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Outline 
 Kernel-Based Approximation Method (KBA) 

 KBA for solving Boundary Value Problems (BVPs) 

 Global (Radial Basis Functions RBFs, Meshfree Collocation) 

 Local Radial Basis Function Collocation Method (LRBFCM) 

 Convergence and Stability of KBA 

 KBA for solving Inverse Problems 

 Multiscale Support Vector Approach (MSVA) 

 MSVA-KBA for solving Inverse Problems 

 Finite Integration Method (FIM) for Inverse Problem 

 



Background 

 E Kansa : Meshfree Global RBFs (Kernel) 

 R Schaback :  Everythings about RBFs 

 C Micchelli : Proof for MQ-RBF Interpolant 

 G Fasshauer : Benefits of PD Kernels 

 I Sloan : Wendland’s CS RBFs 

 B Sarler : Local RBFs 

 PH Wen : Integration-based RBFs 

 Q Ye : RBFs for Stochastic PDEs 

 YC Hon : KBA for Inverse Problems 

Benny Y. C. Hon 

Benny.Hon@cityu.edu.hk  



Kernel-Based Approximation 

(KBA) Method 
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Kernels 

 Given a Kernel     

 Let H be a real Hilbert space of functions defined 

on               with inner product                .            

 A function  is called a reproducing kernel of H if 

 

 :

A Hilbert space of functions which admits a reproducing 

kernel is called a Reproducing Kernel Hilbert Space 

(RKHS). 

n



Kernels Everywhere 
 Interpolation 

 Analysis: Transforms, Approximation 

 Statistics: Spatial Stochastic Processes 

(Geostatistics); Density Estimation; 

Statistical Learning Theory 

 Machine Learning: Kernel machines 

 Boundary Value Problems: Radial Basis 

Functions(RBFs); Harmonic Functions; 

Fundamental Solutions; Green’s functions; 

Particular Solutions; Meshfree Methods 
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KBA for multivariate interpolation 

Njxux jj  1,))(,(Given: Scattered data 

General linear reconstruction 
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Optimal L is Lagrange interpolant on a Kernel space 

u belongs to Reproducing Kernel Hilbert Space  

This implies L must depend on position of x (Mairhuber-Curtis) 
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Mostly used Kernels: RBFs 

 



Benny Y. C. Hon 

Benny.Hon@cityu.edu.hk  

RBFs for Multivariate Interpolation 

The best multivariate interpolant among 29 existing interpolation methods – Franke 1987 
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RBFs for Surface Interpolation 
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Recent Nice Example 

 A dragon consisting of 473,000 vertices and 871,000 facets (left) is modelled with  
ARANZ's FastRBFTM engine by a single function consisting of 32,000 terms (right) 

 (Beason and Newsam, Fast evaluation of radial basis functions: Moment based methods,  

 SIAM J. Sci. Comput., 1998.) 

 

Theoretical works:  

Wu and Schaback, Local error estimates for radial basis function interpolation 

 of scattered data, IMA J. Numer. Anal., 1993. 

Madych and Nelson, Multivariate interpolation and conditionally positive definite functions, 
Approximation Theory Appl., 1998. 

Fasshauer, Hermite Interpolation with Radial Basis Functions on Spheres, Adv. Comp. Math., 1999. 

Yoon, Spectral approximation orders of radial basis function interpolation on the Sobolev space, SIAM 
J. Math. Anal., 2001. 

 



KBA for Boundary Value 

Problems 



14 

Numerical methods for PDEs with 

boundary conditions (BVPs) 圖表標題

Finite Difference Method Finite Element Method Boundary Element Method

Mesh Methods Meshless Methods

Numerical Methods

PDE - weak form 

by variational 

formulation 

Boundary 

Integral, 

Particular 

Solution 

Continuous partial 

Derivatives by 

Finite Quotient 

Domain 

Boundary nodes 

MFS,Trefftz method, MLS, 

EFG, RBF, KBA 
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Kernel-based Approximation (KBA)  

for solving BVPs 

Problem: Find u such that 

Given: 

PDE data 

Input data Reproducing kernel  

This leads to Meshfree Computation  
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KBA by Weak-formulation 
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Distributed nodal points 

Moving least square approximation 

 

Gaussian weight functions w 

Partition of Unity  

Numerical integration techniques 

 

Pros: 

No meshing required 

No extrapolation needed for computing 

derivatives 

Allows larger trial spaces beyond piecewise 

polynomial in FEM 

Meshfree: Constructing the approximation 

entirely in terms of nodes (Belytschko et al. 

1996) 

 

Cons: 

Numerical integration errors can be serious 

(Ciarlet, Basic error estimates for elliptic 

problems, Handbook of Numerical Analysis, 

1991) 
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Weak-formulation Meshfree Methods 

 Element Free Galerkin (EFG) 

 Generalized Finite Element (GFEM) 

 Reproducing Kernel Particle Method (RKPM) 

 Meshless Local Petrov-Galerkin (MLPG) 
Atluri and Shen, The Meshless Local Petrov-Galerkin method, 2002. 

Liu G.R., Mesh Free Methods Moving beyond finite element method, 2002. 

Babuska, Banerjee and Osborn, Survey of meshless and generalized finite 

element, Acta Numerica, 2005. 

Liu Y, Zhang X, Lu M W, A meshless method based on least-squares approach for 

steady- and unsteady-state heat conduction problems, Numerical Heat 

Transfer, 2005.  

Schaback, Why does MLPG Work? ICCES, 2007. 

Sladek et al and Hon, Inverse heat coefficient by MLPG, CMES, 2009.  
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KBA by Collocation for solving BVPs 
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Example 1: Poisson's equation 
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KBA by Collocation for solving BVPs 

Singularity of the matrix A for some configuration given by: Hon & Schaback, On 

unsymmetric collocation by radial basis functions, Appl. Math. Comput., 2001. 

 

 

Unsymmetric collocation scheme firstly given by a physicist E.J. Kansa in Proc. Simulation 

Conference: Application of Hardy’s multiquadric interpolation to hydrodynamics, 1986. 



KBA as Numerical PDE Solver 

 Claim: If FDM, FEM, FVM, BEM work, 

then KBA should also work 
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Example: Burger’s equation with Shock Wave 
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Total 7 points on [0, 1] : 

x1, x2, x3, x4, x5, x6, x7 

 

x4 = peak = x* which can be computed by using Newton’s 

iteration: 
 

 

Hon Y.C. and Mao X.Z., An Efficient Numerical Scheme for Burgers’ Equations, AMC,1998.  
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It is not easy to get recognised 

Minisymposium on  
WHAT MESHFREE PARTICLE METHODS CAN DO 

THAT TRADITIONAL FEA CANNOT 

 

11th World Congress on Computational 

Mechanics (WCCM XI) 

Barcelona, Spain, July 20-25, 2014 
http://www.wccm-eccm-ecfd2014.org/frontal/default.asp 

 

http://www.wccm-eccm-ecfd2014.org/frontal/default.asp
http://www.wccm-eccm-ecfd2014.org/frontal/default.asp
http://www.wccm-eccm-ecfd2014.org/frontal/default.asp
http://www.wccm-eccm-ecfd2014.org/frontal/default.asp
http://www.wccm-eccm-ecfd2014.org/frontal/default.asp


Meshfree RBFs to KBA 
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2015 2007 
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FEM compared with Global KBA 

FEM KBA 

Trial function Piecewise low-order 

polynomial 

smooth kernel 

Domain discretization Triangular mesh Points/nodes 

Domain operator Weak formulation Weak formulation 

Strong collocation 

Resultant matrix Sparse/banded Full for strong 

collocation  (ill-cond) 

Convergence Linear Spectral for problems 

with smooth solution 

and boundary 
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Identified Problems 

Expensive 

computation ill-conditioned 

Not feasible for solving 3-D / large-scale problems  

Global 

RBFs 

Full resultant 

matrix 
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Feasible Solutions 

Domain  

decomposition 

 Compactly Supported 

functions 
Matrix-free  

algorithm 

Improve the ill-conditioning problem,  more efficient 

Feasible for 3-D larger-scale problems  
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Solving larger scale PDEs 

Larger  
Scale 

Problems 

  Adaptive greedy algorithm 

Iteratively adding nodes that minimize residual errors  
(Hon and Schaback, Numerical Algorithm, 2003) 
=> Greedy RBFs by Leevan LING of HKBU 

 Domain decomposition method 

Overlapping and non-overlapping iterative 
Algorithms both works well 
=> Adaptive DDM with Chebyshev tau method 

Compactly supported RBFs         Banded matrix 
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=> Local RBF collcation method by Bozidar SARLAR 
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Example : CSRBF for MEM Model 

 Micro-Electrical-Mechanical Models (Beam & Plate) 

Fixed end 

Free end 

Control of Ink from bubble jet printer: real data from Kodak 

Liu, Hon and Liew, A meshfree Hermite-type radial point 

interpolation method for Kirchhoff plate problems, International 

Journal for Numerical Methods in Engineering, 2006. 

Liu, Liew, Hon and Zhang, Numerical simulation and analysis of 

an electroactuated beam using a radial basis function, Smart 

Materials and Structures, 2005. 

Hon, Ling and Liew, Numerical analysis of parameters in a 

laminated beam model by radial basis functions, Computers, 

Materials and Continua, 2005. 
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Governing equation 



Local KBA for Large Scale 

Problems 



BOUNDARY NODES 

DOMAIN NODES 

Idea: Representation of field variables by kernels in a set of  

non-uniformly spaced set of points 



CONCEPT OF CONTIGUOUS SUBDOMAINS 

CONCEPT OF NON-CONTIGUOUS SUBDOMAINS 

MESHFREE 

METHODS 

 
SUPPORT 

DOMAINS 

MESH 

METHODS 

 
FINITE 

ELEMENTS 

FVM, FEM, BEM 



LOCAL & GLOBAL REPRESENTATIONS 

GLOBAL SUPPORT 

LOCAL SUPPORT 

node where derivatives are 

calculated 
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LOCAL & GLOBAL REPRESENTATIONS 

ref

i

ref

point support is defined by: 

A: the points that fall into support circle with radius 

B: the nearest N points

Global support:all points are included in the support

i

i

p

r

A B 



5 and 9 noded influence domains 

SUBDOMAIN SCHEMATICS – UNIFORM NODE POSITIONS 



5 noded influence: boundary and corner influence domain 

SUBDOMAIN SCHEMATICS – UNIFORM NODE POSITIONS 



9 noded influence: boundary and corner influence domain 

SUBDOMAIN SCHEMATICS – UNIFORM NODE POSITIONS 



     

    

     

     

     

     

     

     

     

     

Resultant sparse block matrix 

 



Example : High Dimensional Problem 

dinfu 

d = dimension of space 



Localized KBA for Large Scale Problems 
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dx 



NUMERICAL VERIFICATIONS 

NAFEMS benchmark test 15 (all types of BC) 

 

Dirichlet jump problem (transient response) 

 

Steady convective-diffusive problems 

De Vahl Davis Natural convection 

 

Gobin - Le Quéré (melting) 

 

K-Epsilon turbulence modeling 



EXAMPLE : TWO-DIMENSIONAL  

THERMAL TEST PROPOSED BY NAFEMS 



NODE POSITIONS  

uniform non-uniform 
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KBA for 3D Laplace Equation 

- with convergence order 



Idea 

 It is tempting to use harmonic kernels s for 

approximating the unknown solution u due 

to the Maximum Principle: 
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,,
susu

Hon & Wu, A numerical computation for inverse boundary determination problems, 

Eng. Anal. Bound. Elem., Vol. 24, pp. 599-606, 2000, 

 



Harmonic Kernels 
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Poisson and Bessel kernels which are: 

 

1.Symmetric and harmonic in both arguments; 

2.Positive definite; 

3.Scalable by the parameter c. 



Well known Fact 
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A good approximation s to the boundary data by interpolation  

can be obtained by solving the following linear system of 

equations involving kernels K 



 Domains for the 3D Laplace  
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Star-shaped domains 
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Numerical Example  
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UFO-Domain 



Results 
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Hon Y.C. and Schaback R., Solving the 3D Laplace equation by meshless collocation  

via harmonic kernels, Advances in Computational Mathematics, Vol. 38, pp. 1-19, 2013. 
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Theoretical Justifications 
 Symmetric Hermite (Wu 1992, Franke & Schaback 1998) 

 

 Hon & Schaback, On unsymmetric collocation by radial basis functions, Applied Mathematics and 
Computations, Vol. 119, 2001. 

 

 Schaback, Convergence of unsymmetric kernel-based meshless collocation methods, SIAM J. Numer. 
Anal., Vol. 45, 2007. 

 

 Hon & Schaback, Solvability of partial differential equations by meshless kernel methods, Advances in 
Computational Mathematics, Vol. 28, 2008. 

 

 Ling & Schaback, Stable and convergent unsymmetric meshless collocation methods, SIAM Numer. 
Anal., Vol. 46, 2008. 

 

 Hon & Takeuchi, Discretized Tikhonov regularization by reproducing kernel Hilbert space for backward 
heat conduction problem, Advances in Computational Mathematics, Vol. 34, pp. 167-183, 2011. 

 

 Duan, Hon & Zhao, Stability estimate on meshless unsymmetric collocation method for solving 
boundary value problems, Engineering Analysis with Boundary Elements, Vol. 37, pp. 666-672, 2013. 

 

 Hon, Schaback & Zhong, The meshless kernel-based method of lines for parabolic equations, 
Computers and Mathematics with Application, Vol. 68, pp. 2057-2067, 2014. 

 

 Zhong, Hon & Lu, Multiscale support vector approach for solving ill-posed problems, J. Scientific 
Computing (JOMP), Vol. 64, pp. 317-340, 2015. 

 

 Hon Y.C. and Schaback R., Direct meshless kernel technique for time-dependent problems, Applied 
Mathematics and Computation, Vol. 258, pp. 220-226, 2015. 

  

  

 



RKHS for Inverse (ill-posed) 

Problems 



Backward Time-Fractional Heat Conduction Problem 
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Semi-Discrete Tikhonov Analysis 
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RKHS with Radial Basis Function 
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Semi-Discrete Regularization 
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RKHS with Radial Basis Functions 
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RKHS with Radial Basis Functions 

Benny Y. C. Hon 

Benny.Hon@cityu.edu.hk  



Scaled Radial Basis Functions 
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Scaled RBFs - Example 
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Scaled Radial Basis Functions 
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RKHS for Multiscale 

Reconstruction 



Multiscale Reconstruction Algorithm 
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Extension of the RKHS-RBFs 
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Assumptions on the Ill-posed Problem 
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Notations on the Reconstruction Algorithm 
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Convergence: Noisy free data case 
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Convergence: Noisy free data case 
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Convergence: Noisy free data case 
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Error Bound: Noisy data case 
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Error Bound: Noisy data case 
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Numerical Example 
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Accuracy: Noisy free data case 
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Accuracy: Noisy free data case 
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Accuracy: Noisy data case 
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Accuracy: Noisy data case 
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Multiscale Support Vector Approach 
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Assumptions 
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MSVA-RKHS for Ill-posed problems 
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Error Estimate: Noisy data case 
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