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Learning: Regularization and Optimization

Learning-from-data in an underconstrained (ill-posed) problem,
so needs to be regularized. Find the minimizer that provides
better goodness-of-fit but lower complexity:

inf £,(F) + o((If]ls),

where
@ BB: a Banach space of candidate functions;
@ L,: “loss” function measuring how well the sample data

z = {(xj, yi)iez} is fitted by the input-output relation
{xi, f(xi)}iez} by a candidate function f;

@ A: Lagrange multiplier regularizing the balance of two
competing forces for optimal generalization;

@ ¢: a non-decreasing function “modulating” the “capacity” of
the function space B where the minimizer may lie.
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The Case with Reproducing Kernel Hilbert Space

@ A well-understood case of regularized learning is the
Reproducing Kernel Hilbert Space (RKHS):

frgqi{nK L,() + Ao(]| Fl|24)

where H is the RKHS with the associated kernel K.
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The Case with Reproducing Kernel Hilbert Space

@ A well-understood case of regularized learning is the
Reproducing Kernel Hilbert Space (RKHS):

frgqi{nK L,() + Ao(]| Fl|24)

where H is the RKHS with the associated kernel K.

@ Here K, called the “reproducing kernel” of H, is a
symmetric function on X x X such that
K(x,:) € H,K(-,x) € H for all x € X and

Fx) = (F(), K(x, - ))w, x € X

where (,) denotes the inner product.

Regularized Learning under Reproducing Kernel Banach Spaces:



Properties of Kernels in RKHS

Reproducing Property: K : X x X — C satisfies
K(X’y) = <K(X’ ')> K(yv ')>HK'
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Properties of Kernels in RKHS

Reproducing Property: K : X x X — C satisfies
K(X’y) = <K(X’ ')> K(yv ')>HK'

Representer Theorem: nature of the solution

f(-) = ZC,'K(X;, -), forsome ¢c; € C,1 < i< n.
=il
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Properties of Kernels in RKHS

Reproducing Property: K : X x X — C satisfies
K(X’)/) = <K(X’ ')7 K(y7 ')>HK'

Representer Theorem: nature of the solution

f(-) = ZC;K(X;, 1), for some ¢c; € C,1 </ < n.
i=1

Characterization Theorem: nature of the kernel

A symmetric function K is a reproducing kernel iff

© There exists a feature mapping ® : X — W such that
K(x,y) = (®(x), ®(y))w, x,y €X; Or

@ For any sequence {x;};cz, kernel matrix K; = K(x;, x;) is
positive semi-definite, i.e., for any ¢;,i € Z

Z K(X,', XJ)C,E'J > 0.
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RKHS as Unifying Model of Human Categorization
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RKHS as Unifying Model of Human Categorization

© (Exemplar model) people judge the similarity of a test item to
all remembered exemplars of each category (Nosofsky, 1986);

un ang Regularized Learning under Reproducing Kernel Banach Spaces:



RKHS as Unifying Model of Human Categorization

© (Exemplar model) people judge the similarity of a test item to
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values of all category members (Smith and Minda, 1998);
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all remembered exemplars of each category (Nosofsky, 1986);

© (Prototype model) people judge the similarity of a test item to
a prototype of each category, representing the average feature
values of all category members (Smith and Minda, 1998);

© (Decision-bound model) people learn boundaries in stimulus
space that separate categories (Maddox and Ashby, 1993);

© (Perceptron model) people learn associations between

individual stimulus features and category labels with an
error-driven mechanism (Gluck and Bower, 1988);
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© (Exemplar model) people judge the similarity of a test item to
all remembered exemplars of each category (Nosofsky, 1986);

© (Prototype model) people judge the similarity of a test item to
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values of all category members (Smith and Minda, 1998);
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RKHS as Unifying Model of Human Categorization

© (Exemplar model) people judge the similarity of a test item to
all remembered exemplars of each category (Nosofsky, 1986);

© (Prototype model) people judge the similarity of a test item to
a prototype of each category, representing the average feature
values of all category members (Smith and Minda, 1998);

© (Decision-bound model) people learn boundaries in stimulus
space that separate categories (Maddox and Ashby, 1993);

© (Perceptron model) people learn associations between
individual stimulus features and category labels with an
error-driven mechanism (Gluck and Bower, 1988);

© (ALCOVE model) associative learning is coupled with learning
to selectively attend to relevant dimensions as individual
exemplars are presented (Kruschke, 1992);

@ (Cluster model) categories as mixture distributions, with each
component of this mixture given by a Gaussian centered on
some hypothetical stimulus (Anderson, 1991).

n
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Can Kernels be Asymmetric?

© Symmetry of kernels is tied to inner-product of a Hilbert
space. So a major challenge of generalizing kernel
methods is to deal with the lack of “inner-product” in a
Banach space B.
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Can Kernels be Asymmetric?

© Symmetry of kernels is tied to inner-product of a Hilbert
space. So a major challenge of generalizing kernel
methods is to deal with the lack of “inner-product” in a
Banach space B.

@ Strategy: invoke duality mapping between B < B*,
where B* is the space of continuous linear functionals on
B with the norm given by

1g"Il- = sup g*(f) =sup -
FIF||=1 oIl

where (,) : B x B* — C denotes a bilinear form called
“duality pairing”.
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Can Kernels be Asymmetric?

© Symmetry of kernels is tied to inner-product of a Hilbert
space. So a major challenge of generalizing kernel
methods is to deal with the lack of “inner-product” in a
Banach space B.

@ Strategy: invoke duality mapping between B < B*,
where B* is the space of continuous linear functionals on
B with the norm given by

|g*[|« = sup g*(f) =sup
F[|f]|=1 f

where (,) : B x B* — C denotes a bilinear form called
“duality pairing”.

© Solution: “Semi-inner-product” operator on B, a natural
generalization of “inner-product” on H.
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Semi-Inner-Product Operator

@ (Lumer, 1961) A semi-inner-product [-,-] on B x B
satisfies, for all f,g,h € Band a € C
Q [f+g h=[f h]+[g hl [of g] = aff,g];
Q [f,f] >0 for f #0;
© (Cauchy-Schwartz) |[f, g]* < [f, fl[g. &].
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Semi-Inner-Product Operator

@ (Lumer, 1961) A semi-inner-product [-,-] on B x B
satisfies, for all f,g,h € Band a € C
Q [f+g h=I[fh+Ig hl [af,g] = off &];
Q [f,f] >0 for f #0;
© (Cauchy-Schwartz) |[f,g]* < [f, f]lg, g].
e From (2) and (3), a norm is induced: ||f||5 = [f, f]*/2.
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Semi-Inner-Product Operator

@ (Lumer, 1961) A semi-inner-product [-,-] on B x B
satisfies, for all f,g,h € Band a € C

Q [f+g h =[f hl+ g, hl [af,g] = alf, g];
Q [f,f] >0 for f #0;
© (Cauchy-Schwartz) \[f,g]]2 <[f,f]lg,g]

e From (2) and (3), a norm is induced: ||f||5 = [f, f]*/2.
o Giles (1967) shows that [f, ag| = a|f, g].
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Semi-Inner-Product Operator

@ (Lumer, 1961) A semi-inner-product [-,-] on B x B
satisfies, for all f,g,h € Band a € C

Q [f+g h =[f hl+ g, hl [af,g] = alf, g];
Q [f,f] >0 for f #0;
© (Cauchy-Schwartz) \[f,g]]2 <[f,f]lg,g]

e From (2) and (3), a norm is induced: ||f||5 = [f, f]*/2.
o Giles (1967) shows that [f, ag| = a|f, g].
o If [g,f] =[f,g] then [f, g+ h] = [f,g] + [f, h].
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Semi-Inner-Product Operator

@ (Lumer, 1961) A semi-inner-product [-,-] on B x B
satisfies, for all f,g,h € Band a € C

Q [f+g h =[f hl+ g, hl [af,g] = alf, g];
Q [f,f] >0 for f #0;
© (Cauchy-Schwartz) \[f,g]]2 <[f,f]lg,g]

From (2) and (3), a norm is induced: ||f||z = [f, f]*/2.
Giles (1967) shows that [f, ag] = a[f, g].

If [g. f] = [f. g]. then [f, g + h] = [, g] + [f, h.

Nath (1971) showed that (3) can be generalized to define
the s.i.p of order p (satisfying Holder inequality):

If. gl < (If. 1)V°(lg., gD~ 1P

In this case [f, f]/P = ||f]|5.
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Semi-Inner-Product Operator (cont)

Semi-inner-product allows us to express
@ continuous linear functional: g*(f) = [f, g].
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Semi-Inner-Product Operator (cont)

Semi-inner-product allows us to express

@ continuous linear functional: g*(f) = [f, g].
@ pseudo-orthogonality: [f,g] =0 iff f L g
(in the sense of James) ||g + tf|| > ||g|| for all t # 0.
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Semi-Inner-Product Operator (cont)

Semi-inner-product allows us to express
@ continuous linear functional: g*(f) = [f, g].
@ pseudo-orthogonality: [f,g] =0 iff f L g
(in the sense of James) ||g + tf|| > ||g|| for all t # 0.
© asymmetric projection and hence angles between vectors:

cosbr.¢ = [[f, gll/(IIf]] - lg]1P~).
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Semi-Inner-Product Operator (cont)

Semi-inner-product allows us to express
@ continuous linear functional: g*(f) = [f, g].
@ pseudo-orthogonality: [f,g] =0 iff f L g
(in the sense of James) ||g + tf|| > ||g|| for all t #0.
© asymmetric projection and hence angles between vectors:

cosbr.¢ = [[f, gll/(IIf]] - lg]1P~).

Existence and uniqueness of semi-inner-product

If B is uniformly convex and uniformly Fréchet differentiable:

1. g + tf||P — ||g]|P
— im .

Re([f.]) = - Im t
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Semi-Inner-Product Operator (cont)

Semi-inner-product allows us to express
@ continuous linear functional: g*(f) = [f, g].
@ pseudo-orthogonality: [f,g] =0 iff f L g
(in the sense of James) ||g + tf|| > ||g|| for all t #0.
© asymmetric projection and hence angles between vectors:

cosbr.¢ = [[f, gll/(IIf]] - lg]1P~).

Existence and uniqueness of semi-inner-product

If B is uniformly convex and uniformly Fréchet differentiable:

1. g + tf||P — ||g]|P
— im .

Re([f.]) = - Im :

Example. For B = LP(X, i), its s.i.p. is

[ felglP2du
[f7g] - p—2 °
gl

Regularized Learning under Reproducing Kernel Banach Spaces:



Generalized Semi-Inner-Products

We can generalize s.i.p further.
Let ¢ : Ry — R, be strictly increasing, ¢(0) = 0,
lim; 00 ©(t) = 00. Denote 1)(t) := t/p(t).
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Generalized Semi-Inner-Products

We can generalize s.i.p further.
Let ¢ : Ry — R, be strictly increasing, ¢(0) = 0,
lim; 00 ©(t) = 00. Denote 1)(t) := t/p(t).

Definition 1. Generalized Semi-Inner-Product

A gs.i.p. [,], = C on B x B satisfies, for all f, g, h € B and
aeC

Q [f +g,hl, = [f, hl, + [g, by, [af, gl, = alf, gl
Q [f,f], >0 for f #0;
Q [[f, gl.| < o([f, f1)¢ (8, &])-
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G.s.i.p. and Generalized Duality Mapping

Condition (3) replaces Cauchy-Schwartz (and the more general
Holder) inequality. When (t) = t'/P and 1(t) = t'/9, where

p,g>1,1/p+1/q =1, ours reduces to s.i.p of type p (Nath,
1971) which, for p = g = 2, reduces to that of Lumer (1961).

Proposition 1 (Zhang and Zhang, 2010)

@ G.s.i.p induces a norm on B by ||f]| = ¢([f, f],).

@ For each fixed f € B, [-, f],, defines a continuous linear
functional on B, and therefore is an element of B*.

@ Further, [, f], can be identified with the dual element *
defined by the generalized duality mapping:

FE(F) = (17111 and [1£7 ][ = A (1IF]])-

where y(t) = ¢~ (t)/t.
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Duality Mapping in Reflexive Banach Spaces

Let [ be a Young function on [0, +00), i.e., I' is an increasing,
strictly convex function with '(0) = 0, and let '* be its
convex conjugate, i.e.,

M*(s) = supeso(ts — (1)) = s()7(s) — (M) 7(s))-

Lemma

The pair of functions T, 7* given by

F(f) :==T(lIfll5) and T(g") := T(llg"[ls-), f € B.g"€B

are strictly convex functions on B and B*, respectively, and
that are conjugate to each other. They satisfy

s = |(f, &%)l

) 2 |Ifllsllg"]

F(Iflls) + ™ (llg”|
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Duality Mapping in Reflexive Banach Space (Cont)

@ The first inequality is due to the strictly convexity of I;
equality holds when the norms satisfy

lg*[ls- = T'(I£ll) = ~([[l]s).
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Duality Mapping in Reflexive Banach Space (Cont)

@ The first inequality is due to the strictly convexity of I;
equality holds when the norms satisfy
lg* M5 = T'(Iflls) = ~(IIf]ls).

@ The second inequality is due to the definition of dual
norm; equality holds when g* lies in a certain direction
(denoted f*) in B* dual to the direction of f € B.
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Duality Mapping in Reflexive Banach Space (Cont)

@ The first inequality is due to the strictly convexity of I;
equality holds when the norms satisfy
lg* M5 = T'(Iflls) = ~(IIf]ls).

@ The second inequality is due to the definition of dual
norm; equality holds when g* lies in a certain direction
(denoted f*) in B* dual to the direction of f € B.

@ The two equalities hold simultaneously iff g* = f* where

fr= [, fl, = L(f)

where J, : B — B*, f — J,(f) denotes a generalized
duality mapping with “gauge” ~v:
15 ()5 = 7(Ifll5), 4 (F)(F) = F(F) = ¢ (|If]]s)-

Note that J, as a function from B to B* is generally non-linear
L(f+B) # Jy(A) + 4 (h).
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Duality Mapping in Reflexive Banach Space (Cont)

e Written explicitly,

A1Fls) o (IFls)
J(f) = fr=1—"""7f
) =T 0T T

where the conventional dual f; satisfies |||z = ||f]|5,

corresponding to I'(t) = 1/2t%. Here

0 L(t) = tl'(t) = ty(t), t€]0,+o0).

@ The special case of Nath's s.i.p. of order p, with
1 1
o(t) = tr,1p(t) = ta, corresponds to




Reproducing Kernel Banach Spaces (RKBS)

We define an RKBS as a reflexive Banach space B of functions
on X such that the dual space B* is also a Banach space of
functions on X and point evaluations are continuous linear
functionals on both B and B*.
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Reproducing Kernel Banach Spaces (RKBS)

We define an RKBS as a reflexive Banach space B of functions
on X such that the dual space B* is also a Banach space of
functions on X and point evaluations are continuous linear
functionals on both B and B*.

Theorem 2 (Zhang, Xu, and Zhang, 2009)

Let B be an RKBS on X. Then there exists a function K on
X x X (called the “reproducing kernel” of B) such that
K(x,-) € B, K(-,x) € B* for all x € X and

f(x)=(f,K(-,x)), (x)=(K(x,-),f"), feB, febB".

Here (-, -) is a bilinear form (“dual pairing”) on B x B*:
(f.g"):=g'(f), feB, gtehB".
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Reproducing Kernel Banach Spaces (Cont)

In general K(x,y) # K(y, x), but they satisfy

K(Xv)/) = (K(X7 ')’ K('vY))'
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Reproducing Kernel Banach Spaces (Cont)

In general K(x,y) # K(y, x), but they satisfy

K(Xv)/) = (K(X7 ')’ K(')Y))'

Characterization Theorem (Zhang, Xu, and Zhang, 2009)

A bivariate function K : X x X — C is a reproducing kernel in
a RKBS iff there exist mappings ® from X to some reflexive
Banach space W and ¢* : X — W™ such that

K(x,y) = (®(x), ®*(y))w, x,y € X.

where (, )y denotes the pairing of W with W*.
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Reproducing Kernel Banach Spaces (Cont)

In general K(x,y) # K(y, x), but they satisfy
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A bivariate function K : X x X — C is a reproducing kernel in
a RKBS iff there exist mappings ® from X to some reflexive
Banach space W and ¢* : X — W™ such that

K(x,y) = (®(x), ®*(y))w, x,y € X.

where (, )y denotes the pairing of W with W*.
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Semi-Inner-Product (S.i.p) Kernel

When B also admits an semi-inner-product (i.e., uniformly
convex and uniformly Fréchet differentiable), we construct
G(x,-) = (K(-,x))* € B and write the reproducing kernel as:

S.i.p. Reproducing Kernel (Zhang, Xu, and Zhang, 2009)

Let B be a RKBS on X with given a s.i.p., and K its
reproducing kernel. Then there exists a unique function
G : X x X — C such that {G(x,-): x € X} C B and

f(x) = [f,G(x,-)], forall feB,xeX.

The s.i.p. kernel G satisfies G(x,y) = [G(x,-), G(y,")]. Itis
characterized by the existence of a feature map ® : X — W
such that G(x, y) = [®(x), P(y)]w.
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Representer Theorems for RKBS

Let B be an RKBS with reproducing kernel K. Consider the
regularized learning

inf £,(F) + A0(f]s). 1)
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Representer Theorems for RKBS

Let B be an RKBS with reproducing kernel K. Consider the
regularized learning

inf £,(F) + A0(f]s). 1)

Representer Theorem (Zhang and Zhang, 2011)

Suppose that (1) has at least one minimizer. If ¢ is strictly
increasing, then every minimizer fy of (1) must satisfy, for
some complex constants ¢;, 1 < j < n,

n

() =D GK(.x).

j=t

If ¢ is nondecreasing, then there exists at least one minimizer
of (1) that has the above form.
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Dual Representations

Duality Between Object and Feature

© An object has dual representations:
e in the input space (where processing is described by
exemplars and their similarity);
e in the feature space (where processing is described by
feature-outcome associations).
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Dual Representations

Duality Between Object and Feature

© An object has dual representations:
e in the input space (where processing is described by
exemplars and their similarity);
e in the feature space (where processing is described by
feature-outcome associations).
@ Similarity and feature represenation as two-sides of the
categorization “coin”:
e similarity-based generalization (in Hilbert space)
e sparsity-based dimension reduction and compressed
representation (in /; space)
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Symbolic Representation of Object vs Feature

Modeling Object-Feature as Cross-Table

In a cross-table V' x E, a binary relation R between a set V
(“objects”) and another set E (“features”) is represented by
the entry of the table, such that an entry is 1 whenever object
v possesses feature e, and entry is 0 otherwise. So “feature”

serves to classify objects.

> [

m| X X ]

(context) (lattice)

Figure: Cross-table
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Graphic Reporesentation of Cross-Table

Relating Cross-Table to Hypergraph

In a hypergraph (V. E), each element v € V is a “vertex”,
and each member e of E (e being a subset of V) is a
“hyperedge” (i.e., an “edge” connecting multiple vertices).

a_ )

Figure: Hypergraph

L
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Formal Concept Analysis and Concept Lattice

Starting from a cross-table, there is a formal procedure to
derive a so-called “concept lattice”, where each node
corresponds to:
@ the (maximal) collection of objects sharing a given list of
features;
@ the (maximal) list of features shared by a given collection
of objects.

Fca female [ juvenilef adult male
girl 5 H 0
WO TEn ¥ 1] X 0
[0 0 ® 0 x
man a a X *

LIST OF FORMAL CONCEPTS
C1 {}{female juvenile,adult,male}
C2 {man}{adult male}

C3 {boy}{uvenile, male}

C4 {boy,man}{male}

C5 {woman} {female adult}
C6 {woman,man},{adult}

C7 ({pirl},{female juvenile}

CB {girl, boy} {juvenile}

C8 {girl, woman}{female}
C10 {girl woman,boy,man},(+

Regularized Learning under Reproducing Kernel Banach Spaces:



Closure as an Operator

For any cross-table (V/, E), the closure operation is established
through the Galois connection — they form a “Concept
Lattice”, which is a semi-modular lattice.

Axiomatization of Closure Operation

A mapping Cl : P(V) — P(V) is a closure operator if Cl
satisfies the following axioms:

(C1) AC CI(A);

(C2) AC B — CI(A) C CI(B);

(C3) CI(CI(A)) = CI(A).

Those A that satisfies A = CI(A) is called “closed” set.

Note that: subspaces of Hilbert space forms a modular lattice
(projective geometry). Ongoing work (with Dr. Yinbin Lei)
investigates the algebraic structures of “Knowlede Space” and
“Learning Space”.
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Boundary Point

Given a cross-table (V, E), we define two types of points with
respect to any non-empty subset A C V' (which does not have
to be a member of E):

Boundary Point

A point v € V (not necessarily in A) is called A's boundary
point if for every e € E(v),

eNAZ£D, enNA“£( («+e\A#£D).

The set of all boundary points of A is denoted Fr(A).
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Boundary Point

Given a cross-table (V, E), we define two types of points with
respect to any non-empty subset A C V' (which does not have
to be a member of E):

Boundary Point

A point v € V (not necessarily in A) is called A's boundary
point if for every e € E(v),

eNAZ£D, enNA“£( («+e\A#£D).

The set of all boundary points of A is denoted Fr(A).

From its definition,

Fr(A) = Fr(A°).
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Closure, Interior, and Exterior

With the boundary operator Fr, we can define

Closure

@ Closure CI(A) = A U Fr(
@ Interior Int(A) = A\ Fr(
@ Exterior Ext(A) =V \ C

A);
A);
I(A).
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Closure, Interior, and Exterior

With the boundary operator Fr, we can define

Closure

@ Closure CI(A) = AUFr(A);

@ Interior Int(A) = A\ Fr(A);

o Exterior Ext(A) = V \ CI(A).
Therefore,

e CI(A) = Int(A) UFr(A);

e Int(A) C A CCI(A);

@ Set V is decomposed into three non-intersecting parts:

V = Int(A) U Fr(A) U Ext(A).
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Accumulation Point

Given a cross-table (V, E), we define two types of points with
respect to any non-empty subset A C V' (which does not have
to be a member of E):

Accumulation Point

A point v € V (not necessarily in A) is called A’s
accumulation point, if for every e € E(v),

eNA\{v}#0,

that is, every neighbor of the point v contains at least one
point of A other than v.

@ An accumulation point v of A may not be in A;

@ Any accumulation point v can be “approached” via a
sequence of points in A, each of which is in a
neighborhood e € E(v) of v. We can construct a learning
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Derived set and Isolation Set

The set of all accumulation points of A is called the derived
set of A, denoted Der(A). Any point of A which is not an
accumulation point is called isolation point; the set of isolated
points of A is denoted Iso(A).
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Derived set and Isolation Set

The set of all accumulation points of A is called the derived
set of A, denoted Der(A). Any point of A which is not an
accumulation point is called isolation point; the set of isolated
points of A is denoted Iso(A).

Theorem: Two Partition of Closed Sets

e CI(A) = Int(A) UFr(A);
e CI(A) = Iso(A) U Der(A);

which means

CI(A) = AU (A° N Fr(A) N Der(A));
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Main Result: Partition of V through arbitrary

AcCV

Der(A) Iso(A)

/_/H
T

Int(A) = Ext(A°)




Thank You!

o Zhang, H., Xu, Y., and Zhang, J. (2009) Reproducing kernel Banach spaces for machine learning. Journal
of Machine Learning Research. 10: 2741-2775.

o Zhang, H. and Zhang, J. (2010). Generalized semi-inner products with application to regularized learning.
Journal of Mathematical Analysis and Application. 372: 181-196.

o Zhang, H. and Zhang, J. (2011). Frames, Riesz bases, and sampling expansions in Banach spaces via
semi-inner products. Applied and Computational Harmonic Analysis. 31:1-25.

@ Zhang, H. and Zhang, J. (2012). Regularized learning in Banach space as an optimization problem:
Representer theorems. Journal of Global Optimization. 54: 235-250

(*] Zhang, H. and Zhang, J. (2013). Vector-valued Reproducing Kernel Banach Spaces with applications to
multi-task learning, Journal of Complexity. 29: 195-215.

@ Zhang, H. and Zhang, J. (2015). Learning with Reproducing Kernel Banach Spaces. Proceedings of the
10th ISAAC Congress, Macau. In New Trends in Analysis and Interdisciplinary Applications. Birkhauser.

] Zhang, H. and Zhang, J. (2017). Learning with reproducing kernel Banach spaces. New Trends in
Analysis and Interdisciplinary Applications. Springer.

gularized Learning under Reproducing Kernel Banach Spaces:



