Adaptive algorithms for kernel-based
collocation methods

Leevan Ling

Hong Kong Baptist University
lling@hkbu.edu.hk

International Conference of Kernel-Based
Approximation Methods in Machine Learning
May 19-21, 2017

Adaptive
kernel-based
collocation

L.Ling

Overview

Objective: Design a block-box for solving elliptic PDEs

Kansa methods

Generating quasi-random kernels
Adaptively select trial spaces
Numerical demonstrations

Collaborators:
» Robert Schaback
» Sung Nok Chiu
» Ka Chun Cheung
» Meng Chan

Acknowledgements: This work was supported by a GRF Grant from the Hong Kong
Research Grant Council and an FRG Grant from Hong Kong Baptist University.

Adaptive
kernel-based
collocation

L.Ling

Kansa methods

Consider a PDE, with solution u*, given by
Lu= fin and Bu=gonT =0Q.

An RBF is a smooth scalar function ¢ : RT™ — R, which
usually is induced from a kernel ® : R¢ x RY — R in
today’s applications.

o(llz = yll2) = ®(z,y)
Aim: Identify an approximation to u* from the trial space
Uz =Uz 00 =span{®(- — z;) : z; € Z}

for some set of trial centers Z = {z1,...,2,,} C Q

Adaptive
kernel-based
collocation

L.Ling

Kansa methods

Equivalently, we need to identify the unknown JA; in
nz nz
u=y No(ll-—zll2) =D A z)
j=1 j=1
We do so by imposing some collocation conditions at some
sets of collocation points

X:{aj‘l,...,l‘nI}CQ & Y:{yl"“’yny}cr

and obtain

Lu(x;) =Y NLo(||zi — z;||) forx; € X and z; € Z
Bu(y;) =Y A\iBo(||lyi — 2;||) fory; € Y and 2 € Z

Adaptive
kernel-based
collocation

L.Ling

Kansa methods

Adaptive
kernel-based
collocation

Now we have L. LLiia

» if Z =X UY, exactly determined (original) Kansa
System

Kansa methods

> unsymmetric
» matrix could be singular
» works fine in practice

» if ny < nx 4+ ny, overdetermined system

v

solved by £*°-minimization (LL, Schaback 08’)
solved by least-squares (Cheung, LL, Schaback)
» in R? or R3, define weighted LS solutions by

v

Uy := arginf Hﬁu—fo%Z(X)"’_ ¥

2
B
rgin ar) I ol

» some convergence analysis available

Schematic point sets s S

collocation

L.Ling

Kansa methods

. *
e o,

Figure: Collocations X and Y (left), and trial Z (right), used
to solve various PDEs.

Adaptive

. kernel-based
Theorem (Convergence estimate) collocation
Suppose that L ILimg

» Domain 0 is nice and 0X) is smooth s e

» Differential operator is second order strongly elliptic
and the PDE has a classical solution u*

» Kernel ® reproduces H™ () with m > 2+ d/2
» Quer-sampling (h}t_2 + h”;_Q)/QZL‘Q <Coar
Then, for m > 2 + %l,

_d_o
Uz —u*llag < Chy 2 |u*llmea

d
and, form >3+ 3,

Uz —u*llen < CRE2|u*||lmo

with some C' = CQ,QQMPXWYWZWXWY

Adaptive
EXample kernel-based

collocation

A symmetric positive definite kernel ®,, on R¢ with L Ling
smoothness m that satisfies

Kansa methods

ca,, (14 [|[w][3) ™" < @m(w) < Ca,, (1 + [lw]3) ™™
for all w € R? with two constants 0 < cg,, < Cs,,.

» For any m > d/2, its native space /\/'@WRd is
norm-equivalent to H™(R?)

» Standard Whittle-Matérn-Sobolev kernel with exact
Fourier transform (1 + ||w||3)~™ that takes the form

Oy () = [|2]|5 " Y Kpasa(|zll2) for all z € RY,

where IC, is the Bessel functions of the second kind

» The compactly supported piecewise polynomial
Wendland functions are another examples

Adaptive

Sketch of proof Kernel-based

collocation

» Boundary regularity estimate: L-Ling

Kansa methods

lullke < Cack (ILulli-20 + lule—1/2r)
for 2 <k <m and all u € H™(Q)
» Inverse inequality for trial functions:
[ullm. < Cawpraz™ Fllullko

for d/2 < k <m and all u € Uy
» Sampling inequality — Stability

—k
|

di9 d_k
[ullr.o < Co@p,c.k <h§< |Lullx + hy IIUHY>

for 2 < k <m and all u € Uy if hx, hy small

» Consistency via interpolant Ie zu*

Adaptive

Kansa methods for surface PDEs Kermolbased

collocation

L.Li
(Cheung, LL & Chen, LL) e

Kansa methods

N

Figure: Turing spot and stripe patterns

The catch:
Still no convergence theory for Kansa methods when we
use Gaussian, multiquadrics, and many other RBF's

Motivation: (r < er)

Kernel ¢ # basis L error
MQ 2 961 0.0039
1 813 5.4408(-5)
0.5 251 8.6928(-5)
GA 2 413 1.7666(-5)
1 163 1.6022(-8)
0.5 7 0.2747

Adaptive
kernel-based
collocation

L.Ling

Kansa methods

Motivation: (r < er)

basis

L error

961
813
251

0.0039
5.4408(

413
163
7

1.7666(
1.6022(
0.2747

_5)
8.6928(-5)
_5)
_8)

basis

L error

859
894
920

7.3448(-7)
5.6504(-7)
1.4412(-6)

385
574
673

2.0364(-11)
2.5763(-10)
7.6422(-10)

Adaptive
kernel-based
collocation

L.Ling

Kansa methods

Quasi-random kernels T

collocation

L.Ling

To setup Kansa methods, users have to provide the

following point sets: Clamemting
quasi-random
» Interior collocation points X = {z1,..., 2y, } C Q kernels

» Boundary collocation points Y = {y1,...,yn, } C T,
» Trial centers Z = {21,...,2,,} CQ

If ones adopt the variable-shape formulation, shape
parameters have to be specified at each trial centers by

» Shape parameters €& = {e1,...,€,,} C Ry

and use kernel

P, (+) = dlesll + —2jll2)

Adaptive

A schematic demonstration of data refinement. ot

collocation

L.Ling

Generating
quasi-random
kernels

% o o

g ©0-¢. g0 02

(a) nx = 100, ny =48 (b) nys = 200, nys = 66

Figure: (a) Request nx = 100 interior point and estimate that
ny = 48 is required to maintain a similar fill distance.

Figure: (b) Request an extended set of nx, = nx + 100 interior
points that requires ny = 48 4+ 18 boundary points to maintain
h/X/ ~ h/Y/ .

Adaptive
kernel-based
collocation

L.Ling

Focus on low-discrepancy sequences by quasi-Monte
Carlo methods s
Examples: Faure, Halton, Sobol’, etc. dgasiiandomn

kernels
Interior points: by a quasi-random sequence in R?
and

+1 2¢Q
sign(z) = 0 ze€0Q
-1 zeQ.

Estimate ny = ny(nx,Q) s.t. hx o ~ hyr

Boundary points: by a quasi-random sequence in R¢
and by a PDF generated from the metric tensor of '

Adaptive trial space selection T

collocation

L.Ling

In hand, we have
» Interior collocation: X1 C Xo C--- C X C -+
» Boundary collocation: Y1 C Yo C---C Y, C---

Adaptively
select trial

» Trial centers: Z1 C Zy C--- C Z C -+~ —
Along with sets of points, we generate a quasi-random
numbers 60; € [0, 1] for each z; € Z

» Cheap to compute

¢

» Contain “implicit” spatial information

» Can be used to generate shape parameter €; for
kernel at z;

Aim: Deals with the corresponding Kansa system

. . Adaptive
BaSIC ldea kernel-based
collocation

L.Ling

Consider the matrix system:

1 4 3 2
An=1{2 5 2 |(n=| 4| =hb.
3 6 1 6 Adaptively

select trial
spaces

» Preselect 1 x 1 subsystem: row—3 & column—2
» To expand to 2 x 2, solve
6] ') = [6]
with solution n) = 1
» Evaluate residual AV —b = [2, 1, 0]7
> Select row—1

To complete the subsystem expansion, we have to select a
column.

1 4 3 2
An=1{2 5 2 (n=| 4| =hb.
3 6 1 6
» Determinant criterion (LL, opfer, Schaback 06%):
Treat the to-be-determined 2 x 2 matrixas a function
of column index
1 4 . 4 3
36| ° 6 1|
—— ——
=A2x2(1) =A2x2(3)
> |det(Aax2(1))] = 6 and |det(Aax2(3))| = 14
» Select column—1
» Latest criterion: Dual residual (Lv, schaback 09%)

Adaptive
kernel-based
collocation

L.Ling

Adaptively
select trial
spaces

Example

Using unscaled multiquadrics RBF, reduce hz

RMS error

10

10

N
o

10

10

old-Greedy:
select RBF centers using determinant function
new-Greedy:

select RBF centers using primal-dual formulation

S

5|

c=1.0

286

278

slope=8.2

10

10

Adaptive
kernel-based
collocation

L.Ling

Adaptively
select trial
spaces

Adaptive
kernel-based
collocation

» Sequential approach is slow....

» To speed up, we need to update in block-form wr 16 o
» By the same 4 basic steps:

Step-1: Compute local residuals

Step-2: Select rows to be added JEE

Step-3: Select columns to be added :j;l;;ts"ia‘
Step-4: Check condition number

Top 25% 25%-50 Bottom 25%

Figure: Partitioning trial centers by dual residuals.

Theorem

Let A be an M x N matriz with full rank M ; choose a
large M x K submatriz formed by K < M columns of A
such that it is numerically of full rank. The block-greedy
algorithm can be implemented so that

1
complexity < O(NK?) and storage ~ K(M+N)_|_§K2

1000

800
600 -
400 r

200] —o— Block-greedy
o Sequential-greedy

0
0 2000 4000 6000 8000 10000 12000

Adaptive
kernel-based
collocation

L.Ling

Adaptively
select trial
spaces

Adaptive
kernel-based
collocation

Example Ll
Block-greedy vs permuted-QR

» Fix M = 1500 and let 2000 < N < 20000

» Generate M x N random matrices JEE

select trial

» Select K = M columns ——

0

(a) Block greedy (b) QR

1000

nz =750

Figure: Entries of B~!A with absolute values greater than 1,
where B is the M x M submatrix formed by the selected M
columns out of A € RM*N with M = 1500 and N = 10000

= =
o o
(4] [}

Condition number
=
o
N

10°

—0—Block-greedy
—o— QR=AE
---------- 1st P.M
%W:m
0 5 10 15 20

N (in 1000)

Adaptive
kernel-based
collocation

L.Ling

Adaptively
select trial
spaces

Runtime (in sec)

=
N

=
o

@

—o0— Block-greedy
—o— QR=AE

5 10
N (in 1000")

15

20

Adaptive
kernel-based
collocation

L.Ling

Adaptively
select trial
spaces

Adaptive

System-free algorithm Kernol-based
collocation
L.Ling
(Chiu, LL)

» A modification to the block-greedy algorithm

» Run on Xk, Yk, Zk, gk
» Using the selected shape parameters, we design a Adaptively
selec ria.

distribution for iy spaces

X\

> Keep running the block-greedy algorithm until
condition number is too large

Adaptive
kernel-based
collocation

L.Ling
Example

Quasi-random points X UY by different generators

Numerical
demonstrations

(a) Sobol sequence (b) Halton sequence

Adaptive
kernel-based
collocation

Example L, Lt
System-free algorithm selected flat basis functions with

shape parameters < 10; peaky ones were omitted from

this illustration

Numerical
demonstrations

Cia

(a) Sobol sequence (b) Halton sequence

Adaptive
kernel-based

collocation

L.Ling

Numerical

demonstrations

peaks, 30 runs
GA Bad ny LZ(Q) L>°(Q)
€max Run Min Max Mean S.D. Mean S.D.
25 0 635 739 2.6347e-07 5.1091e-07 8.5665e-06 1.7673e-05
50 0 887 1175 1.1854e-09 1.6752e-09 3.7677e-08 5.3122e-08
100 2 1021 1749 4.7907e-09 2.5103e-08 4.9567e-08 2.5110e-07
MQ Bad ny LZ(Q) L>°(Q)
€max Run Min Max Mean S.D. Mean S.D.
25 0 1023 2013 1.8662e-07 9.4187e-07 1.8582e-06 9.2901e-06
50 2 2015 3909 1.7300e-08 5.6953e-08 1.7804e-07 4.5865e-07
100 1 2007 7343 5.6439e-06 1.8148e-05 6.9103e-05 2.1448e-04
MS Bad ny LZ(Q) L>°(Q)
€max Run Min Max Mean S.D. Mean S.D.
25 0 401 429 7.2527e-05 7.4555e-05 1.7176e-03 2.4994e-03
50 0 673 745 6.5219e-07 1.0320e-06 1.6340e-05 3.1292e-05
100 0 923 1003 2.7574e-08 3.3238e-08 7.3817e-07 1.0683e-06

Adaptive
kernel-based
collocation

L.Ling

Numerical
demonstrations

franke
GA Bad ny LZ(Q) L>°(Q)
€max Run Min Max Mean S.D. Mean S.D.
25 0 655 733 9.6738e-04 1.3783e-03 2.8117e-02 4.0347e-02
50 0 823 1217 2.4058e-04 4.8471e-04 8.3423e-03 1.7349e-02
100 2 1015 1777 5.7304e-06 7.5535e-06 2.5603e-04 4.0785e-04
MS Bad ny LZ(Q) L>°(Q)
€max Run Min Max Mean S.D Mean
25 0 397 423 2.5519e-03 2.0556e-03 5.6153e-02 6.8083e-02
50 0 677 749 4.3585e-04 3.8856e-04 1.0987e-02 1.3409e-02
100 0 911 1227 1.5049e-04 4.6402e-04 4.8690e-03 1.6973e-02
f('rv y) — maX(Ov 'r)J — maX(Ov y)d
GA Bad ny LZ(Q) L>®(Q)
€max Run Min Max Mean S.D. Mean S.D
25 0 623 757 1.4682e-05 2.5899e-05 3.7926e-04 7.6777e-04
50 0 869 1007 1.2687e-05 1.9572e-05 4.3372e-04 6.9755e-04
100 2 1023 1785 1.4470e-06 7.7554e-07 3.9665e-05 5.5451e-05
MS | Bad n L7 (Q) L>(Q)
€max Run Min Max Mean S.D Mean .D.
25 0 403 427 2.0743e-05 1.0798e-05 3.5904e-04 3.9292e-04
50 0 671 733 7.9690e-06 8.9910e-06 1.6165e-04 2.9417e-04
100 0 927 1009 4.5236e-06 4.4479e-06 1.0258e-04 1.5014e-04

Adaptive
kernel-based
collocation

L.Ling

Numerical
demonstrations

The way to run is
» Give users a quick approximation

» Based on the PDE residual, readers can decide if
refinement is needed

max ny 256 512 1024 Terminate
GA 2.1239e+00 7.2920e-01 1.1103e-03 3.8550e-09 (nz = 1893)
MS 2.6413e+00 6.9293e-03 2.3652e-07 6.5507e-08 (ngy =1611)

Thank You

Adaptive
kernel-based
collocation

L.Ling

Numerical
demonstrations

	Kansa methods
	Generating quasi-random kernels
	Adaptively select trial spaces
	Numerical demonstrations

