Regularized Learning under Reproducing Kernel Banach Spaces: Similarity and Feature Representations

Jun Zhang

University of Michigan, Ann Arbor

IN COLLABORATION WITH

Haizhang Zhang, Yuesheng Xu, Matt Jones

May 20, 2017, SCNU, China

Jun Znang

Fruitful Collaboration with H Zhang and Y Xu

- Zhang, H., Xu, Y., and Zhang, J. (2009) Reproducing kernel Banach spaces for machine learning. Journal of Machine Learning Research. 10: 2741-2775.
- Zhang, H. and Zhang, J. (2010). Generalized semi-inner products with application to regularized learning. Journal of Mathematical Analysis and Application. 372: 181-196.
- Zhang, H. and Zhang, J. (2011). Frames, Riesz bases, and sampling expansions in Banach spaces via semi-inner products. Applied and Computational Harmonic Analysis. 31:1-25.
- Zhang, H. and Zhang, J. (2012). Regularized learning in Banach space as an optimization problem: Representer theorems. Journal of Global Optimization. 54: 235-250
- Zhang, H. and Zhang, J. (2013). Vector-valued Reproducing Kernel Banach Spaces with applications to multi-task learning, *Journal of Complexity*. 29: 195-215.
- Zhang, H. and Zhang, J. (2015). Learning with Reproducing Kernel Banach Spaces. Proceedings of the 10th ISAAC Congress, Macau. In New Trends in Analysis and Interdisciplinary Applications. Birkhauser.
- Zhang, H. and Zhang, J. (2017). Learning with reproducing kernel Banach spaces. New Trends in Analysis and Interdisciplinary Applications. Springer.

Jun Zhang

Learning: Regularization and Optimization

Learning-from-data in an underconstrained (ill-posed) problem, so needs to be regularized. Find the minimizer that provides better goodness-of-fit but lower complexity:

$$\inf_{f\in\mathcal{B}} \mathcal{L}_{\mathsf{z}}(f) + \lambda \phi(\|f\|_{\mathcal{B}}),$$

where

- B: a Banach space of candidate functions;
- \mathcal{L}_{z} : "loss" function measuring how well the sample data $z = \{(x_i, y_i)_{i \in \mathcal{I}}\}$ is fitted by the input-output relation $\{x_i, f(x_i)\}_{i \in \mathcal{I}}\}$ by a candidate function f;
- λ: Lagrange multiplier regularizing the balance of two competing forces for optimal generalization;
- φ: a non-decreasing function "modulating" the "capacity" of the function space B where the minimizer may lie.

Jun Zhang

The Case with Reproducing Kernel Hilbert Space

• A well-understood case of regularized learning is the Reproducing Kernel Hilbert Space (RKHS):

$$\min_{f\in\mathcal{H}_{K}} \mathcal{L}_{\mathsf{z}}(f) + \lambda \phi(\|f\|_{\mathcal{H}_{K}})$$

where \mathcal{H}_{K} is the RKHS with the associated kernel K.

Here K, called the "reproducing kernel" of H, is a symmetric function on X × X such that K(x, ·) ∈ H, K(·, x) ∈ H for all x ∈ X and

$$f(x) = \langle f(\cdot), K(x, \cdot) \rangle_{\mathcal{H}}, \ x \in X$$

where \langle,\rangle denotes the inner product.

<u>Jun Znang</u>

The Case with Reproducing Kernel Hilbert Space

• A well-understood case of regularized learning is the Reproducing Kernel Hilbert Space (RKHS):

$$\min_{f\in\mathcal{H}_{K}} \mathcal{L}_{z}(f) + \lambda \phi(\|f\|_{\mathcal{H}_{K}})$$

where $\mathcal{H}_{\mathcal{K}}$ is the RKHS with the associated kernel \mathcal{K} .

Here K, called the "reproducing kernel" of H, is a symmetric function on X × X such that K(x, ·) ∈ H, K(·, x) ∈ H for all x ∈ X and

$$f(x) = \langle f(\cdot), K(x, \cdot) \rangle_{\mathcal{H}}, \ x \in X$$

where \langle,\rangle denotes the inner product.

Jun Zhang

Reproducing Property: $K : X \times X \to \mathbb{C}$ satisfies

 $K(x,y) = \langle K(x,\cdot), K(y,\cdot) \rangle_{\mathcal{H}_{K}}.$

Representer Theorem: nature of the solution

$$f(\cdot) = \sum_{i=1}^{n} c_i K(x_i, \cdot), ext{ for some } c_i \in \mathbb{C}, 1 \leq i \leq n.$$

Characterization Theorem: nature of the kernel

Jun Znang

A symmetric function K is a reproducing kernel iff

- There exists a feature mapping $\Phi : X \to W$ such that $K(x, y) = \langle \Phi(x), \Phi(y) \rangle_{W}, x, y \in X;$ Or
- ② For any sequence {x_i}_{i∈I}, kernel matrix K_{ij} = K(x_i, x_j) is positive semi-definite, i.e., for any c_i, i ∈ I

Reproducing Property: $K : X \times X \rightarrow \mathbb{C}$ satisfies

$$K(x,y) = \langle K(x,\cdot), K(y,\cdot) \rangle_{\mathcal{H}_{K}}.$$

Representer Theorem: nature of the solution

$$f(\cdot) = \sum_{i=1}^{n} c_i K(x_i, \cdot), \text{ for some } c_i \in \mathbb{C}, 1 \leq i \leq n.$$

Characterization Theorem: nature of the kernel

Jun Znang

A symmetric function K is a reproducing kernel iff

- There exists a feature mapping $\Phi : X \to W$ such that $K(x,y) = \langle \Phi(x), \Phi(y) \rangle_{W}, \quad x, y \in X;$ Or
- ② For any sequence {x_i}_{i∈I}, kernel matrix K_{ij} = K(x_i, x_j) is positive semi-definite, i.e., for any c_i, i ∈ I

Reproducing Property: $K : X \times X \rightarrow \mathbb{C}$ satisfies

$$K(x,y) = \langle K(x,\cdot), K(y,\cdot) \rangle_{\mathcal{H}_{K}}.$$

Representer Theorem: nature of the solution

$$f(\cdot) = \sum_{i=1}^{n} c_i K(x_i, \cdot), \text{ for some } c_i \in \mathbb{C}, 1 \leq i \leq n.$$

Characterization Theorem: nature of the kernel

Jun Zhang

A symmetric function K is a reproducing kernel iff

- There exists a feature mapping $\Phi : X \to W$ such that $K(x, y) = \langle \Phi(x), \Phi(y) \rangle_{W}, x, y \in X;$ Or
- So For any sequence {x_i}_{i∈I}, kernel matrix K_{ij} = K(x_i, x_j) is positive semi-definite, i.e., for any $c_i, i \in I$

$$\sum_{i=j} K(x_i, x_j) c_i \bar{c}_j \ge 0.$$

Reproducing Property: $K : X \times X \rightarrow \mathbb{C}$ satisfies

$$K(x,y) = \langle K(x,\cdot), K(y,\cdot) \rangle_{\mathcal{H}_{K}}.$$

Representer Theorem: nature of the solution

$$f(\cdot) = \sum_{i=1}^{n} c_i K(x_i, \cdot), \text{ for some } c_i \in \mathbb{C}, 1 \leq i \leq n.$$

Characterization Theorem: nature of the kernel

Jun Zhang

A symmetric function K is a reproducing kernel iff

- There exists a feature mapping $\Phi : X \to W$ such that $K(x, y) = \langle \Phi(x), \Phi(y) \rangle_{W}, x, y \in X;$ Or
- So For any sequence {x_i}_{i∈I}, kernel matrix K_{ij} = K(x_i, x_j) is positive semi-definite, i.e., for any $c_i, i \in I$

$$\sum_{i=j} K(x_i, x_j) c_i \bar{c}_j \ge 0.$$

- (Prototype model) people judge the similarity of a test item to a prototype of each category, representing the average feature values of all category members (Smith and Minda, 1998);
- Operation (Decision-bound model) people learn boundaries in stimulus space that separate categories (Maddox and Ashby, 1993);
- (Perceptron model) people learn associations between error-driven mechanism (Gluck and Bower, 1988);
- (ALCOVE model) associative learning is coupled with learning exemplars are presented (Kruschke, 1992);

O (Cluster model) categories as mixture distributions, with each component of this mixture given by a Gaussian centered on <u>Jun Zhang</u>

- (Exemplar model) people judge the similarity of a test item to all remembered exemplars of each category (Nosofsky, 1986);
- (Prototype model) people judge the similarity of a test item to a prototype of each category, representing the average feature values of all category members (Smith and Minda, 1998);
- (Decision-bound model) people learn boundaries in stimulus space that separate categories (Maddox and Ashby, 1993);
- (Perceptron model) people learn associations between individual stimulus features and category labels with an error-driven mechanism (Gluck and Bower, 1988);
- (ALCOVE model) associative learning is coupled with learning to selectively attend to relevant dimensions as individual exemplars are presented (Kruschke, 1992);

 (Cluster model) categories as mixture distributions, with each component of this mixture given by a Gaussian centered on some hypothetical stimulus (Anderson, 1991).

Jun Zhang

- (Exemplar model) people judge the similarity of a test item to all remembered exemplars of each category (Nosofsky, 1986);
- (Prototype model) people judge the similarity of a test item to a prototype of each category, representing the average feature values of all category members (Smith and Minda, 1998);
- (Decision-bound model) people learn boundaries in stimulus space that separate categories (Maddox and Ashby, 1993);
- (Perceptron model) people learn associations between individual stimulus features and category labels with an error-driven mechanism (Gluck and Bower, 1988);
- (ALCOVE model) associative learning is coupled with learning to selectively attend to relevant dimensions as individual exemplars are presented (Kruschke, 1992);

 (Cluster model) categories as mixture distributions, with each component of this mixture given by a Gaussian centered on some hypothetical stimulus (Anderson, 1991).

Jun Zhang

- (Exemplar model) people judge the similarity of a test item to all remembered exemplars of each category (Nosofsky, 1986);
- (Prototype model) people judge the similarity of a test item to a prototype of each category, representing the average feature values of all category members (Smith and Minda, 1998);
- (Decision-bound model) people learn boundaries in stimulus space that separate categories (Maddox and Ashby, 1993);
- (Perceptron model) people learn associations between individual stimulus features and category labels with an error-driven mechanism (Gluck and Bower, 1988);
- (ALCOVE model) associative learning is coupled with learning to selectively attend to relevant dimensions as individual exemplars are presented (Kruschke, 1992);

 (Cluster model) categories as mixture distributions, with each component of this mixture given by a Gaussian centered on some hypothetical stimulus (Anderson, 1991).

Jun Zhang

- (Exemplar model) people judge the similarity of a test item to all remembered exemplars of each category (Nosofsky, 1986);
- (Prototype model) people judge the similarity of a test item to a prototype of each category, representing the average feature values of all category members (Smith and Minda, 1998);
- (Decision-bound model) people learn boundaries in stimulus space that separate categories (Maddox and Ashby, 1993);
- (Perceptron model) people learn associations between individual stimulus features and category labels with an error-driven mechanism (Gluck and Bower, 1988);
- (ALCOVE model) associative learning is coupled with learning to selectively attend to relevant dimensions as individual exemplars are presented (Kruschke, 1992);

 (Cluster model) categories as mixture distributions, with each component of this mixture given by a Gaussian centered on some hypothetical stimulus (Anderson, 1991).

Jun Zhang

- (Exemplar model) people judge the similarity of a test item to all remembered exemplars of each category (Nosofsky, 1986);
- (Prototype model) people judge the similarity of a test item to a prototype of each category, representing the average feature values of all category members (Smith and Minda, 1998);
- (Decision-bound model) people learn boundaries in stimulus space that separate categories (Maddox and Ashby, 1993);
- (Perceptron model) people learn associations between individual stimulus features and category labels with an error-driven mechanism (Gluck and Bower, 1988);
- (ALCOVE model) associative learning is coupled with learning to selectively attend to relevant dimensions as individual exemplars are presented (Kruschke, 1992);

<u>Jun Zhang</u>

- (Exemplar model) people judge the similarity of a test item to all remembered exemplars of each category (Nosofsky, 1986);
- (Prototype model) people judge the similarity of a test item to a prototype of each category, representing the average feature values of all category members (Smith and Minda, 1998);
- (Decision-bound model) people learn boundaries in stimulus space that separate categories (Maddox and Ashby, 1993);
- (Perceptron model) people learn associations between individual stimulus features and category labels with an error-driven mechanism (Gluck and Bower, 1988);
- (ALCOVE model) associative learning is coupled with learning to selectively attend to relevant dimensions as individual exemplars are presented (Kruschke, 1992);

 (Cluster model) categories as mixture distributions, with each component of this mixture given by a Gaussian centered on some hypothetical stimulus (Anderson, 1991).

Jun Zhang

- (Exemplar model) people judge the similarity of a test item to all remembered exemplars of each category (Nosofsky, 1986);
- (Prototype model) people judge the similarity of a test item to a prototype of each category, representing the average feature values of all category members (Smith and Minda, 1998);
- (Decision-bound model) people learn boundaries in stimulus space that separate categories (Maddox and Ashby, 1993);
- (Perceptron model) people learn associations between individual stimulus features and category labels with an error-driven mechanism (Gluck and Bower, 1988);
- (ALCOVE model) associative learning is coupled with learning to selectively attend to relevant dimensions as individual exemplars are presented (Kruschke, 1992);

 (Cluster model) categories as mixture distributions, with each component of this mixture given by a Gaussian centered on some hypothetical stimulus (Anderson, 1991).

Jun Zhang

- Symmetry of kernels is tied to inner-product of a Hilbert space. So a major challenge of generalizing kernel methods is to deal with the lack of "inner-product" in a Banach space B.
- Strategy: invoke duality mapping between B ↔ B*, where B* is the space of continuous linear functionals on B with the norm given by

$$||g^*||_* = \sup_{f:||f||=1} g^*(f) = \sup_f rac{(f,g^*)}{||f||}$$

where (,) : $\mathcal{B} \times \mathcal{B}^* \to \mathbb{C}$ denotes a bilinear form called "duality pairing".

Solution: "Semi-inner-product" operator on B, a natural generalization of "inner-product" on H.

Jun Zhang

- Symmetry of kernels is tied to inner-product of a Hilbert space. So a major challenge of generalizing kernel methods is to deal with the lack of "inner-product" in a Banach space B.
- Strategy: invoke duality mapping between B ↔ B*, where B* is the space of continuous linear functionals on B with the norm given by

$$||g^*||_* = \sup_{f:||f||=1} g^*(f) = \sup_f rac{(f,g^*)}{||f||}$$

where (,) : $\mathcal{B} \times \mathcal{B}^* \to \mathbb{C}$ denotes a bilinear form called "duality pairing".

Solution: "Semi-inner-product" operator on B, a natural generalization of "inner-product" on H.

Jun Zhang

- Symmetry of kernels is tied to inner-product of a Hilbert space. So a major challenge of generalizing kernel methods is to deal with the lack of "inner-product" in a Banach space B.
- Strategy: invoke duality mapping between B ↔ B*, where B* is the space of continuous linear functionals on B with the norm given by

$$||g^*||_* = \sup_{f:||f||=1} g^*(f) = \sup_f rac{(f,g^*)}{||f||}$$

where (,) : $\mathcal{B}\times\mathcal{B}^*\to\mathbb{C}$ denotes a bilinear form called "duality pairing".

Solution: "Semi-inner-product" operator on B, a natural generalization of "inner-product" on H.

- Symmetry of kernels is tied to inner-product of a Hilbert space. So a major challenge of generalizing kernel methods is to deal with the lack of "inner-product" in a Banach space B.
- Strategy: invoke duality mapping between B ↔ B*, where B* is the space of continuous linear functionals on B with the norm given by

$$||g^*||_* = \sup_{f:||f||=1} g^*(f) = \sup_f rac{(f,g^*)}{||f||}$$

where (,) : $\mathcal{B} \times \mathcal{B}^* \to \mathbb{C}$ denotes a bilinear form called "duality pairing".

Solution: "Semi-inner-product" operator on \mathcal{B} , a natural generalization of "inner-product" on \mathcal{H} .

(Lumer, 1961) A semi-inner-product [·, ·] on B × B satisfies, for all f, g, h ∈ B and α ∈ C

(
$$[f + g, h] = [f, h] + [g, h], [\alpha f, g] = \alpha [f, g];$$

2
$$[f, f] > 0$$
 for $f \neq 0$;

- (Cauchy-Schwartz) $|[f,g]|^2 \leq [f,f][g,g].$
- From (2) and (3), a norm is induced: $||f||_{\mathcal{B}} = [f, f]^{1/2}$.
- Giles (1967) shows that $[f, \alpha g] = \bar{\alpha}[f, g]$.
- If $\overline{[g, f]} = [f, g]$, then [f, g + h] = [f, g] + [f, h].
- Nath (1971) showed that (3) can be generalized to define the s.i.p of order *p* (satisfying Hölder inequality):

 $|[f,g]| \le ([f,f])^{1/p} ([g,g])^{(p-1)/p}$

(Lumer, 1961) A semi-inner-product [·, ·] on B × B satisfies, for all f, g, h ∈ B and α ∈ C

(
$$[f + g, h] = [f, h] + [g, h], [\alpha f, g] = \alpha [f, g];$$

2
$$[f, f] > 0$$
 for $f \neq 0$;

- (Cauchy-Schwartz) $|[f,g]|^2 \leq [f,f][g,g].$
- From (2) and (3), a norm is induced: $||f||_{\mathcal{B}} = [f, f]^{1/2}$.
- Giles (1967) shows that $[f, \alpha g] = \bar{\alpha}[f, g]$.
- If [g, f] = [f, g], then [f, g + h] = [f, g] + [f, h].
- Nath (1971) showed that (3) can be generalized to define the s.i.p of order *p* (satisfying Hölder inequality):

 $|[f,g]| \le ([f,f])^{1/p} ([g,g])^{(p-1)/p}$

(Lumer, 1961) A semi-inner-product [·, ·] on B × B satisfies, for all f, g, h ∈ B and α ∈ C

(
$$[f + g, h] = [f, h] + [g, h], [\alpha f, g] = \alpha [f, g];$$

2
$$[f, f] > 0$$
 for $f \neq 0$;

- (Cauchy-Schwartz) $|[f,g]|^2 \leq [f,f][g,g].$
- From (2) and (3), a norm is induced: $||f||_{\mathcal{B}} = [f, f]^{1/2}$.
- Giles (1967) shows that $[f, \alpha g] = \bar{\alpha}[f, g]$.
- If [g, f] = [f, g], then [f, g + h] = [f, g] + [f, h].
- Nath (1971) showed that (3) can be generalized to define the s.i.p of order *p* (satisfying Hölder inequality):

 $|[f,g]| \leq ([f,f])^{1/p} ([g,g])^{(p-1)/p}$

(Lumer, 1961) A semi-inner-product [·, ·] on B × B satisfies, for all f, g, h ∈ B and α ∈ C

(
$$[f + g, h] = [f, h] + [g, h], [\alpha f, g] = \alpha [f, g];$$

2
$$[f, f] > 0$$
 for $f \neq 0$;

- (Cauchy-Schwartz) $|[f,g]|^2 \leq [f,f][g,g].$
- From (2) and (3), a norm is induced: $||f||_{\mathcal{B}} = [f, f]^{1/2}$.
- Giles (1967) shows that $[f, \alpha g] = \bar{\alpha}[f, g]$.
- If $\overline{[g, f]} = [f, g]$, then [f, g + h] = [f, g] + [f, h].
- Nath (1971) showed that (3) can be generalized to define the s.i.p of order *p* (satisfying Hölder inequality):

 $|[f,g]| \le ([f,f])^{1/p} ([g,g])^{(p-1)/p}$

(Lumer, 1961) A semi-inner-product [·, ·] on B × B satisfies, for all f, g, h ∈ B and α ∈ C

(
$$[f + g, h] = [f, h] + [g, h], [\alpha f, g] = \alpha [f, g];$$

2
$$[f, f] > 0$$
 for $f \neq 0$;

- (Cauchy-Schwartz) $|[f,g]|^2 \leq [f,f][g,g].$
- From (2) and (3), a norm is induced: $||f||_{\mathcal{B}} = [f, f]^{1/2}$.
- Giles (1967) shows that $[f, \alpha g] = \bar{\alpha}[f, g]$.
- If $\overline{[g, f]} = [f, g]$, then [f, g + h] = [f, g] + [f, h].
- Nath (1971) showed that (3) can be generalized to define the s.i.p of order *p* (satisfying Hölder inequality):

$$|[f,g]| \le ([f,f])^{1/p} ([g,g])^{(p-1)/p}$$

Semi-inner-product allows us to express

- continuous linear functional: $g^*(f) = [f, g]$.
- 2) pseudo-orthogonality: [f,g] = 0 iff $f \perp g$
 - (in the sense of James) ||g + tf|| > ||g|| for all $t \neq 0$.
- 3 asymmetric projection and hence angles between vectors: $\cos \theta_{f,g} = |[f,g]|/(||f|| \cdot ||g||^{p-1}).$

Existence and uniqueness of semi-inner-product

If $\mathcal B$ is uniformly convex and uniformly Fréchet differentiable:

$$\mathsf{Re}([f,g]) = \frac{1}{p} \lim_{t \to 0} \frac{||g + tf||^p - ||g||^p}{t}.$$

Example. For $\mathcal{B} = L^p(X, \mu)$, its s.i.p. is

$$[f,g] = \frac{\int f\bar{g}|g|^{p-2}d\mu}{||g||_p^{p-2}}.$$

Jun Zhang

Regularized Learning under Reproducing Kernel Banach Spaces:

通 と イ ヨ と イ ヨ と

Semi-inner-product allows us to express

- continuous linear functional: $g^*(f) = [f, g]$.
- Seudo-orthogonality: [f,g] = 0 iff $f \perp g$ (in the sense of James) ||g + tf|| > ||g|| for all $t \neq 0$.
- 3 asymmetric projection and hence angles between vectors: $\cos \theta_{f,g} = |[f,g]|/(||f|| \cdot ||g||^{p-1}).$

Existence and uniqueness of semi-inner-product

If $\mathcal B$ is uniformly convex and uniformly Fréchet differentiable:

$$\mathsf{Re}([f,g]) = \frac{1}{p} \lim_{t \to 0} \frac{||g + tf||^p - ||g||^p}{t}.$$

Example. For $\mathcal{B} = L^p(X, \mu)$, its s.i.p. is

$$[f,g] = \frac{\int f\bar{g}|g|^{p-2}d\mu}{||g||_p^{p-2}}.$$

Jun Zhang

Regularized Learning under Reproducing Kernel Banach Spaces:

伺 ト く ヨ ト く ヨ ト

Semi-inner-product allows us to express

- continuous linear functional: $g^*(f) = [f, g]$.
- pseudo-orthogonality: [f,g] = 0 iff $f \perp g$
 - (in the sense of James) ||g + tf|| > ||g|| for all $t \neq 0$.
- asymmetric projection and hence angles between vectors: $\cos \theta_{f,g} = |[f,g]|/(||f|| \cdot ||g||^{p-1}).$

Existence and uniqueness of semi-inner-product

If $\mathcal B$ is uniformly convex and uniformly Fréchet differentiable:

$$\mathsf{Re}([f,g]) = \frac{1}{p} \lim_{t \to 0} \frac{||g + tf||^p - ||g||^p}{t}.$$

Example. For $\mathcal{B} = L^p(X, \mu)$, its s.i.p. is

$$[f,g] = \frac{\int f\bar{g}|g|^{p-2}d\mu}{||g||_p^{p-2}}.$$

Jun Zhang

Regularized Learning under Reproducing Kernel Banach Spaces:

伺 と く ヨ と く ヨ と …

Semi-inner-product allows us to express

- continuous linear functional: $g^*(f) = [f, g]$.
- 2 pseudo-orthogonality: [f,g] = 0 iff $f \perp g$ (in the cases of lames) ||g| + tf|| > ||g|| for all
 - (in the sense of James) ||g + tf|| > ||g|| for all $t \neq 0$.
- asymmetric projection and hence angles between vectors: $\cos \theta_{f,g} = |[f,g]|/(||f|| \cdot ||g||^{p-1}).$

Existence and uniqueness of semi-inner-product

If $\ensuremath{\mathcal{B}}$ is uniformly convex and uniformly Fréchet differentiable:

$$\mathsf{Re}([f,g]) = \frac{1}{p} \lim_{t \to 0} \frac{||g + tf||^p - ||g||^p}{t}.$$

Example. For $\mathcal{B} = L^p(X, \mu)$, its s.i.p. is

$$[f,g] = \frac{\int f\bar{g}|g|^{p-2}d\mu}{||g||_{p}^{p-2}}.$$

Jun Zhang Regularized Learni

Regularized Learning under Reproducing Kernel Banach Spaces:

伺 と く ヨ と く ヨ と

Semi-inner-product allows us to express

- continuous linear functional: $g^*(f) = [f, g]$.
- Seudo-orthogonality: [f,g] = 0 iff $f \perp g$ (in the sense of James) ||g + tf|| > ||g|| for all $t \neq 0$.
- 3 asymmetric projection and hence angles between vectors: $\cos \theta_{f,g} = |[f,g]|/(||f|| \cdot ||g||^{p-1}).$

Existence and uniqueness of semi-inner-product

If $\mathcal B$ is uniformly convex and uniformly Fréchet differentiable:

$$\mathsf{Re}([f,g]) = rac{1}{p} \lim_{t o 0} rac{||g + tf||^p - ||g||^p}{t}.$$

Example. For $\mathcal{B} = L^p(X, \mu)$, its s.i.p. is

Jun Znang

$$[f,g] = \frac{\int f\bar{g}|g|^{p-2}d\mu}{||g||_p^{p-2}}.$$

Regularized Learning under Reproducing Kernel Banach Spaces:

伺 と く ヨ と く ヨ と

We can generalize s.i.p further.

Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be strictly increasing, $\varphi(0) = 0$, $\lim_{t\to\infty} \varphi(t) = \infty$. Denote $\psi(t) := t/\varphi(t)$.

Definition 1. Generalized Semi-Inner-Product

Jun Znang

A g.s.i.p. $[\cdot, \cdot]_{\varphi} \to \mathbb{C}$ on $\mathcal{B} \times \mathcal{B}$ satisfies, for all $f, g, h \in \mathcal{B}$ and $\alpha \in \mathbb{C}$

- 2 $[f, f]_{\varphi} > 0$ for $f \neq 0$;
- $|[f,g]_{\varphi}| \leq \varphi([f,f])\psi([g,g]).$

We can generalize s.i.p further.

Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be strictly increasing, $\varphi(0) = 0$, $\lim_{t\to\infty} \varphi(t) = \infty$. Denote $\psi(t) := t/\varphi(t)$.

Znang

Definition 1. Generalized Semi-Inner-Product

A g.s.i.p. $[\cdot, \cdot]_{\varphi} \to \mathbb{C}$ on $\mathcal{B} \times \mathcal{B}$ satisfies, for all $f, g, h \in \mathcal{B}$ and $\alpha \in \mathbb{C}$

$$[f+g,h]_{\varphi} = [f,h]_{\varphi} + [g,h]_{\varphi}, \ [\alpha f,g]_{\varphi} = \alpha [f,g]_{\varphi}$$

2
$$[f,f]_{arphi}>0$$
 for $f
eq 0;$

$$|[f,g]_{\varphi}| \leq \varphi([f,f])\psi([g,g]).$$

Jun

G.s.i.p. and Generalized Duality Mapping

Condition (3) replaces Cauchy-Schwartz (and the more general Hölder) inequality. When $\varphi(t) = t^{1/p}$ and $\psi(t) = t^{1/q}$, where p, q > 1, 1/p + 1/q = 1, ours reduces to s.i.p of type p (Nath, 1971) which, for p = q = 2, reduces to that of Lumer (1961).

Proposition 1 (Zhang and Zhang, 2010)

- G. s.i.p induces a norm on \mathcal{B} by $||f|| = \varphi([f, f]_{\varphi})$.
- ② For each fixed f ∈ B, [·, f]_φ defines a continuous linear functional on B, and therefore is an element of B^{*}.
- Surther, [·, f]_{\varphi} can be identified with the dual element f^{*} defined by the generalized duality mapping:

$$f^*(f) = ||f^*||_* ||f||, \text{ and } ||f^*||_* = \gamma(||f||).$$

where $\gamma(t) = \varphi^{-1}(t)/t$.

Let Γ be a Young function on $[0, +\infty)$, i.e., Γ is an increasing, strictly convex function with $\Gamma(0) = 0$, and let Γ^* be its convex conjugate, i.e.,

$$\Gamma^*(s) = \sup_{t>0}(ts - \Gamma(t)) = s(\Gamma')^{-1}(s) - \Gamma((\Gamma')^{-1}(s)).$$

Lemma

The pair of functions $\tilde{\Gamma},\tilde{\Gamma}^*$ given by

Jun

Znan

$$\tilde{\Gamma}(f):=\Gamma(\|f\|_{\mathcal{B}}) \text{ and } \tilde{\Gamma}^*(g^*):=\Gamma^*(\|g^*\|_{\mathcal{B}^*}), \ \ f\in\mathcal{B}, g^*\in\mathcal{B}^*$$

are strictly convex functions on ${\cal B}$ and ${\cal B}^*,$ respectively, and that are conjugate to each other. They satisfy

$$\Gamma(\|f\|_{\mathcal{B}}) + \Gamma^*(\|g^*\|_{\mathcal{B}^*}) \ge \|f\|_{\mathcal{B}} \|g^*\|_{\mathcal{B}^*} \ge |(f,g^*)|.$$

- The first inequality is due to the strictly convexity of Γ; equality holds when the norms satisfy ||g^{*}||_{B^{*}} = Γ'(||f||_B) = γ(||f||_B).
- The second inequality is due to the definition of dual norm; equality holds when g* lies in a certain direction (denoted f*) in B* dual to the direction of f ∈ B.
- The two equalities hold simultaneously iff $g^* = f^*$ where

$$f^*\equiv [\cdot,f]_{arphi}\equiv J_{\gamma}(f)$$

where $J_{\gamma} : \mathcal{B} \to \mathcal{B}^*, f \mapsto J_{\gamma}(f)$ denotes a generalized duality mapping with "gauge" γ :

 $\|J_{\gamma}(f)\|_{\mathcal{B}^{*}} = \gamma(\|f\|_{\mathcal{B}}), \ J_{\gamma}(f)(f) = f^{*}(f) = \varphi^{-1}(||f||_{\mathcal{B}}).$

Note that J_{γ} as a function from \mathcal{B} to \mathcal{B}^* is generally non-linear $J_{\gamma}(f_1 + f_2) \neq J_{\gamma}(f_1) + J_{\gamma}(f_2)$.

Jun Zhang

- The first inequality is due to the strictly convexity of Γ; equality holds when the norms satisfy ||g^{*}||_{B^{*}} = Γ'(||f||_B) = γ(||f||_B).
- The second inequality is due to the definition of dual norm; equality holds when g^{*} lies in a certain direction (denoted f^{*}) in B^{*} dual to the direction of f ∈ B.
- The two equalities hold simultaneously iff $g^* = f^*$ where

$$f^*\equiv [\cdot,f]_arphi\equiv J_\gamma(f)$$

where $J_{\gamma} : \mathcal{B} \to \mathcal{B}^*, f \mapsto J_{\gamma}(f)$ denotes a generalized duality mapping with "gauge" γ :

 $\|J_{\gamma}(f)\|_{\mathcal{B}^{*}} = \gamma(\|f\|_{\mathcal{B}}), \ J_{\gamma}(f)(f) = f^{*}(f) = \varphi^{-1}(||f||_{\mathcal{B}}).$

Note that J_{γ} as a function from \mathcal{B} to \mathcal{B}^* is generally non-linear $J_{\gamma}(f_1 + f_2) \neq J_{\gamma}(f_1) + J_{\gamma}(f_2)$.

Jun Zhang

- The first inequality is due to the strictly convexity of Γ ; equality holds when the norms satisfy $\|g^*\|_{\mathcal{B}^*} = \Gamma'(\|f\|_{\mathcal{B}}) = \gamma(\|f\|_{\mathcal{B}}).$
- The second inequality is due to the definition of dual norm; equality holds when g^* lies in a certain direction (denoted f^*) in \mathcal{B}^* dual to the direction of $f \in \mathcal{B}$.
- The two equalities hold simultaneously iff $g^* = f^*$ where

$$f^* \equiv [\cdot, f]_{arphi} \equiv J_{\gamma}(f)$$

where $J_{\gamma}: \mathcal{B} \to \mathcal{B}^*, f \mapsto J_{\gamma}(f)$ denotes a generalized duality mapping with "gauge" γ :

$$\|J_{\gamma}(f)\|_{\mathcal{B}^*}=\gamma(\|f\|_{\mathcal{B}}),\ J_{\gamma}(f)(f)=f^*(f)=\varphi^{-1}(||f||_{\mathcal{B}}).$$

Note that J_{γ} as a function from \mathcal{B} to \mathcal{B}^* is generally non-linear $J_{\gamma}(f_1 + f_2) \neq J_{\gamma}(f_1) + J_{\gamma}(f_2).$ Jun Zhang

• Written explicitly,

.

$$J_{\gamma}(f) = \frac{\gamma(\|f\|_{\mathcal{B}})}{\|f\|_{\mathcal{B}}} f_0^* = \frac{\varphi^{-1}(\|f\|_{\mathcal{B}})}{\|f\|_{\mathcal{B}}^2} f_0^*$$

where the conventional dual f_0^* satisfies $||f_0^*||_{\mathcal{B}^*} = ||f||_{\mathcal{B}}$, corresponding to $\Gamma(t) = 1/2t^2$. Here

$$arphi^{-1}(t) \coloneqq t \Gamma'(t) = t \gamma(t), \ \ t \in [0,+\infty).$$

• The special case of Nath's s.i.p. of order p, with $\varphi(t) = t^{\frac{1}{p}}, \psi(t) = t^{\frac{1}{q}}$, corresponds to

Znang

Jun

$$\varphi^{-1}(t) = t^{p}, \ \gamma(t) = t^{p-1}, \ \Gamma(t) = \frac{1}{p}t^{p}$$

Reproducing Kernel Banach Spaces (RKBS)

We define an RKBS as a reflexive Banach space \mathcal{B} of functions on X such that the dual space \mathcal{B}^* is also a Banach space of functions on X and point evaluations are continuous linear functionals on both \mathcal{B} and \mathcal{B}^* .

Theorem 2 (Zhang, Xu, and Zhang, 2009)

Let \mathcal{B} be an RKBS on X. Then there exists a function K on $X \times X$ (called the "reproducing kernel" of \mathcal{B}) such that $K(x, \cdot) \in \mathcal{B}$, $K(\cdot, x) \in \mathcal{B}^*$ for all $x \in X$ and

 $f(x) = (f, K(\cdot, x)), \ f^*(x) = (K(x, \cdot), f^*), \ f \in \mathcal{B}, \ f^* \in \mathcal{B}^*.$

Here (\cdot, \cdot) is a bilinear form ("dual pairing") on $\mathcal{B} \times \mathcal{B}^*$: $(f, g^*) := g^*(f), f \in \mathcal{B}, g^* \in \mathcal{B}^*.$

Reproducing Kernel Banach Spaces (RKBS)

We define an RKBS as a reflexive Banach space \mathcal{B} of functions on X such that the dual space \mathcal{B}^* is also a Banach space of functions on X and point evaluations are continuous linear functionals on both \mathcal{B} and \mathcal{B}^* .

Theorem 2 (Zhang, Xu, and Zhang, 2009)

Jun

Let \mathcal{B} be an RKBS on X. Then there exists a function K on $X \times X$ (called the "reproducing kernel" of \mathcal{B}) such that $K(x, \cdot) \in \mathcal{B}$, $K(\cdot, x) \in \mathcal{B}^*$ for all $x \in X$ and

$$f(x)=(f,K(\cdot,x)), \hspace{0.2cm} f^{*}(x)=(K(x,\cdot),f^{*}), \hspace{0.2cm} f\in \mathcal{B}, \hspace{0.2cm} f^{*}\in \mathcal{B}^{*}$$

Here (\cdot, \cdot) is a bilinear form ("dual pairing") on $\mathcal{B} \times \mathcal{B}^*$:

Znan

$$(f,g^*):=g^*(f), \ f\in \mathcal{B}, \ g^*\in \mathcal{B}^*.$$

Reproducing Kernel Banach Spaces (Cont)

In general $K(x, y) \neq K(y, x)$, but they satisfy

$$K(x,y) = (K(x,\cdot), K(\cdot, y)).$$

Characterization Theorem (Zhang, Xu, and Zhang, 2009)

A bivariate function $K : X \times X \to \mathbb{C}$ is a reproducing kernel in a RKBS iff there exist mappings Φ from X to some reflexive Banach space \mathcal{W} and $\Phi^* : X \to \mathcal{W}^*$ such that

$$K(x,y) = (\Phi(x), \Phi^*(y))_{\mathcal{W}}, \ x, y \in X.$$

where $(,)_{\mathcal{W}}$ denotes the pairing of \mathcal{W} with \mathcal{W}^* .

Reproducing Kernel Banach Spaces (Cont)

In general $K(x, y) \neq K(y, x)$, but they satisfy

$$K(x,y) = (K(x,\cdot), K(\cdot, y)).$$

Characterization Theorem (Zhang, Xu, and Zhang, 2009)

A bivariate function $K : X \times X \to \mathbb{C}$ is a reproducing kernel in a RKBS iff there exist mappings Φ from X to some reflexive Banach space \mathcal{W} and $\Phi^* : X \to \mathcal{W}^*$ such that

$$K(x,y) = (\Phi(x), \Phi^*(y))_{\mathcal{W}}, x, y \in X.$$

where $(,)_{\mathcal{W}}$ denotes the pairing of \mathcal{W} with \mathcal{W}^* .

Reproducing Kernel Banach Spaces (Cont)

In general $K(x, y) \neq K(y, x)$, but they satisfy

$$K(x,y) = (K(x,\cdot), K(\cdot, y)).$$

Characterization Theorem (Zhang, Xu, and Zhang, 2009)

A bivariate function $K : X \times X \to \mathbb{C}$ is a reproducing kernel in a RKBS iff there exist mappings Φ from X to some reflexive Banach space \mathcal{W} and $\Phi^* : X \to \mathcal{W}^*$ such that

$$K(x,y) = (\Phi(x), \Phi^*(y))_{\mathcal{W}}, x, y \in X.$$

where $(,)_{\mathcal{W}}$ denotes the pairing of \mathcal{W} with \mathcal{W}^* .

Semi-Inner-Product (S.i.p) Kernel

When \mathcal{B} also admits an semi-inner-product (i.e., uniformly convex and uniformly Fréchet differentiable), we construct $G(x, \cdot) \equiv (K(\cdot, x))^* \in \mathcal{B}$ and write the reproducing kernel as:

S.i.p. Reproducing Kernel (Zhang, Xu, and Zhang, 2009)

Let \mathcal{B} be a RKBS on X with given a s.i.p., and K its reproducing kernel. Then there exists a unique function $G: X \times X \to \mathbb{C}$ such that $\{G(x, \cdot) : x \in X\} \subseteq \mathcal{B}$ and

 $f(x) = [f, G(x, \cdot)], \text{ for all } f \in \mathcal{B}, x \in X.$

The s.i.p. kernel G satisfies $G(x, y) = [G(x, \cdot), G(y, \cdot)]$. It is characterized by the existence of a feature map $\Phi : X \to W$ such that $G(x, y) = [\Phi(x), \Phi(y)]_W$.

Jun Znang

・ 同 ト ・ ヨ ト ・ ヨ ト

Representer Theorems for RKBS

Let \mathcal{B} be an RKBS with reproducing kernel K. Consider the regularized learning

$$\inf_{f \in \mathcal{B}} \mathcal{L}_{\mathsf{z}}(f) + \lambda \phi(\|f\|_{\mathcal{B}}).$$
(1)

Representer Theorem (Zhang and Zhang, 2011)

Jun Znang

Suppose that (1) has at least one minimizer. If ϕ is *strictly increasing*, then every minimizer f_0 of (1) must satisfy, for some complex constants c_j , $1 \le j \le n$,

$$f_0^*(\cdot) = \sum_{j=1}^n c_j K(\cdot, x_j).$$

If ϕ is *nondecreasing*, then there exists at least one minimizer of (1) that has the above form.

▲御▶ ▲理▶ ▲理≯

Representer Theorems for RKBS

Let \mathcal{B} be an RKBS with reproducing kernel K. Consider the regularized learning

$$\inf_{f \in \mathcal{B}} \mathcal{L}_{\mathsf{z}}(f) + \lambda \phi(\|f\|_{\mathcal{B}}).$$
(1)

Representer Theorem (Zhang and Zhang, 2011)

Jun Zhang

Suppose that (1) has at least one minimizer. If ϕ is *strictly increasing*, then every minimizer f_0 of (1) must satisfy, for some complex constants c_j , $1 \le j \le n$,

$$f_0^*(\cdot) = \sum_{j=1}^n c_j K(\cdot, x_j).$$

If ϕ is *nondecreasing*, then there exists at least one minimizer of (1) that has the above form.

Duality Between Object and Feature

An object has *dual* representations:

Jun Zhang

- in the input space (where processing is described by exemplars and their similarity);
- in the feature space (where processing is described by feature-outcome associations).
- Similarity and feature representation as two-sides of the categorization "coin":
 - similarity-based generalization (in Hilbert space)
 - sparsity-based dimension reduction and compressed representation (in *l*₁ space)

/□ ▶ < 글 ▶ < 글

Duality Between Object and Feature

• An object has *dual* representations:

- in the input space (where processing is described by exemplars and their similarity);
- in the feature space (where processing is described by feature-outcome associations).
- Similarity and feature representation as two-sides of the categorization "coin":
 - similarity-based generalization (in Hilbert space)
 - sparsity-based dimension reduction and compressed representation (in l_1 space)

Symbolic Representation of Object vs Feature

Modeling Object-Feature as Cross-Table

In a cross-table $V \times E$, a binary relation R between a set V ("objects") and another set E ("features") is represented by the entry of the table, such that an entry is 1 whenever object v possesses feature e, and entry is 0 otherwise. So "feature" serves to classify objects.

Figure: Cross-table

Jun Zhang

Relating Cross-Table to Hypergraph

In a hypergraph (V, E), each element $v \in V$ is a "vertex", and each member e of E (e being a subset of V) is a "hyperedge" (i.e., an "edge" connecting multiple vertices).

Figure: Hypergraph

Jun Zhang

Formal Concept Analysis and Concept Lattice

Starting from a cross-table, there is a formal procedure to derive a so-called "concept lattice", where each node corresponds to:

- the (maximal) collection of objects sharing a given list of features;
- the (maximal) list of features shared by a given collection of objects.

Jun Znang

Closure as an Operator

For any cross-table (V, E), the closure operation is established through the Galois connection – they form a "Concept Lattice", which is a semi-modular lattice.

Axiomatization of Closure Operation

A mapping $CI : \mathcal{P}(V) \to \mathcal{P}(V)$ is a closure operator if CIsatisfies the following axioms: (C1) $A \subseteq CI(A)$; (C2) $A \subseteq B \to CI(A) \subseteq CI(B)$; (C3) CI(CI(A)) = CI(A). Those A that satisfies A = CI(A) is called "closed" set.

Note that: subspaces of Hilbert space forms a modular lattice (projective geometry). Ongoing work (with Dr. Yinbin Lei) investigates the algebraic structures of "Knowlede Space" and "Learning Space".

Jun Zhang

Boundary Point

Given a cross-table (V, E), we define two types of points with respect to any non-empty subset $A \subseteq V$ (which does not have to be a member of E):

Boundary Point

A point $v \in V$ (not necessarily in A) is called A's *boundary* point if for every $e \in E(v)$,

$$e \cap A \neq \emptyset$$
, $e \cap A^c \neq \emptyset$ ($\leftrightarrow e \setminus A \neq \emptyset$).

The set of all boundary points of A is denoted Fr(A).

Jun Znan

From its definition,

$$\mathbf{Fr}(\mathbf{A}) = \mathbf{Fr}(\mathbf{A}^{c}).$$

Boundary Point

Given a cross-table (V, E), we define two types of points with respect to any non-empty subset $A \subseteq V$ (which does not have to be a member of E):

Boundary Point

A point $v \in V$ (not necessarily in A) is called A's *boundary* point if for every $e \in E(v)$,

$$e \cap A \neq \emptyset$$
, $e \cap A^c \neq \emptyset$ ($\leftrightarrow e \setminus A \neq \emptyset$).

The set of all boundary points of A is denoted Fr(A).

Znan

Jun

From its definition,

$$Fr(A) = Fr(A^{c}).$$

Closure, Interior, and Exterior

With the boundary operator **Fr**, we can define

<u>Ju</u>n Zhang

Closure

- Closure $Cl(A) = A \cup Fr(A)$;
- Interior $Int(A) = A \setminus Fr(A)$;
- Exterior $\mathbf{Ext}(\mathbf{A}) = \mathbf{V} \setminus \mathbf{CI}(\mathbf{A}).$

Therefore,

- $Cl(A) = Int(A) \cup Fr(A);$
- $Int(A) \subseteq A \subseteq Cl(A);$
- Set V is decomposed into three non-intersecting parts:

 $V = Int(A) \cup Fr(A) \cup Ext(A).$

Closure, Interior, and Exterior

With the boundary operator **Fr**, we can define

<u>Ju</u>n Zhang

Closure

- Closure $CI(A) = A \cup Fr(A)$;
- Interior $Int(A) = A \setminus Fr(A)$;
- Exterior $\mathbf{Ext}(\mathbf{A}) = \mathbf{V} \setminus \mathbf{CI}(\mathbf{A}).$

Therefore,

- $Cl(A) = Int(A) \cup Fr(A);$
- $Int(A) \subseteq A \subseteq Cl(A);$
- Set V is decomposed into three non-intersecting parts:

 $V = Int(A) \cup Fr(A) \cup Ext(A).$

Accumulation Point

Given a cross-table (V, E), we define two types of points with respect to any non-empty subset $A \subseteq V$ (which does not have to be a member of E):

Accumulation Point

A point $v \in V$ (not necessarily in A) is called A's accumulation point, if for every $e \in E(v)$,

 $e \cap A \setminus \{v\} \neq \emptyset$,

that is, every neighbor of the point v contains at least one point of A other than v.

- An accumulation point v of A may not be in A;
- Any accumulation point v can be "approached" via a sequence of points in A, each of which is in a neighborhood $e \in E(v)$ of v. We can construct a learning

The set of all accumulation points of A is called the *derived* set of A, denoted **Der**(**A**). Any point of A which is not an accumulation point is called *isolation point*; the set of isolated points of A is denoted **Iso**(**A**).

Theorem: Two Partition of Closed Sets

•
$$CI(A) = Int(A) \cup Fr(A);$$

• $CI(A) = Iso(A) \cup Dor(A);$

$$CI(A) = A \cup (A^{c} \cap Fr(A) \cap Der(A));$$

The set of all accumulation points of A is called the *derived* set of A, denoted **Der**(**A**). Any point of A which is not an accumulation point is called *isolation point*; the set of isolated points of A is denoted **Iso**(**A**).

Theorem: Two Partition of Closed Sets

Jun Znang

•
$$CI(A) = Int(A) \cup Fr(A);$$

•
$$CI(A) = Iso(A) \cup Der(A);$$

which means

$$\mathsf{Cl}(\mathsf{A}) = \mathsf{A} \cup (\mathsf{A}^{\mathsf{c}} \cap \mathsf{Fr}(\mathsf{A}) \cap \mathsf{Der}(\mathsf{A}));$$

Main Result: Partition of V through arbitrary $A \subset V$

Jun Zhang

Thank You!

- Zhang, H., Xu, Y., and Zhang, J. (2009) Reproducing kernel Banach spaces for machine learning. Journal of Machine Learning Research. 10: 2741-2775.
- Zhang, H. and Zhang, J. (2010). Generalized semi-inner products with application to regularized learning. Journal of Mathematical Analysis and Application. 372: 181-196.
- Zhang, H. and Zhang, J. (2011). Frames, Riesz bases, and sampling expansions in Banach spaces via semi-inner products. Applied and Computational Harmonic Analysis. 31:1-25.
- Zhang, H. and Zhang, J. (2012). Regularized learning in Banach space as an optimization problem: Representer theorems. Journal of Global Optimization. 54: 235-250
- Zhang, H. and Zhang, J. (2013). Vector-valued Reproducing Kernel Banach Spaces with applications to multi-task learning, *Journal of Complexity*. 29: 195-215.
- Zhang, H. and Zhang, J. (2015). Learning with Reproducing Kernel Banach Spaces. Proceedings of the 10th ISAAC Congress, Macau. In New Trends in Analysis and Interdisciplinary Applications. Birkhauser.
- Zhang, H. and Zhang, J. (2017). Learning with reproducing kernel Banach spaces. New Trends in Analysis and Interdisciplinary Applications. Springer.

Jun Zhang