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Outline
Kernel-Based Approximation Method (KBA)

KBA for solving Boundary Value Problems (BVPs)
Global (Radial Basis Functions RBFs, Meshfree Collocation)
Local Radial Basis Function Collocation Method (LRBFCM)
Convergence and Stability of KBA

KBA for solving Inverse Problems
Multiscale Support Vector Approach (MSVA)
MSVA-KBA for solving Inverse Problems

—Fintte-tntegration-Method-(FHMY)for-tnverse Problem

Benny Y. C. Hon
Benny.Hon@cityu.edu.hk




Background

E Kansa : Meshfree Global RBFs (Kernel)
R Schaback : Everythings about RBFs

C Micchelli : Proof for MQ-RBF Interpolant
G Fasshauer : Benefits of PD Kernels

| Sloan : Wendland’'s CS RBFs

B Sarler : Local RBFs

PH Wen : Integration-based RBFs

Q Ye : RBFs for Stochastic PDEs

YC Hon : KBA for Inverse Problems
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Kernels

= Given a Kernel O: xR

= Let H be a real Hilbert space of functions defined
on QeR" with inner product (-.:); .

= A function @ is called a reproducing kernel of H if

. d(-,x)eH ftorall xeQ.
2. f(x)=(f.,D(+,x)), forall feH andall xeQ.

A Hilbert space of functions which admits a reproducing

kernel is called a Reproducing Kernel Hilbert Space
(RKHS).

Benny Y. C. Hon
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KErmels Everywhere
Interpolation

Analysis: Transforms, Approximation

Statistics: Spatial Stochastic Processes
(Geostatistics); Density Estimation;
Statistical Learning Theory

Machine Learning: Kernel machines

: Radial Basis
Functions(RBFs); Harmonic Functions;
Fundamental Solutions; Green'’s functions;
Particular Solutions; Meshfree Methods

Benny Y. C. Hon
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" S
KBA for multivariate interpolation

Given: Scattered data  (X;,U(x;)) e Qx%R,1< J<N

General linear reconstruction 0(x):=> L;(x)u(x;)
j=1

Error estimate

2

u(x) —J(x)\2 =

40— Y L, (u(x)

Optimal L is Lagrange interpolant on a Kernel space
u belongs to Reproducing Kernel Hilbert Space
This implies L must depend on position of x (Mairhuber-Curtis)

Benny Y. C. Hon
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] Md Kernels: RBFs

o A Basis Function is a function such that ¢ : R — R.

e If ¢ is a basis function and f(z) = f(y) whenever ||z|| = |ly||, then ¢ is
called a Radial Basis Function (RBF).

e A RBF is a weighted sum of translations of a radially symmetric basic
function augmented by a polynomial term.

Some examples of RBFs ( r = || — ¥ ),

or) =mr, linear,

a{r) -, cubac,

) = log v, thin-plate sphine.
Mr)=e¢ ar’ Caus=ian,

o{r) [J'ﬂ } :.-E].f. multiquadne,

a{r) [J'ﬂ i :.-E] 1 mverse multkmadrie,

Benny Y. C. Hon
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“RBFSfor Multivariate Interpolation

Given N data {z;, 1;}2. The interpolation problem is to find a function f such
that
flx;)) =1y, for i=1,...,N.

The linear resultant system

N
> Nl — a4ll) = w5, for j=1,...,N,

1=1

is well-posed if the interpolation matrix

Ay = |o(llz: — z3)

1<4,5<N

is non-singular.

See:  C. Micchelli, Conditional Positive Definiteness of RBF's interpolant, 1986

The best multivariate interpolant among 29 existing interpolation methods — Franke 1987

Benny Y. C. Hon
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urface Interpolation
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(a) Scattered measurement locations for volcano  (b) Elevation measurements associated with the
data (normalized to the unit square). locations shown in (a).

10

(c) Volcano data fitted by a Gaussian kernel in-  (d) Surface of (c) rendered with more realistic
terpolant. colors.

Figure 12: Illustration of the scattered data fitting problem.
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““REcent Nice Example

= Adragon consisting of 473,000 vertices and 871,000 facets (left) is modelled with
ARANZ's FastRBF™ engine by a single function consisting of 32,000 terms (right)

(Beason and Newsam, Fast evaluation of radial basis functions: Moment based methods,
SIAM J. Sci. Comput., 1998.)

Theoretical works:
Wu and Schaback, Local error estimates for radial basis function interpolation
of scattered data, IMA J. Numer. Anal., 1993.

Madych and Nelson, Multivariate interpolation and conditionally positive definite functions,
Approximation Theory Appl., 1998.

Fasshauer, Hermite Interpolation with Radial Basis Functions on Spheres, Adv. Comp. Math., 1999.

Yoon, Spectral approximation orders of radial basis function interpolation on the Sobolev space, SIAM
J. Math. Anal., 2001.

Benny Y. C. Hon
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““NUmerical'methods for PDEs with
boundary conditiens (BVPS)

Nurrencal Methods
' |
VEsh VEthods MEshless Methods

Hnite Difference Vethad Hnite Herrent VEthad Boundary Henrent VEthad

T PEVAVAVAY
4 Ll \VAVAVAVAVA
SNl ) VAVAVAVAY
1 | 1 | +\ )

EEN VAVAVAVAVAV/, Boundary nodes
Continuous partial PDE - weak form Boundary I\E/IFFS,TR[erlf:tZKrE(ZthOd, MLS,
Derivatives by by variational Integral, ; :

Finite Quotient formulation Particular

Solution




“ Kernel=based Approximation (KBA)
for solving BVPs

Given:

OE data { Lu(xX)=f(x) xeQ }

Bu(y)=g(y) yeoQ

Problem: Find u such that

Input data +— Reproducing kernel

This leads to Meshfree Computation

Benny Y. C. Hon
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] meak-formulation

Distributed nodal points

Moving least square approximation
0= Py (02,9

min 3w ((p" (x)a(0 )

Gaussian weight functions w
Partition of Unity iwi (x)=1

Numerical integration techniques

Benny Y. C. Hon
Benny.Hon@cityu.edu.hk

Pros:
No meshing required

No extrapolation needed for computing
derivatives

Allows larger trial spaces beyond piecewise
polynomial in FEM

Meshfree: Constructing the approximation
entirely in terms of nodes (Belytschko et al.
1996)

Cons:
Numerical integration errors can be serious

(Ciarlet, Basic error estimates for elliptic
problems, Handbook of Numerical Analysis,
1991)




Weak-tformulation Meshfree Methods

Element Free Galerkin (EFG)

Generalized Finite Element (GFEM)
Reproducing Kernel Particle Method (RKPM)
Meshless Local Petrov-Galerkin (MLPG)

Atluri and Shen, The Meshless Local Petrov-Galerkin method, 2002.
Liu G.R., Mesh Free Methods Moving beyond finite element method, 2002.

Babuska, Banerjee and Osborn, Survey of meshless and generalized finite
element, Acta Numerica, 2005.

Liu 'Y, Zhang X, Lu M W, A meshless method based on least-squares approach for
steady- and unsteady-state heat conduction problems, Numerical Heat
Transfer, 2005.

Schaback, Why does MLPG Work? ICCES, 2007.
Sladek et al and Hon, Inverse heat coefficient by MLPG, CMES, 2009.

Benny Y. C. Hon
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] m Collocation for solving BVPs

Consider a PDE of the form

Lu=f inQ CR?
Bu=g¢g in 05,

The solution w is approximated by

u(w) = U(z) = q(z) + Y bz — ),

Ensuring that U satisfies the PDE at the collocation points results in a good
approximation of the solution,

N
Lq(a:) + Y MLp(wi —xx) = f(z:) forz; C X NG,
k=1

N
Bqg(xz;) + Z M Bp(x; — xp) = g(x;)  for z; C X NN
k=1

Benny Y. C. Hon
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m: Poisson's equation

InQ: 2/1(8% a¢)(r) f(x,y), fori=12,...,N,.

oy

o€

/

On 89 > N;g;(ry) — g(ws,ys), fori—Ny+1,...,N.
j=1

Benny Y. C. Hon
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] mnocaﬁon for solving BVPs

The points are arranged in such a way that the first Ny points and the last Np
points are in €2 and 052, respectively.

In matrix form,
A, P A _ f
PT 0 ~y 0

el

where

g(x;)
and
(A[.'.)’ik — EQ&(.’E% — ':Ek); x; C Q) Tk € X:
(AB)ix = Bo(x; — 1), ; COQ, xp € X.

Unsymmetric collocation scheme firstly given by a physicist E.J. Kansa in Proc. Simulation
Conference: Application of Hardy’s multiquadric interpolation to hydrodynamics, 1986.

Singularity of the matrix A for some configuration given by: Hon & Schaback, On
unsymmetric collocation by radial basis functions, Appl. Math. Comput., 2001.

Benny Y. C. Hon
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"KBA"as Numerical PDE Solver

m Claim: If FDM, FEM, FVM, BEM work,
then KBA should also work

Benny Y. C. Hon
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" J
Example: Burger’s equation with Shock Wave

t>0,R>0,xe(0]) Peak

XX chasing

1
u +uu, =—u

R
u(0,t)=0=u(lt)

u(x,0)=f(x) xe[0/]]

u™ +At(u™tul” —%u;”x) =u"

Total 7 points on [0, 1] :
X1y Xo, X3y Xy Xs, Xgy X7

X4 = peak = x* which can be computed by using Newton’s
iteration:

n nn n i n n n n n
- - b b ow bn s = D -
T T T T T T T T T

d «
m
X X dx U™ (Xo1)
Xnew - Xold Y -
d um(x* ) Fieure 1e. R
W old EEELLY 24 [
Hon Y.C. and Mao X.Z., An Efficient Numerical Scheme for Burgers’ Equations, AMC,1998.

- ikt F]
Benny Y. C. Hon i
Benny.Hon@cityu.edu.hk :



TS Not easy to get recognised

Minisymposium on

WHAT MESHFREE PARTICLE METHODS CAN DO
THAT TRADITIONAL FEA CANNOT

11th World Congress on Computational
Mechanics (WCCM XIl)

Barcelona, Spain, July 20-25, 2014

http://www.wccm-eccm-ecfd2014.org/frontal/default.asp



http://www.wccm-eccm-ecfd2014.org/frontal/default.asp
http://www.wccm-eccm-ecfd2014.org/frontal/default.asp
http://www.wccm-eccm-ecfd2014.org/frontal/default.asp
http://www.wccm-eccm-ecfd2014.org/frontal/default.asp
http://www.wccm-eccm-ecfd2014.org/frontal/default.asp

Interdisciplinary Mathematical Sciences — Vol. 6

Meshfree Approximation
Methods with MaTLAB

Gregory E. Fasshauer

2007

Benny Y. C. Hon
Benny.Hon@cityu.edu.hk

"Neshfree RBFs to KBA

Interdisciplinary Mathematical Sciences - Vol. 19

Kernel-baséd Approximation
Methods using MATLAB

Gregory Fasshauer
Michael McCourt




" SN
FEM compared with Global KBA
[FEm KBA

Trial function Piecewise low-order  smooth kernel
polynomial

Domain discretization  Triangular mesh Points/nodes

Domain operator Weak formulation Weak formulation

Strong collocation

Resultant matrix Sparse/banded Full for strong
collocation (ill-cond)

Convergence Linear Spectral for problems
with smooth solution
and boundary

Benny Y. C. Hon

~ Benny.Hon@cityu.edu.hk B AR




Eulliresultant | Expensive

{12l cothion

ill-conditioned
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Feasiple Solutions

Domain CompactiyiSuppprted Vatrixefree

decomposition j 5 aigoritim

1} L Lt
\ Improve the ill-conditioning problem, more efficient I

L

| Feasible for 3-D larger-scale problems I

Benny Y. C. Hon

~ Benny.Hon@cityu.edu.hk B AR




] Mng larger scale PDEs

Compactly supported RBFs == Banded matrix
it o<l <1

n .
¢(r)=(1—L) D(Lj where (1—Lj :<( /Oj P
Pl \P p). . y L>1

=> | ocal RBF collcation method by Bozidar SA?RLAR

Adaptive greedy algorithm

Iteratively adding nodes that minimize residual errors
(Hon and Schaback, Numerical Algorithm, 2003)
=> Greedy RBFs by | eevan LING of HKBU

‘ » Larger
Domain decomposition method Scale

Overlapping and non-overlapping iterative Problems

Algorithms both works well
=>_Adaptive DDM with Chebysheyv. tau method

Benny Y. C. Hon
Benny.Hon@cityu.edu.hk




YEXample : CSRBF for MEM Model

= Micro-Electrical-Mechanical Models (Beam & Plate)
\

-+
\**"“**"***++H+++‘.4*,;,.""*:;‘

t,}-*:."
A L w

“1 T e e
Control of Ink from bubble jet printer: real data from Kodak

3r

— Numeyical solution ) 4
+ Experimental data o u(x’t) aU(X,t) 0 U(X,t)
a4 ;T T8, R
ot ot OX
2l Liu, Hon and Liew, A meshfree Hermite-type radial point

interpolation method for Kirchhoff plate problems, International
Journal for Numerical Methods in Engineering, 2006.

0

2.5

u(1,t)

Liu, Liew, Hon and Zhang, Numerical simulation and analysis of
an electroactuated beam using a radial basis function, Smart
T & Materials and Structures, 2005.

Hon, Ling and Liew, Numerical analysis of parameters in a
05- laminated beam model by radial basis functions, Computers,
Materials and Continua, 2005.

Benny Y. C. Hon
Benny.Hon@cityu.edu.hk
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" NN
Idea: Representation of field variables by kernels in a set of
non-uniformly spaced set of points

e BOUNDARY NODES

O DOMAlN NODE.S




" NN
CONCEPT OF CONTIGUOUS SUBDOMAINS

MESH FVM, FEM, BEM

METHODS

FINITE
ELEMENTS

CONCEPT OF NON-CONTIGUOUS SUBDOMAINS

MESHFREE
METHODS

SUPPORT
DOMAINS

ﬂt& ’g,.,,"“"‘..-m 3}1'-:‘? 3 v




" N

LOCAL & GLOBAL REPRESENTATIONS

GLOBAL SUPPORT

node where derivatives are
calculatepl

e — "
A e T —— e e N e,
. =R e - z};“ ) -
S e R N i a ’ w - "
A = S 208 2 : 3




" NN

LOCAL & GLOBAL REPRESENTATIONS

A
point p, support is defined by:
A: the points that fall into support circle with radius r

B: the nearest N! . points
Global support aII pomts are included In the support

A o
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UBDOMAIN SCHEMATICS — UNIFORM NODE POSITIONS

)
N
)

)
NI

5 and 9 noded influence domains




SUBDOMAIN SCHEMATICS — UNIFORM NODE POSITIONS
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UBDOMAIN SCHEMATICS — UNIFORM NODE POSITIONS
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Resultant sparse block matrix
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U,B' = 8 8 8 8 =B &8 8 & & = & = & 8 ® &8 & & & = &

-----------------------

ooooooooooooooooooooooo

ooooooooooooooooooooooo
UIE iiiiiiiiiiiiiiiiiiiiiii

----------------------

C):::::ZZ::::ZIZ::ZZZZIZ Auzfinﬂgmd

ﬂ4 iiiiiiiiiiiiiiiiiiiiiii
" . =
o

TR R d = dimension of space

ooooooooooooooooooooooo

LI N L I I O L I O N O R

0 0.2 0.4 0.6 0.8 1

Figure 6.1: Domain {2, collocation points(-) and the neighborhoods.




Locallzed KBA for Large Scale Problems

B*)\* =u*

Li(x) = ¥(BX) tu*

-1 L

0.8

0.6}

.......................
.......................
.......................
.......................
ooooooooooooooooooooooo
.......................
.......................
-----------------------

Aulx) 4 du(x) =0 X9 N HECHEHE S
d| n RMSE Max C'onditional Number

2 | 102 | 5.2320 x 107% | 1.2123 x 1073 2.2857 x 103

2 | 202 | 9.9244 x 107" | 2.7306 x 1074 1.9954 x 10*

3 | 30% | 4.8270 x 107> | 1.3209 x 10~* 8.7465 x 10*

41 10% | 4.2875 x 107 | 2.3321 x 10~ 3.5608 x 10°

4| 15% | 7.3184 x 10~ | 1.3154 x 103 0.8454 x 10*

51 97 | 2.8004 x 107% | 2.8123 x 1073 3.0512 x 10°

6| 6° | 3.5873 x 107* | 7.7243 x 10~7

041.42 "{}3"‘;




NUMERICAL VERIFICATIONS
NAFEMS benchmark test 15 (all types of BC)
Dirichlet jump problem (transient response)

Steady convective-diffusive problems

De Vahl Davis Natural convection
Gobin - Le Queré (melting)

K-Epsilon turbulence modeling




EXAMPLE : TWO-DIMENSIONAL
THERMAL TEST PROPOSED BY NAFEMS

D C
L= S
/
o0 0 c
o k=52 W/mC = Robin
Py 2 | (T°=750WiniC)
Neuman
(zero flux) T =0
oE
£
N
o
@ <l
A: 0.6m _B
Dirichet

(®=100C)



NODE POSITIONS
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Engineering Analysis with Boundary Elements 57 (2015) 2-8
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Engineering Analysis with Boundary Elements

ELSEVIER journal homepage: www.elsevier.com/locate/enganabound

Local radial basis function collocation method for solving @Cmmk
thermo-driven fluid-flow problems with free surface

Yiu-Chung Hon **, Bozidar Sarler”, Dong-fang Yun®

2 Department of Mathematics, City University of Hong Kong, Hong Kong SAR, China
bJaboratory for Multiphase Process, University of Nova Gorica, Nova Gorica, Slovenia

ARTICLE INFO ABSTRACT

Article history: This paper explores the application of the meshless Local Radial Basis Function Collocation Method
Received 30 April 2014 (LRBFCM) for the solution of coupled heat transfer and fluid flow problems with a free surface. The
Received in revised form method employs the representation of temperature, velocity and pressure fields on overlapping five-
:\?Ic;;'izeg il[z:lvimber 2014 noded sub-domains through collocation by using Radial Basis Functions (RBFs). This simple representa-
Available online 23 January 2015 tion is then used to compute the first and second derivatives of the fields from the respective derivatives
of the RBFs. The energy and momentum equations are solved through explicit time integration scheme.
For numerical efficiency, the Artificial Compressibility Method (ACM) with Characteristic Based Split
(CBS) technique is firstly adopted to solve the pressure-velocity coupled equations. The performance of
the method is assessed based on solving the classical two-dimensional De Vahl Davis steady natural

Keywords:

Free surface flow natural convection
Buoyancy driven cavity

Meshfree and meshless methods

Local radial basis function collocation convection benchmark problem with an upper free surface for Rayleigh number ranged from 10> to 10°
method and Prandtl number equals to 0.71.
Artificial compressibility method © 2014 Elsevier Ltd. All rights reserved.

Benny Y. C. Hon
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KBA for 3D Laplace Equation
- with convergence order



|dea

It IS tempting to use harmonic kernels s for
approximating the unknown solution u due
to the Maximum Principle:

HU - SHoo,ﬁ = HU - SHoo,aQ

Hon & Wu, A numerical computation for inverse boundary determination problems,
Eng. Anal. Bound. Elem., Vol. 24, pp. 599-606, 2000,

Benny Y. C. Hon
Benny.Hon@cityu.edu.hk




“Harmonic Kernels

—1/2
Pe(z.y) = (1 _ 9Ty 2 4 c—4||;r||§||y||§) ]

T, —2 5
Be(,y) = ¢ ¥ Jo ( \/u:r-u%uyu%—(:r-T-y)?)

Poisson and Bessel kernels which are:

1.Symmetric and harmonic in both arguments;
2.Positive definite;
3.Scalable by the parameter c.

Benny Y. C. Hon
Benny.Hon@cityu.edu.hk



WelT'known Fact

A good approximation s to the boundary data by interpolation

n

s(x) = Zf_}:jff(m._;rj)._ re N

=1

can be obtained by solving the following linear system of
equations involving kernels K

1

Zr_}:jff(;rk,a‘.j) =u(rg), 1<k<n
=1

Benny Y. C. Hon
Benny.Hon@cityu.edu.hk




“““Domains for the 3D Laplace

Star-shaped domains

(r,0,¢) € Ry x[0,27] x [0, 7]

Q2 =4{(r,0,p) : 0<r<R(0,p)}

. Benny Y. C. Hon e
~ Benny.Hon@cityu.eduhk




Theorem 4 Then there is a constant C', dependent on T > 3/2, K. F, and {2, such
that for all sets Y = F(X) of scatlered points on I’ as images of sels X on the sphere
S? and all functions [ on 1" such thal g := foF isin Hr, the interpolant Iy i ¢ to f

—3/2
If = Iy fllsor = 19— Ix.L.glloos2 < CR"?|1g|lr

holds on the boundary. By the mazimum principle, this error bound extends to §2 for
the harmonic function u having boundary values of f, namely

o T—3/2
lu—Ty g floo2 S —Ivik flloo.r < ChY / 9]l

< Benny Y. CoHon—
~ Benny.Hon@cityu.edu.hk




Numerical Example

r=(2+2cos*(20)) - (1 4+ 0.2 cos®(36) cos>(¢))/2.5 UFO-Domain

Final Power Function x 10°
; - —H2.2

- 42

P 41.8

+H1.6

o8 |

. Benny Y. C. Hon =
~ Benny.Hon@cityu.edu.hk



R
Function | Sph Bes Sph Poi  UFO Bes UFO Poi

2 —2y? + 2% 13.70 12.31 14.33 13.96
F'S 13.78 12.43 13.92 11.06

22 13.85 12.39 2.67 2.54

|| 5.34 4.99 3.07 2.92

Ks(-,u) 13.26 9.72 6.18 3.30

Estimated convergence orders

0 Error of boundary interpolation o 2 Error of boundary interpolation

10 1 T
—— Bessel kernel I ‘ —— Bessel kernel
Poisson kernel T N Paisson kemel

-1 3

10 - 100 L
— ,/
- . >
- _ -
10 10 P
7
/S
10 - 10° /
e
//’

-4 -6

10 .// 10 .
e
S
/
10 / 10 P
/
/
107" 10" /
//
10 4 10
4'4’ f
10 10 /
e /
S f

-0 / e

10 / 10
/ yu
10 I L I 10 L L
0.3 05 1 03 0.5 1
h h

Fig. 10 Error for data from harmonic function Fig. 11 Error for K5 data sphere

Hon Y.C. and Schaback R., Solving the 3D Laplace equatlon by meshless collocation

via harmonic kernels, Advances in Computational Mathematics, Vol. 38, pp. 1- 19 2013.
J-.;-'""l ViitlF1 it 1&

_— -»'-.__

Benny Y. C. Hon
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Theoretical Justifications

Symmetric Hermite (Wu 1992, Franke & Schaback 1998)

Hon & Schaback, On unsymmetric collocation by radial basis functions, Applied Mathematics and
Computations, Vol. 119, 2001.

Schaback, Convergence of unsymmetric kernel-based meshless collocation methods, SIAM J. Numer.
Anal., Vol. 45, 2007.

Hon & Schaback, Solvability of partial differential equations by meshless kernel methods, Advances in
Computational Mathematics, Vol. 28, 2008.

Ling & Schaback, Stable and convergent unsymmetric meshless collocation methods, SIAM Numer.
Anal., Vol. 46, 2008.

Hon & Takeuchi, Discretized Tikhonov regularization by reproducing kernel Hilbert space for backward
heat conduction problem, Advances in Computational Mathematics, Vol. 34, pp. 167-183, 2011.

Duan, Hon & Zhao, Stability estimate on meshless unsymmetric collocation method for solving
boundary value problems, Engineering Analysis with Boundary Elements, Vol. 37, pp. 666-672, 2013.

Hon, Schaback & Zhong, The meshless kernel-based method of lines for parabolic equations,
Computers and Mathematics with Application, Vol. 68, pp. 2057-2067, 2014.

Zhong, Hon & Lu, Multiscale support vector approach for solving ill-posed problems, J. Scientific
Computing (JOMP), Vol. 64, pp. 317-340, 2015.

Hon Y.C. and Schaback R., Direct meshless kernel technique for time-dependent problems, Applied
Mathematics and Computation, Vol. 258, pp. 220-226, 2015. :

Benny Y. C. Hon
Benny.Hon@cityu.edu.hk




RKHS for Inverse (ill-posed)
Problems

Adv Comput Math (2011) 34:167-183
DOT 10.1007/s10444-010-59148-1

Discretized Tikhonov regularization by reproducing
kernel Hilbert space for backward heat
conduction problem

Y. C. Hon - Tomoya Takeuchi



" NN

Backward Time-Fractional Heat Conduction Problem

otP
, a"ﬁf}(t} B
Pty ) ot p=n,
ﬂ[’ﬁ o 1 t l;r?“”{f] B
r(n—ﬁ)'fnﬂ—ﬂﬁ ﬂlldT! I ]{ﬁ-ﬁ_ﬁ”

ux,.H=f(x,t), xeodf2, O0<t<T,
and the final condition:
uX,T) =g(X)., Xef2,

L
. 4

-Benny Y. C. Hon " i
~.V§gBennyi-la‘n@emedumk {;ti’




SEmi-Discrete Tikhonov Analysis

% feX);
o = A

min{[|Af — 217, x) + €llf
min{||Af —2°|7. x, +€llf

and 95 :(g‘?,...,gN

Benny Y. C. Hon
Benny.Hon@cityu.edu.hk




TRKHASWith Radial Basis Function

Reproducing Kernel Hilbert Spaces (RKHS)

Let @ C RY be a bounded domain. H(Q) C C(Q) be a Hilbert space of
continuous functions f : Q — R and let H* be its dual. We call H(Q) is
a reproducing kernel Hilbert space (RKHS) if there exists a unique
kKernel & : Q x Q — R satisfying

Q@ P(-,x) e HQ) forall x € Q.
Q f(x)={(),P(-,x))y forallxe Qand f € H(Q).

RKHS Examples: H*(Q) with 7 > d/2. Q can be extended to R¢. J
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“SEmi-Discrete Regularization

Let H be a RKHS with kernel &. {&j}‘f":l c H* with 4; = 6,,{}. oA are
assumed to be linearly independent functionals over H. Then, the
solution f¢ is given by

N
1= LA
_)':

where the coefficient «f € #" is the solution of linear system
(Apx +el)a” =g with (Aex); = A4 D(x,y).

The Gramian matrix A x is called symmetric collocation matrix, for
Instance, it consists of the entries

(Aox); = /ﬂ /ﬂ k(xi, )k (), 1) (s, 1) disdr.
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"RKHASWith Radial Basis Functions

d(x,y) = P(||x—y|[>) (Radial even functions). Let t > d/2, suppose
the Fourier transform of an integrable function ® : RY — R satisfies

\7F _ = 2\ °F d
a(1+]0B)  <d@ <o(1+|of) . oer)

with fixed constants 0 < ¢; < ¢>. Then, the kernel ® is also a
reproducing kernel of H*(R?) with the inner-product

[ flo)E(0)
R D)

dw.

(f,8)

which is equivalent to the usual inner product on H*(RY).
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T"RKASWith Radial Basis Functions

Sobolev norm equivalence

No(RY): RKHS generated by the kernel ® with the norm
—~ 1/2
W 2
Il ey = ( [ dco) |

R D)

It is straightforward to know .44(R¢) is norm-equivalent to the
Sobolev space H*(RY), i.e.
1/2 1/2
ey Wl rgrey < I lareqmay < 2 F Ly ey
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MRadlal Basis Functions

X1, X5,--- with X; = {ng) xg{), XNk }

oo

® : RY — R with a compact support in the unit ball B(0,1). At each
level, there is a scaling parameter n; such that the kernel will be given
by the scaled version,

x —
By (x,y) = nkf’cb< y).
Tk
1 Wendland H. (2010): Multiscale analysis in Sobolev spaces on bounded
domains, Numer. Math. 116, 493-517.
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"Staled RBFs - Example

Choose a kernel function ®(x,y) = max (0.1 — |x—y|) for H'(R), defined the
scaled version

X—y ,
Dy (x,y) = 1" max (0, - 3") with 1 = 1,0.5,0.1.
Nk
10+
-, (0Y)
g ST [ ,(0,y)
n,=0.5 —,0)
6 n,=0.1
4+
2
-"'-‘i: i :‘1".!'-
0 P Ll LT
- -1 C 1 2

g Schaback R. (2011): The missing Wendland functions, Adv. Comput. Math. 34,

67—81.
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Staled Radial Basis Functions

Scaling Lemma [Wendland 2010}

For every fixed k with a scaling parameter n; € (0.1), we have the
following norm inequality

1 2 1 2 o
Wl < Nl e ey < € 1 I1f

where the constants 0 < ¢; < ¢, are the same as those in single-level
radial basis functions.
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““MUTtiscale Reconstruction Algorithm

Algorithm 1 Multiscale reconstructed solution algorithm (lterative Tikhonov form)

Input: Righthand side g, Number of levels n.
Output: Reconstructed solution f,, € V,, = W +--- + W,,.

1: S@tf(}:::?(}:o, ep = &.
2: Fork=1.2.....n

3:  Determine s¢ satisfying min (||€k_1 _AS”.!EE(X;(} +&sllg, s € H”"(R“’)).
4 Setff =f | +st.

5: Set ¢ = ej_1 —Asy.

6: End.

Wi = span{A>K)d (-, v),y € Xi } where A%) are linearly independent functionals at level
k with . .
W) =AF), 1<j<Ne 3 eX.

Further more, we have the direct sums

é Wy = L*(Q).
k=1
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“EXtension of the RKHS-RBFs

Extension operator [Stein 1971]

Suppose Q C RY is an open domain with a Lipschitz boundary. Let t > 0.
Then, there exists a linear continuous operator E : H*(Q) — H*(R%), such that

forall f € H*(Q),
Q Efla=f.

Q Iflla=(@) < IE e @y < Cellf (o)
where C is a constant only depending on .
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] Mmptions on the ll-posed Problem

Q@ Q CRYisabounded domain with a Lipschitz boundary.

©@ The considered problem is moderately ill-posed of degree a > 0
In the sense that there exists two constants c¢>» > ¢;; > 0 such
that

cillfllge(y < IAfllgo+aq) < cllfllpgoq). VO €R.

Q@ The problem is solvable in H*(Q) for t > d/2. This means that
ge#(A) C H™*(Q), and the exact reconstructed solution f*
exists. Furthermore, the local exact reconstructed solution s;
exists at level k.

©Q The absolute accuracy of measurement is g, at level k, i.e.,

20 — g™ < &, forj=1,--- N
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“'Notations on the Reconstruction Algorithm

Recall on each scale we find sf € H*(RY) s.t.
: 2 2 . T (Tod
min (flex—1 — Asl[hy, +&llsl3, : s € H(RY)).

We define following elements
@ sf € H°(R?): the local reconstructed solution at level &,
@ ff =s7+---+s;: thereconstructed solution,
@ ¢ € H%(Q): the residual at level k with ¢, = ¢;—; — As?,
@ s; € H'(Q): the local exact solution at level k with As; = e;_,
@ ¢ the Tikhonov regularization parameter at each level «.
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“Convergence: Noisy free data case

Lemma 1 (Estimation on fixed level)

Under above Assumption and notations, we have the following
estimations:

ellrag) = V|| Es |y

Sk lloe < || Es ||

et ||rrrag) < 26y ey T || Est|a,

where E: H*(Q) — H*(R?) is the extension operator.

Key information

Notice the fact that As; =e¢;,_;. The information at each level is thus
connected.
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Convergence: Noisy free data case

Lemma 2 (Monotone decreasing)

Under the proposed assumption, assume that there exists a constant T > 0
suchthat T /u <v <1/h; with n, = vh,. Then, we have the following
estimation

. 2t/2C 12 dj2— 1/2 .
I1E5i o, < =77 Cu (26 enT=*u™ + a5 *) + 26y 21| sy b
C] C11

In particular, if we choose the regularization parameter g, at each level k

satisfying o\ T
s ()
k

with a fixed constant k > 0. Then, there exists a constant C, such that, if
p=Ciu* smaller than 1, ||Es; ||e, Will sequentially decrease, i.e.

”ESI “(Dk < P||E~9§f_1 ||'CI>;<—1 .
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Convergence: Noisy free data case

Theorem 1 (Convergence result)

Under the proposed assumption, choose the regularization parameter
g, at each level k appropriately. Then there exists, at the final level »,
the following error estimation in the Hilbert space L*(Q)

IF* =t 2@y < CP I Il (o)

C, (2{%/ zcz2+x) T-7C, _
where the constant C = — . Thus, the multiscale
¢ €y

reconstructed solution f* converges linearly to the exact solution f*
under the L*(Q) norm if p = C,u* smaller than 1.
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Efror Bound: Noisy data case

we establish an a posteriori parameter choice rule based on the
classic Morozov discrepancy principle, which assumes that the
regularization parameter & satisfies

&1 v/ N < lef_y — As(g{"™) | < E2v/Nidi

where the two constants fulfill 2 < ¢, <&, and s(e "”) Is the minimizer
of the functional

min ([lef_, —Asl|3 )+ &lsll3,. s € HT(RY).

with & = g’rs_

Benny Y. C. Hon
Benny.Hon@cityu.edu.hk




Efror Bound: Noisy data case

Theorem 2 (Error estimation for noisy data)

Under the proposed assumption, the regularization parameter g, at
each level k is chosen to satisfy the discrepancy principle. Then there
exists, at the final level n, the following error estimation in the Hilbert
space L*(Q)

IF* =122 lizg@y < CPIF e )_: (Pl /N8,)
+ C3hF % /N8,

with appropriate constants.
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Numerical Example

This example involves a simple Volterra operator
X
Ar() = [ f(0d

defined on Q = [0,2], which is moderately ill-posed problem with degree
o = 1. The given right hand side

(x) = x—0.5x x<1
ST 05 x> 1

yields the exact solution
£ (x) =max (0,1 —x) e H(Q).

In the multiscale reconstruction scheme, the original reproducing kernel
®(x,y) =max(0,1 —|x—y|)

is chosen.
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WACCUTacy: Noisy free data case

1.2

---reconstruction result
1 —exact solution

0.8f

0.6f

0.4f

Function value

0.2+

“0 0.5 1 1.5 2
Observation point

Figure: The reconstructed solution for noise-free data at the sixth level with
& = 0.01hy.
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WACCUTacy: Noisy free data case

Level N, hy I?(Xy) error  [*(X;) error
1 12 0.17 0.521327 0.122327
2 25 0.08 0.160746 0.054597
3 50 0.04 0.060095 0.026490
4 100 0.02 0.023453 0.011096
5 200 0.01 0.011395 0.003396
6 400 0.005 0.008442 0.001832

Table: Quantity information about the reconstructed solution at each level &
for noise-free data. N, represents the number of discretization points at level
k. I*(X;) error and [~ (X;) error represent the corresponding error between the
reconstructed solution ff and the exact solution f*.
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observation value

0 0.5 1' 15 2
cbservation point

Figure: The exact observation data and the noisy one with a uniform noise
level 6 = 0.03 at level 6.
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WACCUTacy: Noisy data case

---reconstruction result ---reconstruction result
1 —exact sclution 1 —exact sclution

Function value

Function value

0 05 1 15 2 “0 0.5 1 15 2
Observation point Observation point

Figure: Left: The final reconstructed solution compares with the exact

solution with /> and [~ error 0.292367 and 0.027605. Right: The single level

reconstructed solution with 400 data value of numerical example in [KLW
2009] with /> and [~ error 0.502820 and 0.132031, respectively.

Benny Y. C. Hon
Benny.Hon@cityu.edu.hk




Multiscale Support Vector Approach

Consider the following SVA minimization problem

min z|gj (ANl + I

feH

Algorithm 1 Multiscale Support Vector Approach

Input: pre-specified iterative step n., righthand side g‘5| Xys ' ,g‘s| X,

Output: n-th approximate solution ff 7 0 .si‘v‘(s + -4 Sf{’*’*‘i.

€.v.0 €.7.0
1: Set f377 =577 = 0.
2: For k=1.2..... n } )

€.,7.,0 € €

3 e =g — AR Ty = gh AR e

0 )
L sy = argminge - (o) (ZH eh_1 (k) — AW s(@p )], +’MH‘?||@)
5% E)tf‘“'”S E’*‘SJF E’“’_
6: End.
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“ASStmptions

[A1] 2 CRY is a bounded domain with a Lipschitz boundary ;

[A2] The mesh norm of the sampling grid satisfies hjy = phy with a fized
pe(0,1);

[A3] The considered problem is solvable in HT(§2) with 7 > d /2, which guar-
antees the existence of an exact solution f* € H”(£2). set o := | f*||gr(o):

[A4] The considered problem is moderately ill-posed with a degree o > 0, i.e.,
there exists constants ¢y > cq > 0 such that:

csl| fllmeay < [Afllmova(o) < callfllme(a)y, for all 8 € R;

[A5] There exists a constant K = K (A, (2) > 0, such that for all f € HT ({2),

1A — A) fll ey < KB\ £l (o) -

where the convergence rate r > 0 depends on the specified discretization
scheme. In practice, the convergence order r can be chosen asr > «:
. 1 . . B
[A6] The scaling parameter n, is chosen in the form of n, = vh) with fired
constants v > 0 and a positive constant 3 = min{l, ~==} where constants
T, a and v comes from [A3]-[A5] respectively ;

[A7] The noise level at the k-th sampling grid is measured by |g° — gli=(x,) < ?‘;j-




MSVASRKHS for 111-posed problems

Theorem 1 Let Assumption 1 [A1]-[A6] and the parameter choices in Lemma

6 hold. Furthermore, assume p + C3hy™" < 1 and re-scale the problem in
1/2

the sense that o < % . The error between the exact solution f* and the
reconstructed solution f‘E T can be estimated as

n—1

* ‘ C r—o 20d r—a
||f _fn‘fYHLQ( = 1/2 jh’ + Kh’ Ilf ||HT(Q
1=1
(20)
where the constant C takes the form
G_ C'y 28”2(64#—}{)4—:‘{-
N C3 (Cl + Cg) Ik .
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ETTOr Estimate: Noisy data case

Lemma 11 Let Assumption 1 hold. At each level k. choose the cut-off param-
eter €. = 0+ phy. and choose ;. satisfying (17). Assuming T/’ <v<1/h
with appropriate constants 1" and ., there exists a semi-monotonic inequality

IES) T llanys < Cru TN Esy™ o, + Cop” | By (13, + Cahy* + Cahy 0y,

Theorem 4 Let Assumption 1 and the parameter choices in Lemma 11 hold.

Furthermore, assume p + C3hy™" 4+ Cyh, "0, < 1 and re-scale the problem in
1/2

the sense that o < CCL . Then, the error between the exact solution f* and
reconstructed one f&7 5 can be estimated as

* Cr r—ao QCd r—c|| £*
||f - 117 ”L2( = 1312 ||H"r +Cc3zpjhn —7 Ca h ||f “HT
1=1
= 20
+CCLY phy 6+ C—;h (27)
j=1

with the same constant C from Theorem 1.
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