Exponential Fourier Reconstruction of Piece-wise Smooth Functions

Guohui Song

Clarkson UNIVERSITY defy convention

May 19 - May 21, 2017 International Conference of Kernel-Based Approximation Methods in Machine Learning

Function Reconstruction from Fourier Data

- Assume $f : \mathbb{R} \to \mathbb{R}$ is a piece-wise smooth function:
 - o supported on [−1, 1]
 - $\circ~$ a few known jump discontinuities ξ_1,ξ_2,\ldots,ξ_p
- We are given its Fourier data

$$\widehat{f}(\lambda_k) = \int_{-1}^{1} f(x) \mathrm{e}^{-\pi \mathrm{i} \lambda_k x} \mathrm{d} x, \quad -\mathrm{N} \leq \mathrm{k} \leq \mathrm{N}.$$

• Uniform:
$$\lambda_k = k$$

- Jittered: $\lambda_k = k + \delta_k$, where δ_k is a small number
- We will try to approximate the unknown function *f*.

Uniform Fourier Reconstruction

- Fourier partial sum: $(S_N f)(x) = 1/2 \sum_{|j| \le N} \hat{f}(j) e^{\pi i j x}$.
- Filter/Mollifier [Fejér 1900; Vandeven 1991;...]
 - $\circ \ \, \text{Filter:} \quad \sum_{|j| \leq N} \sigma_j \widehat{f}(j) \mathsf{e}^{\pi \mathbf{i} \mathbf{j} \mathbf{x}}$
 - Mollifier: $S_N(\varphi * f)$
 - Adaptive [Tadmor, Tannner, 2001]
- Spectral re-projection [Gottlieb, Shu, Solomonoff, Vandeven, 1992]:
 - $P_M^{\mu}S_N f$: projection onto a subspace of Gegenbauer polynomials.
- Inverse polynomial reconstruction method [Jung and Shizgal, 2004]
- Generalized sampling [Adcock, Hansen, 2015]

$$\circ \ \left(P_M S_N\right)^{-1} P_M S_N f$$

Filter/Mollifier

• Error decomposition:

$$\|f - S_N(\varphi * f)\| \le \underbrace{\|f - \varphi * f\|}_{\mathsf{Regularization error}} + \underbrace{\|\varphi * f - S_N(\varphi * f)\|}_{\mathsf{Truncation error}}$$

$$\overset{\mathsf{Regularization error}_{\mathsf{need } \varphi \approx \delta} \xrightarrow{\mathsf{Truncation error}_{\mathsf{need } \varphi \text{ smooth}}}$$

- Examples of mollifiers

 - Hermite Distributed Approximating Functionals (HDAF)

$$\varphi(\textbf{\textit{x}}) = \mathrm{e}^{-\mathbf{x}^2/2} \sum_{n=0}^{p} \frac{(-4)^{-n}}{n!} \mathrm{H}_{2n}\!\left(\frac{\mathbf{x}}{\sqrt{2}}\right)$$

Adaptive mollifiers

•
$$\varphi_{\theta}(x) = \frac{1}{\theta} \varphi(\frac{x}{\theta})$$

 $\circ \ \theta$ depends on N and d(x) distance to the edges

- Convergence
 - $\circ~$ Compactly supported: root exponential up to the edges $~~e^{-c\sqrt{Nd(x)}}$
 - $\circ~$ HDAF: exponential up to the edges $~~e^{-cNd(\mathbf{x})}$
- Numerics

- Convergence
 - Compactly supported: root exponential up to the edges
 - $\circ~$ HDAF: exponential up to the edges $~~e^{-cNd(\mathbf{x})}$
- Numerics

- Convergence
 - Compactly supported: root exponential up to the edges
 - $\circ~$ HDAF: exponential up to the edges $~~e^{-cNd(\mathbf{x})}$
- Numerics

- Convergence
 - Compactly supported: root exponential up to the edges
 - $\circ~$ HDAF: exponential up to the edges $~~e^{-cNd(\mathbf{x})}$
- Numerics

- Convergence
 - Compactly supported: root exponential up to the edges
 - $\circ~$ HDAF: exponential up to the edges $~~e^{-cNd(\mathbf{x})}$
- Numerics

- Uniform exponential convergence.
 - need $\mu = \alpha N$ and $M = \beta N$
 - $\circ~\alpha$ and β need carefully chosen to avoid a Runge-type phenomenon
 - might be computationally inconvenient and unstable
 - does not work on non-uniform Fourier measurements

Inverse Polynomial Reconstruction Method

- Given Fourier measurements $\hat{f}(j), -N \leq j \leq N$
- Find the polynomial g with degree 2N such that

$$\widehat{g}(j)=\widehat{f}(j), \quad -N\leq j\leq N$$

• The interpolation matrix has an exponential growth condition number.

Generalized Sampling

- Generalized sampling: $(P_M S_N)^{-1} P_M S_N f$
- Root exponential convergence $e^{-c\sqrt{N}}$ • $M = c\sqrt{N}$

• Need to solve a least-square problem $\sum_{i=1}^{n} \left[f_{i}(x_{i}) - f_{i}(x_{i}) \right]^{2}$

$$\min_{g \in \mathcal{H}_M} \sum_{|j| \leq N} \lfloor \hat{g}(j) - f(j)
floor^2,$$

where \mathcal{H}_M is the space of piece-wise polynomials.

Also works on non-uniform Fourier measurements

Find a Fourier reconstruction method:

- has uniform exponential convergence
- works with both uniform and non-uniform Fourier measurements
- is easy to compute

A Hybrid Method: Mollifier + Extrapolation

- Given uniform Fourier measurements
 - Use $S_N(\varphi * f)$ to approximate f away from the edge
 - Extrapolation based on the above approximated function values
- A "stable" extrapolation [Demanet and Townsend, 2016]
 - Assume f is analytic in a Bernstein ellipse with parameter $\rho > 1$
 - \circ Given the samples of f on [-1,1] with perturbation level ϵ
 - $\circ~$ Use least squares polynomial approximation with $M\propto \sqrt{N}$

• It has error
$$\propto \epsilon^{r(x)}$$
 for $x \in \left[1, \frac{\rho + \rho^{-1}}{2}\right)$, where $r(x) = \log_{1/\rho} \frac{x + \sqrt{x^2 - 1}}{\rho}$, decreasing from 1

Convergence: Mollifier + Extrapolation

- Assume $\xi_1, \xi_2, \ldots, \xi_p$ are jumps.
- On each $[\xi_j, \xi_{j+1}]$, choose $[a_j, b_j] \subset [\xi_j, \xi_{j+1}]$.
- In the interval $[a_j, b_j]$, use the mollifier method $S_N(\varphi * f)$.
- Extrapolation on $[\xi_j, a_j] \cup [b_j, \xi_{j+1}]$: $\epsilon \sim e^{-rdN}$.
- Convergence
 - The error on $[a_j, b_j]$: $\epsilon_j \sim e^{-d_j N}$, where d_j is decreasing on $w_j = b_j a_j$
 - The extrapolation error $\propto \epsilon^{r_j}$, where r_j is increasing on w_j
 - Need to choose an optimal w_j to obtain a uniform exponential convergence.

Non-uniform Fourier Reconstruction

- Consider $\hat{f}(\lambda_k) = \int_{-1}^{1} f(x) e^{-\pi i \lambda_k x} dx$, where $\{e^{-\pi i \lambda_k x}\}$ gives a frame.
- Approximate $\varphi * f$ from $\{\hat{f}(\lambda_k) : -N \leq k \leq N\}$.
 - Need to approximate the dual frame.
 - Admissible frame approach [Gelb, Song, 2013]

 $\|f-T_Nf\|\leq c\|f-S_Nf\|$

where $T_N f$ is an approximation based on $\{\hat{f}(\lambda_k) : -N \leq k \leq N\}$.

- Use $T_N(\varphi * f)$ as an approximation on the interval away from the edges $\|\varphi * f - T_N(\varphi * f)\| \le c \|\varphi * f - S_N(\varphi * f)\|.$
- Apply the same extrapolation on the interval around the edges.

Discussion

- Summary
 - The mollifier method could obtain exponential convergence up to the edges for both uniform and non-uniform Fourier measurements.
 - A stable extrapolation could improve the accuracy close to the edges.
- Questions
 - Other extrapolation methods?
 - 2D mollifier method
 - 2D extrapolation method

Thank you !