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Learning: Regularization and Optimization

Learning-from-data in an underconstrained (ill-posed) problem,
so needs to be regularized. Find the minimizer that provides
better goodness-of-fit but lower complexity:

inf
f ∈B
Lz(f ) + λφ(‖f ‖B),

where

B: a Banach space of candidate functions;

Lz: “loss” function measuring how well the sample data
z = {(xi , yi )i∈I} is fitted by the input-output relation
{xi , f (xi )}i∈I} by a candidate function f ;

λ: Lagrange multiplier regularizing the balance of two
competing forces for optimal generalization;

φ: a non-decreasing function “modulating” the “capacity” of
the function space B where the minimizer may lie.
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The Case with Reproducing Kernel Hilbert Space

A well-understood case of regularized learning is the
Reproducing Kernel Hilbert Space (RKHS):

min
f ∈HK

Lz(f ) + λφ(‖f ‖HK
)

where HK is the RKHS with the associated kernel K .

Here K , called the “reproducing kernel” of H, is a
symmetric function on X × X such that
K (x , ·) ∈ H,K (·, x) ∈ H for all x ∈ X and

f (x) = 〈f (·),K (x , ·)〉H, x ∈ X

where 〈, 〉 denotes the inner product.
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Properties of Kernels in RKHS

Reproducing Property: K : X × X → C satisfies

K (x , y) = 〈K (x , ·),K (y , ·)〉HK
.

Representer Theorem: nature of the solution

f (·) =
n∑

i=1

ciK (xi , ·), for some ci ∈ C, 1 ≤ i ≤ n.

Characterization Theorem: nature of the kernel

A symmetric function K is a reproducing kernel iff

1 There exists a feature mapping Φ : X →W such that

K (x , y) = 〈Φ(x),Φ(y)〉W , x , y ∈ X ; Or

2 For any sequence {xi}i∈I , kernel matrix Kij = K (xi , xj) is
positive semi-definite, i.e., for any ci , i ∈ I∑

i ,j

K (xi , xj)ci c̄j ≥ 0.
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RKHS as Unifying Model of Human Categorization

1 (Exemplar model) people judge the similarity of a test item to
all remembered exemplars of each category (Nosofsky, 1986);

2 (Prototype model) people judge the similarity of a test item to
a prototype of each category, representing the average feature
values of all category members (Smith and Minda, 1998);

3 (Decision-bound model) people learn boundaries in stimulus
space that separate categories (Maddox and Ashby, 1993);

4 (Perceptron model) people learn associations between
individual stimulus features and category labels with an
error-driven mechanism (Gluck and Bower, 1988);

5 (ALCOVE model) associative learning is coupled with learning
to selectively attend to relevant dimensions as individual
exemplars are presented (Kruschke, 1992);

6 (Cluster model) categories as mixture distributions, with each
component of this mixture given by a Gaussian centered on
some hypothetical stimulus (Anderson, 1991).

7 (Bayesian model): feature representation as non-parametric
Bayesian statistiscal inference (Austerweil and Griffiths, 2013).

Jun Zhang Regularized Learning under Reproducing Kernel Banach Spaces: Similarity and Feature Representations



RKHS as Unifying Model of Human Categorization

1 (Exemplar model) people judge the similarity of a test item to
all remembered exemplars of each category (Nosofsky, 1986);

2 (Prototype model) people judge the similarity of a test item to
a prototype of each category, representing the average feature
values of all category members (Smith and Minda, 1998);

3 (Decision-bound model) people learn boundaries in stimulus
space that separate categories (Maddox and Ashby, 1993);

4 (Perceptron model) people learn associations between
individual stimulus features and category labels with an
error-driven mechanism (Gluck and Bower, 1988);

5 (ALCOVE model) associative learning is coupled with learning
to selectively attend to relevant dimensions as individual
exemplars are presented (Kruschke, 1992);

6 (Cluster model) categories as mixture distributions, with each
component of this mixture given by a Gaussian centered on
some hypothetical stimulus (Anderson, 1991).

7 (Bayesian model): feature representation as non-parametric
Bayesian statistiscal inference (Austerweil and Griffiths, 2013).

Jun Zhang Regularized Learning under Reproducing Kernel Banach Spaces: Similarity and Feature Representations



RKHS as Unifying Model of Human Categorization

1 (Exemplar model) people judge the similarity of a test item to
all remembered exemplars of each category (Nosofsky, 1986);

2 (Prototype model) people judge the similarity of a test item to
a prototype of each category, representing the average feature
values of all category members (Smith and Minda, 1998);

3 (Decision-bound model) people learn boundaries in stimulus
space that separate categories (Maddox and Ashby, 1993);

4 (Perceptron model) people learn associations between
individual stimulus features and category labels with an
error-driven mechanism (Gluck and Bower, 1988);

5 (ALCOVE model) associative learning is coupled with learning
to selectively attend to relevant dimensions as individual
exemplars are presented (Kruschke, 1992);

6 (Cluster model) categories as mixture distributions, with each
component of this mixture given by a Gaussian centered on
some hypothetical stimulus (Anderson, 1991).

7 (Bayesian model): feature representation as non-parametric
Bayesian statistiscal inference (Austerweil and Griffiths, 2013).

Jun Zhang Regularized Learning under Reproducing Kernel Banach Spaces: Similarity and Feature Representations



RKHS as Unifying Model of Human Categorization

1 (Exemplar model) people judge the similarity of a test item to
all remembered exemplars of each category (Nosofsky, 1986);

2 (Prototype model) people judge the similarity of a test item to
a prototype of each category, representing the average feature
values of all category members (Smith and Minda, 1998);

3 (Decision-bound model) people learn boundaries in stimulus
space that separate categories (Maddox and Ashby, 1993);

4 (Perceptron model) people learn associations between
individual stimulus features and category labels with an
error-driven mechanism (Gluck and Bower, 1988);

5 (ALCOVE model) associative learning is coupled with learning
to selectively attend to relevant dimensions as individual
exemplars are presented (Kruschke, 1992);

6 (Cluster model) categories as mixture distributions, with each
component of this mixture given by a Gaussian centered on
some hypothetical stimulus (Anderson, 1991).

7 (Bayesian model): feature representation as non-parametric
Bayesian statistiscal inference (Austerweil and Griffiths, 2013).

Jun Zhang Regularized Learning under Reproducing Kernel Banach Spaces: Similarity and Feature Representations



RKHS as Unifying Model of Human Categorization

1 (Exemplar model) people judge the similarity of a test item to
all remembered exemplars of each category (Nosofsky, 1986);

2 (Prototype model) people judge the similarity of a test item to
a prototype of each category, representing the average feature
values of all category members (Smith and Minda, 1998);

3 (Decision-bound model) people learn boundaries in stimulus
space that separate categories (Maddox and Ashby, 1993);

4 (Perceptron model) people learn associations between
individual stimulus features and category labels with an
error-driven mechanism (Gluck and Bower, 1988);

5 (ALCOVE model) associative learning is coupled with learning
to selectively attend to relevant dimensions as individual
exemplars are presented (Kruschke, 1992);

6 (Cluster model) categories as mixture distributions, with each
component of this mixture given by a Gaussian centered on
some hypothetical stimulus (Anderson, 1991).

7 (Bayesian model): feature representation as non-parametric
Bayesian statistiscal inference (Austerweil and Griffiths, 2013).

Jun Zhang Regularized Learning under Reproducing Kernel Banach Spaces: Similarity and Feature Representations



RKHS as Unifying Model of Human Categorization

1 (Exemplar model) people judge the similarity of a test item to
all remembered exemplars of each category (Nosofsky, 1986);

2 (Prototype model) people judge the similarity of a test item to
a prototype of each category, representing the average feature
values of all category members (Smith and Minda, 1998);

3 (Decision-bound model) people learn boundaries in stimulus
space that separate categories (Maddox and Ashby, 1993);

4 (Perceptron model) people learn associations between
individual stimulus features and category labels with an
error-driven mechanism (Gluck and Bower, 1988);

5 (ALCOVE model) associative learning is coupled with learning
to selectively attend to relevant dimensions as individual
exemplars are presented (Kruschke, 1992);

6 (Cluster model) categories as mixture distributions, with each
component of this mixture given by a Gaussian centered on
some hypothetical stimulus (Anderson, 1991).

7 (Bayesian model): feature representation as non-parametric
Bayesian statistiscal inference (Austerweil and Griffiths, 2013).

Jun Zhang Regularized Learning under Reproducing Kernel Banach Spaces: Similarity and Feature Representations



RKHS as Unifying Model of Human Categorization

1 (Exemplar model) people judge the similarity of a test item to
all remembered exemplars of each category (Nosofsky, 1986);

2 (Prototype model) people judge the similarity of a test item to
a prototype of each category, representing the average feature
values of all category members (Smith and Minda, 1998);

3 (Decision-bound model) people learn boundaries in stimulus
space that separate categories (Maddox and Ashby, 1993);

4 (Perceptron model) people learn associations between
individual stimulus features and category labels with an
error-driven mechanism (Gluck and Bower, 1988);

5 (ALCOVE model) associative learning is coupled with learning
to selectively attend to relevant dimensions as individual
exemplars are presented (Kruschke, 1992);

6 (Cluster model) categories as mixture distributions, with each
component of this mixture given by a Gaussian centered on
some hypothetical stimulus (Anderson, 1991).

7 (Bayesian model): feature representation as non-parametric
Bayesian statistiscal inference (Austerweil and Griffiths, 2013).

Jun Zhang Regularized Learning under Reproducing Kernel Banach Spaces: Similarity and Feature Representations



RKHS as Unifying Model of Human Categorization

1 (Exemplar model) people judge the similarity of a test item to
all remembered exemplars of each category (Nosofsky, 1986);

2 (Prototype model) people judge the similarity of a test item to
a prototype of each category, representing the average feature
values of all category members (Smith and Minda, 1998);

3 (Decision-bound model) people learn boundaries in stimulus
space that separate categories (Maddox and Ashby, 1993);

4 (Perceptron model) people learn associations between
individual stimulus features and category labels with an
error-driven mechanism (Gluck and Bower, 1988);

5 (ALCOVE model) associative learning is coupled with learning
to selectively attend to relevant dimensions as individual
exemplars are presented (Kruschke, 1992);

6 (Cluster model) categories as mixture distributions, with each
component of this mixture given by a Gaussian centered on
some hypothetical stimulus (Anderson, 1991).

7 (Bayesian model): feature representation as non-parametric
Bayesian statistiscal inference (Austerweil and Griffiths, 2013).

Jun Zhang Regularized Learning under Reproducing Kernel Banach Spaces: Similarity and Feature Representations



Can Kernels be Asymmetric?

1 Symmetry of kernels is tied to inner-product of a Hilbert
space. So a major challenge of generalizing kernel
methods is to deal with the lack of “inner-product” in a
Banach space B.

2 Strategy: invoke duality mapping between B ↔ B∗,
where B∗ is the space of continuous linear functionals on
B with the norm given by

||g ∗||∗ = sup
f :||f ||=1

g ∗(f ) = sup
f

(f , g ∗)

||f ||

where (, ) : B × B∗ → C denotes a bilinear form called
“duality pairing”.

3 Solution: “Semi-inner-product” operator on B, a natural
generalization of “inner-product” on H.
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Semi-Inner-Product Operator

(Lumer, 1961) A semi-inner-product [·, ·] on B × B
satisfies, for all f , g , h ∈ B and α ∈ C

1 [f + g , h] = [f , h] + [g , h], [αf , g ] = α[f , g ];
2 [f , f ] > 0 for f 6= 0;
3 (Cauchy-Schwartz) |[f , g ]|2 ≤ [f , f ][g , g ].

From (2) and (3), a norm is induced: ‖f ‖B = [f , f ]1/2.

Giles (1967) shows that [f , αg ] = ᾱ[f , g ].

If [g , f ] = [f , g ], then [f , g + h] = [f , g ] + [f , h].

Nath (1971) showed that (3) can be generalized to define
the s.i.p of order p (satisfying Hölder inequality):

|[f , g ]| ≤ ([f , f ])1/p([g , g ])(p−1)/p

In this case [f , f ]1/p = ‖f ‖B.
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Semi-Inner-Product Operator (cont)

Semi-inner-product allows us to express
1 continuous linear functional: g ∗(f ) = [f , g ].
2 pseudo-orthogonality: [f , g ] = 0 iff f ⊥ g

(in the sense of James) ||g + tf || > ||g || for all t 6= 0.
3 asymmetric projection and hence angles between vectors:

cos θf ,g = |[f , g ]|/(||f || · ||g ||p−1).

Existence and uniqueness of semi-inner-product

If B is uniformly convex and uniformly Fréchet differentiable:

Re([f , g ]) =
1

p
lim
t→0

||g + tf ||p − ||g ||p

t
.

Example. For B = Lp(X , µ), its s.i.p. is

[f , g ] =

∫
f ḡ |g |p−2dµ
||g ||p−2p

.
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(in the sense of James) ||g + tf || > ||g || for all t 6= 0.
3 asymmetric projection and hence angles between vectors:

cos θf ,g = |[f , g ]|/(||f || · ||g ||p−1).

Existence and uniqueness of semi-inner-product

If B is uniformly convex and uniformly Fréchet differentiable:

Re([f , g ]) =
1

p
lim
t→0

||g + tf ||p − ||g ||p

t
.

Example. For B = Lp(X , µ), its s.i.p. is

[f , g ] =

∫
f ḡ |g |p−2dµ
||g ||p−2p

.
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Generalized Semi-Inner-Products

We can generalize s.i.p further.
Let ϕ : R+ → R+ be strictly increasing, ϕ(0) = 0,
limt→∞ ϕ(t) =∞. Denote ψ(t) := t/ϕ(t).

Definition 1. Generalized Semi-Inner-Product

A g.s.i.p. [·, ·]ϕ → C on B × B satisfies, for all f , g , h ∈ B and
α ∈ C

1 [f + g , h]ϕ = [f , h]ϕ + [g , h]ϕ, [αf , g ]ϕ = α[f , g ]ϕ;

2 [f , f ]ϕ > 0 for f 6= 0;

3 |[f , g ]ϕ| ≤ ϕ([f , f ])ψ([g , g ]).
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G.s.i.p. and Generalized Duality Mapping

Condition (3) replaces Cauchy-Schwartz (and the more general
Hölder) inequality. When ϕ(t) = t1/p and ψ(t) = t1/q, where
p, q > 1, 1/p + 1/q = 1, ours reduces to s.i.p of type p (Nath,
1971) which, for p = q = 2, reduces to that of Lumer (1961).

Proposition 1 (Zhang and Zhang, 2010)

1 G. s.i.p induces a norm on B by ‖f ‖ = ϕ([f , f ]ϕ).

2 For each fixed f ∈ B, [·, f ]ϕ defines a continuous linear
functional on B, and therefore is an element of B∗.

3 Further, [·, f ]ϕ can be identified with the dual element f ∗

defined by the generalized duality mapping:

f ∗(f ) = ||f ∗||∗||f ||, and ||f ∗||∗ = γ(||f ||).

where γ(t) = ϕ−1(t)/t.
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Duality Mapping in Reflexive Banach Spaces

Let Γ be a Young function on [0,+∞), i.e., Γ is an increasing,
strictly convex function with Γ(0) = 0, and let Γ∗ be its
convex conjugate, i.e.,
Γ∗(s) = supt>0(ts − Γ(t)) = s(Γ′)−1(s)− Γ((Γ′)−1(s)).

Lemma

The pair of functions Γ̃, Γ̃∗ given by

Γ̃(f ) := Γ(‖f ‖B) and Γ̃∗(g ∗) := Γ∗(‖g ∗‖B∗), f ∈ B, g ∗ ∈ B∗

are strictly convex functions on B and B∗, respectively, and
that are conjugate to each other. They satisfy

Γ(‖f ‖B) + Γ∗(‖g ∗‖B∗) ≥ ‖f ‖B ‖g ∗‖B∗ ≥ |(f , g ∗)|.
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Duality Mapping in Reflexive Banach Space (Cont)

The first inequality is due to the strictly convexity of Γ;
equality holds when the norms satisfy
‖g ∗‖B∗ = Γ′(‖f ‖B) = γ(||f ||B).

The second inequality is due to the definition of dual
norm; equality holds when g ∗ lies in a certain direction
(denoted f ∗) in B∗ dual to the direction of f ∈ B.

The two equalities hold simultaneously iff g ∗ = f ∗ where

f ∗ ≡ [·, f ]ϕ ≡ Jγ(f )

where Jγ : B → B∗, f 7→ Jγ(f ) denotes a generalized
duality mapping with “gauge” γ:

‖Jγ(f )‖B∗ = γ(‖f ‖B), Jγ(f )(f ) = f ∗(f ) = ϕ−1(||f ||B).

Note that Jγ as a function from B to B∗ is generally non-linear
Jγ(f1 + f2) 6= Jγ(f1) + Jγ(f2).
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Duality Mapping in Reflexive Banach Space (Cont)

Written explicitly,

Jγ(f ) =
γ(‖f ‖B)

‖f ‖B
f ∗0 =

ϕ−1(‖f ‖B)

‖f ‖2B
f ∗0

where the conventional dual f ∗0 satisfies ‖f ∗0 ‖B∗ = ‖f ‖B,
corresponding to Γ(t) = 1/2t2. Here

ϕ−1(t) := tΓ′(t) = tγ(t), t ∈ [0,+∞).

The special case of Nath’s s.i.p. of order p, with

ϕ(t) = t
1
p , ψ(t) = t

1
q , corresponds to

ϕ−1(t) = tp, γ(t) = tp−1, Γ(t) =
1

p
tp

.
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Reproducing Kernel Banach Spaces (RKBS)

We define an RKBS as a reflexive Banach space B of functions
on X such that the dual space B∗ is also a Banach space of
functions on X and point evaluations are continuous linear
functionals on both B and B∗.
Theorem 2 (Zhang, Xu, and Zhang, 2009)

Let B be an RKBS on X . Then there exists a function K on
X × X (called the “reproducing kernel” of B) such that
K (x , ·) ∈ B, K (·, x) ∈ B∗ for all x ∈ X and

f (x) = (f ,K (·, x)), f ∗(x) = (K (x , ·), f ∗), f ∈ B, f ∗ ∈ B∗.

Here (·, ·) is a bilinear form (“dual pairing”) on B × B∗:
(f , g ∗) := g ∗(f ), f ∈ B, g ∗ ∈ B∗.
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Reproducing Kernel Banach Spaces (Cont)

In general K (x , y) 6= K (y , x), but they satisfy

K (x , y) = (K (x , ·),K (·, y)).

Characterization Theorem (Zhang, Xu, and Zhang, 2009)

A bivariate function K : X × X → C is a reproducing kernel in
a RKBS iff there exist mappings Φ from X to some reflexive
Banach space W and Φ∗ : X →W∗ such that

K (x , y) = (Φ(x),Φ∗(y))W , x , y ∈ X .

where (, )W denotes the pairing of W with W∗.
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Semi-Inner-Product (S.i.p) Kernel

When B also admits an semi-inner-product (i.e., uniformly
convex and uniformly Fréchet differentiable), we construct
G (x , ·) ≡ (K (·, x))∗ ∈ B and write the reproducing kernel as:

S.i.p. Reproducing Kernel (Zhang, Xu, and Zhang, 2009)

Let B be a RKBS on X with given a s.i.p., and K its
reproducing kernel. Then there exists a unique function
G : X × X → C such that {G (x , ·) : x ∈ X} ⊆ B and

f (x) = [f ,G (x , ·)], for all f ∈ B, x ∈ X .

The s.i.p. kernel G satisfies G (x , y) = [G (x , ·),G (y , ·)]. It is
characterized by the existence of a feature map Φ : X → W
such that G (x , y) = [Φ(x),Φ(y)]W .
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Representer Theorems for RKBS

Let B be an RKBS with reproducing kernel K . Consider the
regularized learning

inf
f ∈B
Lz(f ) + λφ(‖f ‖B). (1)

Representer Theorem (Zhang and Zhang, 2011)

Suppose that (1) has at least one minimizer. If φ is strictly
increasing, then every minimizer f0 of (1) must satisfy, for
some complex constants cj , 1 ≤ j ≤ n,

f ∗0 (·) =
n∑

j=1

cjK (·, xj).

If φ is nondecreasing, then there exists at least one minimizer
of (1) that has the above form.

The essence of a representer theorem is to represent the
dual function of the minimizer as a linear combination of
the point evaluation functionals at xj , 1 ≤ j ≤ n.
This fact was not realized before due to the reason that
in an RKHS, f ∗ = f .
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Dual Representations

Duality Between Object and Feature

1 An object has dual representations:

in the input space (where processing is described by
exemplars and their similarity);
in the feature space (where processing is described by
feature-outcome associations).

2 Similarity and feature represenation as two-sides of the
categorization “coin”:

similarity-based generalization (in Hilbert space)
sparsity-based dimension reduction and compressed
representation (in l1 space)
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Symbolic Representation of Object vs Feature

Modeling Object-Feature as Cross-Table

In a cross-table V × E , a binary relation R between a set V
(“objects”) and another set E (“features”) is represented by
the entry of the table, such that an entry is 1 whenever object
v possesses feature e, and entry is 0 otherwise. So “feature”
serves to classify objects.

Figure: Cross-table
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Graphic Reporesentation of Cross-Table

Relating Cross-Table to Hypergraph

In a hypergraph (V ,E ), each element v ∈ V is a “vertex”,
and each member e of E (e being a subset of V ) is a
“hyperedge” (i.e., an “edge” connecting multiple vertices).

Figure: Hypergraph
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Formal Concept Analysis and Concept Lattice

Starting from a cross-table, there is a formal procedure to
derive a so-called “concept lattice”, where each node
corresponds to:

1 the (maximal) collection of objects sharing a given list of
features;

2 the (maximal) list of features shared by a given collection
of objects.

Figure: Concept LatticeJun Zhang Regularized Learning under Reproducing Kernel Banach Spaces: Similarity and Feature Representations



Closure as an Operator

For any cross-table (V ,E ), the closure operation is established
through the Galois connection – they form a “Concept
Lattice”, which is a semi-modular lattice.

Axiomatization of Closure Operation

A mapping Cl : P(V)→ P(V) is a closure operator if Cl
satisfies the following axioms:
(C1) A ⊆ Cl(A);
(C2) A ⊆ B → Cl(A) ⊆ Cl(B);
(C3) Cl(Cl(A)) = Cl(A).
Those A that satisfies A = Cl(A) is called “closed” set.

Note that: subspaces of Hilbert space forms a modular lattice
(projective geometry). Ongoing work (with Dr. Yinbin Lei)
investigates the algebraic structures of “Knowlede Space” and
“Learning Space”.
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Boundary Point

Given a cross-table (V ,E ), we define two types of points with
respect to any non-empty subset A ⊆ V (which does not have
to be a member of E ):

Boundary Point

A point v ∈ V (not necessarily in A) is called A’s boundary
point if for every e ∈ E (v),

e ∩ A 6= ∅, e ∩ Ac 6= ∅ (↔ e \ A 6= ∅).

The set of all boundary points of A is denoted Fr(A).

From its definition,

Fr(A) = Fr(Ac).
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Closure, Interior, and Exterior

With the boundary operator Fr, we can define

Closure

Closure Cl(A) = A ∪ Fr(A);

Interior Int(A) = A \ Fr(A);

Exterior Ext(A) = V \ Cl(A).

Therefore,

Cl(A) = Int(A) ∪ Fr(A);

Int(A) ⊆ A ⊆ Cl(A);

Set V is decomposed into three non-intersecting parts:

V = Int(A) ∪ Fr(A) ∪ Ext(A).
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Accumulation Point

Given a cross-table (V ,E ), we define two types of points with
respect to any non-empty subset A ⊆ V (which does not have
to be a member of E ):

Accumulation Point

A point v ∈ V (not necessarily in A) is called A’s
accumulation point, if for every e ∈ E (v),

e ∩ A \ {v} 6= ∅,

that is, every neighbor of the point v contains at least one
point of A other than v .

An accumulation point v of A may not be in A;

Any accumulation point v can be “approached” via a
sequence of points in A, each of which is in a
neighborhood e ∈ E (v) of v . We can construct a learning
sequence! Jun Zhang Regularized Learning under Reproducing Kernel Banach Spaces: Similarity and Feature Representations



Derived set and Isolation Set

The set of all accumulation points of A is called the derived
set of A, denoted Der(A). Any point of A which is not an
accumulation point is called isolation point; the set of isolated
points of A is denoted Iso(A).

Theorem: Two Partition of Closed Sets

Cl(A) = Int(A) ∪ Fr(A);

Cl(A) = Iso(A) ∪Der(A);

which means

Cl(A) = A ∪ (Ac ∩ Fr(A) ∩Der(A));
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Main Result: Partition of V through arbitrary

A ⊂ V

Int(A) = Ext(Ac)

Fr(A) = Fr(Ac)

Ext(A) = Int(Ac)

Cl(A)

Cl(Ac)

Der(A) Iso(A)

Der(Ac)Iso(Ac)
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Thank You!
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