are sensitivies and have to be pre-estimated accurately in
real applications.

Combining equations from all p coils, the set of the above
equations can be transformed into matrix form:

g = Mu + η, (4)
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The Proposed Model

The proposed model is

min
u

{
1

2
‖Mu − g‖2

2 + ‖ΓWu‖1

}
,

where W is formed from the directional Haar framelet
(Li-Chan-Shen-Hsu-Tseng SIIS16).
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Experiments on Simulated Data

Figure: (a) The Shepp-Logan phantom (the rectangle is for later zoom-in
comparison); (b) Sampling model of the 33% k-space; (c) Four coil
images with Gaussian noise σ = 0.01; (d) The SoS image from the 33%
k-space.
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Experiments on Simulated Data (4 Coils)

Table: The NMSE indexes and the CPU usage for the simulation data.

pMRI Alg. TV-based Alg. FACTF6A FAHaarA FADHFA

NMSE 8.2× 10−4 2.6× 10−3 3.6× 10−4 2.19× 10−4

CPU Time 12.3s 48.2s 9.1s 9.0s

Figure: (a) Original; (b) SoS image from the 33% k-space; (c) the TV
alg. with λ =0.005; (d) FACTF6A; (e) FAHaarA; and (f) FADHFA.
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Experiments on MRI Phantoms (4 Coils)

Figure: (a) Sampling model of 33% k-space; (b) One coil image from the
33% k-space; (c) SoS image from the 33% k-space.
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Experiments on MRI Phantoms (4 Coils)

Table: First number in parentheses: the CNR (contrast-to-noise ratio)
values for the regions marked;Second number in parentheses: the CPU
time in seconds.

% of k-space `1-ESPIRiT TV-based Alg. Our FADHFA

33% (65.0, 255s) (73.3, 65s) (124.4, 28s)

Figure: (a) SoS image of the full k-space; (b) `1-ESPIRiT with parameter
0.01; (c) TV alg. with parameter 0.00013; and (d) Our FADHFA.
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Experiments on In-vivo Data (12 Coils)

Table: The CNR values at four different square regions marked and CPU
time (in seconds) by pMRI algorithms.

pMRI Alg. Region 1 Region 2 Region 3 Region 4 Time

`1-ESPIRiT 39.21 45.19 34.61 40.39 293s
TV. Alg. 59.03 68.82 66.99 84.51 108s
Our FADHFA 192.17 223.06 217.45 272.70 50s

Figure: (a) SoS image of the full k-space with zoom-in parts
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Experiments on In-vivo Data (12 Coils)

Figure: The first column: Reference SoS image of the full k-space. The
reconstructed images of the second, third and forth columns by
`1-ESPIRiT , TV regularization algorithm and our FADHFA on 33% full
k-space data, respectively.
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Singular value decomposotion

I The singular value decomposition (SVD) of a matrix A is the
factorization of A into the product of three matrices
A = UDV T where the columns of U and V are orthonormal
and the matrix D is diagonal with nonnegative real entries.

I The SVD of a matrix can be formulated as solving a
sequential optimization problems. The corresponding objective
function has a bilinear from and therefore is nonconvex.

I Noncovex: bilinear and quasiconvex
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Proximity Operators and Its Applications in Image
Processing

Thank You !

Lixin Shen

E-mail:lshen03@syr.edu

Syracuse University, USA
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