Bivariate Splines for De-Convolution

Ming-Jun Lai¹

based on a joint work with Tianhe Zhou

mjlai@uga.edu

May 20, 2017

¹This author is associated with Department of Mathematics, The University of Georgia, Athens, GA 30602, U.S.A. mjlai@uga.edu. His research is supported by the National Science Foundation under the grant #DMS 1521537.

Ming-Jun Lai (UGA)

May 20, 2017 1 / 50

Table of Contents

- Introduction
- Motivations
- Bivariate Splines
- Conventional Methods
- A Few New Schemes
- A Multiscale Method based on Splines
- Spline Approximation of Kernel Functions

Introduction: the Research Problem

Suppose that we are given a Fredholm integral equation of first kind

$$F(\mathbf{x}) = \int_{\Omega} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y}, \quad \mathbf{x} \in \Omega$$
 (1)

over a bounded polygonal domain $\Omega \in \mathbf{R}^2$. We are interested in how to approximate $f(\mathbf{y})$, $\mathbf{y} \in \Omega$, assuming that $K(\mathbf{x}, \mathbf{y})$ is a given kernel function and $F(\mathbf{x})$. When $K(\mathbf{x}, \mathbf{y}) = K(\mathbf{x} - \mathbf{y})$, $F(\mathbf{x})$ is a convolution function. It is an inverse problem.

More precisely, we are going to use bivariate splines ([Lai and Schumaker, 2007²] and [Awanou, Lai and Wenston, 2006³]) to approximate $f(\mathbf{y})$.

 $^2\mathsf{M}.$ J. Lai and L. L. Schumaker, Spline Functions over Triangulations, Cambridge University Press, 2007.

³G. Awanou, M. J. Lai, and P. Wenston: The multivariate spline method for numerical solution of partial differential equations and scattered data interpolation, Wavelets and Splines (G. Chen and M. J. Lai, eds.). Nashboro Press, 24–74₂ (2006).

Ming-Jun Lai (UGA)

May 20, 2017 3 / 50

This research problem has several motivations. Let me explain some of them as follows.

- Numerical Solution of Integral Equations of Second Kind
- Image De-blurring
- Boundary Element Methods for Numerical Solution of Poisson Equations
- Learning Theory
- Machine Learning
- etc....

(日) (同) (三) (三)

Motivation (1)

One often needs to numerically solve a linear integral equation of second kind: find $u \in L^2(\Omega)$ satisfying

$$u(\mathbf{x}) = \int_{\Omega} \int_{\Omega} K(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) d\mathbf{y} + F(\mathbf{x}), \quad \mathbf{x} \in \Omega,$$
(2)

where $K(\mathbf{x}, \mathbf{y})$ and $F(\mathbf{x})$ are given (cf, [M. Schultz,73⁴] and [Chen, Micchelli, Xu, 2015⁵]). Letting $\delta(\mathbf{x}, \mathbf{y})$ be a Dirac function over Ω such that $f(\mathbf{x}) = \int_{\Omega} \delta(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$, we can rewrite (2) in

$$F(\mathbf{x}) = \int_{\Omega} (\delta(\mathbf{x}, \mathbf{y}) - K(\mathbf{x}, \mathbf{y})) u(\mathbf{y}) d\mathbf{y}, \quad \mathbf{x} \in \Omega.$$
(3)

Thus, letting $\widetilde{K}(\mathbf{x}, \mathbf{y}) = \delta(\mathbf{x}, \mathbf{y}) - K(\mathbf{x}, \mathbf{y})$, (2) is our research problem.

⁴M. H. Schultz, Spline Analysis, Prentice-Hall, 1973.

⁵Z. Chen, C. A. Micchelli, and Y. Xu, Multiscale Methods for Fredholm Integral Equations, Cambridge University Press, 2015

Ming-Jun Lai (UGA)

Kernel Functions

Typically, $K(\mathbf{x}, \mathbf{y}) = K(\mathbf{x} - \mathbf{y})$ is a given kernel function. A weakly singular kernel function or a Mercer kernel are typical examples.

- $\delta(x-y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp(ip(x-y)) dp$ in the univariate setting. It can be approximated by *nascent delta* function δ_{ϵ} such that $f * \delta_{\epsilon} \to f$ as $\epsilon \to 0_+$.
- In \mathbb{R}^d with $d \geq 2$,

$$\mathcal{K}(\mathbf{x} - \mathbf{y}) = \begin{cases} -\frac{1}{2\pi} \log |\mathbf{x} - \mathbf{y}|, & \text{if } d = 2\\ -\frac{1}{(d-2)\omega_{d-1}} \frac{1}{|\mathbf{x} - \mathbf{y}|^{d-1}}, & \text{if } d \ge 3. \end{cases}$$
(4)

- $\mathcal{K}(\mathbf{x} \mathbf{y}) = \exp(-\alpha |\mathbf{x} \mathbf{y}|^2)$ for some $\alpha > 0$.
- box spline kernels, radial basis kernel, etc..

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの

A blurred image is usually modeled as a convolution of a clean image with a blurring kernel with some noises:

$$F(\mathbf{x}) = \int_{\Omega} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y} + N(\mathbf{x}), \quad \mathbf{x} \in \Omega$$
(5)

where K is a blurring kernel, $f(\mathbf{y})$ is a clean image, $N(\mathbf{x})$ stands for noises. That is, given $F(\mathbf{x})$ noised blurred image, find a clean image $f(\mathbf{y})$. It is also called non-blind image deconvolution if $K(\mathbf{x}, \mathbf{y})$ is known. Otherwise, it is called blind image deconvolution (cf. e.g. [Chai and Shen, 2007⁶], [Daubechies, Teschke, Vese, 2007⁷], [Cai and Shen, 2010⁸]).

⁶A. Chai and Z. Shen, Deconvolution: A wavelet frame approach, Numer. Math., 106 (2007), pp. 529–587.

⁷I. Daubechies, G. Teschke, and L. Vese, Iteratively solving linear inverse problems under general convex constraints, Inverse Problems and Imaging, 1 (2007), pp. 29–46.

Geopotential Estimate

More precisely, suppose that the geopotential on an orbital surface S_o , e.g., 500 km above the Earth surface is given. One is interested in estimating the geopotential on the ground level S_e of the Earth. Since the geopotential G(z) is a harmonic function satisfying the Laplace equation with boundary values at Earth surface with radius $R_e = 6378.136$ km, one knows

$$G(\mathbf{z}) = \int_{\mathbf{S}_e} \mathcal{K}(\mathbf{z}, \mathbf{x}) G(\mathbf{x}) d\mathbf{x}$$
(6)

with a known Poisson kernel $K(\mathbf{z}, \mathbf{x})$ (cf. [Heiskanen and Moritz, 67⁹]), where \mathbf{S}_e denotes a spherical surface around the Earth with radius R_e and G(z) is given at $|\mathbf{z}| = R_e + 500$ km (cf. e.g. [Lai, Shum, Baramidze and Wenston, 2009¹⁰])

⁹W. Heiskanen and H. Moritz, Physical Geodesy, Freeman, San Franscico, 1967.
 ¹⁰Lai, M. -J., Shum, C. K., Baramidze, V. and Wenston, P., Triangulated Spherical Splines for Geopotential Reconstruction, Journal of Geodesy, vol. 83 (2009) pp. 695–708.

Geopotential Reconstruction ¹¹

¹¹Lai, M. J., Shum, C. K., Baramidze, V. and Wenston, P., Triangulated Spherical Splines for Geopotential Reconstruction, Journal of Geodesy, vol. 83 (2009) pp. 695–708.

Ming-Jun Lai (UGA)

Spherical Spline Interpolation

We use spherical splines to reconstruct the geopotential values from the geopotential measurements from a German satellite which was lunched around 2002. Our spline surface interpolates the given data set. **EXECUTE** 2000

Classic Learning Theory

Another example is the computation in the classic learning theory. To estimate the regression function f_{ρ}

$$f_{
ho}(\mathbf{x}) = \int_X y d
ho(y|\mathbf{x}), \quad \mathbf{x} \in X,$$

one would like to approximate the minimizer f_{λ}^* of the quadratic functional

$$f_{\lambda} := \arg \min_{f \in \mathcal{H}_{K}} \int_{X} (f - f_{\rho})^{2} d\rho_{X} + \lambda \|f\|_{K}^{2},$$
(7)

May 20, 2017 11 / 50

where $\lambda > 0$ is a fixed penalty parameter, \mathcal{H}_{K} is a Reproducing Kernel Hilbert Space (RKHS) and ρ is a conditional probability.

Here K is a continuous, symmetric and positive semidefinite kernel.

$$\|f\|_{K}^{2} = \int_{X} f(\mathbf{x}) \int_{X} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\rho_{X}(\mathbf{y}) d\rho_{X}(\mathbf{x}).$$

See, e.g. [Cucker and Smale, 2001¹²].

¹²F. Cucker and S. Smale, On the mathematical foundations of learning. Bull. Amer. Math. Soc., 39(2001), 773–795.

Ming-Jun Lai (UGA)

It is known that f_{λ} exists, is unique, and satisfies the following

$$\lambda f_{\lambda}(\mathbf{x}) + \int_{X} \mathcal{K}(\mathbf{x}, \mathbf{y}) f_{\lambda}(\mathbf{y}) d\rho_{X}(\mathbf{y}) = \int_{X} \mathcal{K}(\mathbf{x}, \mathbf{y}) f_{\rho}(\mathbf{y}) d\rho_{X}(\mathbf{y})$$
(8)

We refer to [Smale and Zhou, 2003¹³] and [F. Cucker, D.-X. Zhou, 2007¹⁴] for details.

Similar to the integral equation of second kind, the above (8) can be formulated as a de-convolution.

Ming-Jun Lai (UGA)

May 20, 2017 12 / 50

¹³S. Smale and D.-X. Zhou, Estimating the approximation error in learning theory. Anal. Appl. 1(2003), 17–41.

¹⁴F. Cucker and D. -X. Zhou, Learning theory : an approximation theory viewpoint, Cambridge University Press, 2007

Existing Numerical Methods

There are many approaches to tackle the numerical approximation of the de-convolution.

- Framelet Approach (cf. [Cai and Shen, 2010]);
- Galerkin Methods (cf. [Chen, Micchelli, Xu, 2015]);
- Collocation Methods (cf. [Chen, Micchelli, Xu, 2002¹⁵]);
- Petrov-Galerkin Methods (cf. [Chen and Xu, 1998¹⁶]),
- Degenerate Kernel Methods (cf. [Chen, Micchelli, Xu, 2015])
- Multiscale Methods (cf. [Chen, Micchelli, Xu, 2015])
- Learning Schemes, (cf. D. X. Zhou and his collaborators, Smale and Y. Yao, 2006, ...)

¹⁶Z. Chen and Y. Xu, The Petrov-Galerkin and integral Petrov-Galerkin methods for second kind integral equations, SIAM J. Numerical Analysis, 35(1998), 406–434.

Ming-Jun Lai (UGA)

¹⁵Z. Chen, C. A. Micchelli, Y. Xu, Fast collocation methods for second kind integral equations, SIAM J. Numerical Analysis, 40(2002), 344–375.

Difficulties and Challenges

Major difficulties in numerical computation for de-convolution are

- 1) the matrix associated with linear systems from the most methods is dense and the size of the matrix increases quickly in the multi-dimensional setting;
- 2) A given F(x) is noisy and has some errors, how can one recovery f(y) accurately?
- 3) When K(x, y) is very smooth, even f(y) is not smooth at all, the given F(x) is very reasonable. In this case, can we recovery f(y)?
- 4) Another problem is how to deal with this problem over irregular domains, any polygonal domain in ℝ² and ℝ³.

Can we use spline functions to help?

イロト 不得下 イヨト イヨト 二日

Let \mathbf{P}_d be the space of all polynomials of degree $d \ge 1$. Let Δ be a triangulation of a domain $\Omega \subset \mathbb{R}^2$. For integers $d \ge 1$, $-1 \le r \le d$ define by

$$S_d^r(\Delta) = \{s \in C^r(\Omega), s|_t \in \mathbf{P}_d, t \in \Delta\}$$

the spline space of smoothness r and degree d over Δ .

In general, let $\mathbf{r} = (r_1, \cdots, r_n)$ with $r_i \ge 0$ be a vector of integers. Define

$$S^{\mathsf{r}}_{d}(\Delta) = \{ s \in C^{-1}(\Omega), s |_{e_i} \in C^{r_i}, e_i \in E \},$$

where *E* is the collection of interior edges of \triangle . Each spline in $S_d^{\mathsf{r}}(\triangle)$ has variable smoothness.

This can handle the situation of hanging nodes in a triangulation!

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Definition of Spline Functions

Let $T = \langle (x_1, y_1), (x_2, y_2), (x_3, y_3) \rangle$. For any point (x, y), let b_1, b_2, b_3 be the solution of

$$\begin{array}{rcl} x & = & b_1 x_1 + b_2 x_2 + b_3 x_3 \\ y & = & b_1 y_1 + b_2 y_2 + b_3 y_3 \\ 1 & = & b_1 + b_2 + b_3. \end{array}$$

Fix a degree d > 0. For i + j + k = d, let

$$B_{ijk}(x,y) = \frac{d!}{i!j!k!}b_1^i b_2^j b_3^k$$

which is called Bernstein-Bézier polynomials. For each $\mathcal{T} \in \Delta$, let

$$S|_T = \sum_{i+j+k=d} c_{ijk}^T B_{ijk}(x,y).$$

We use $\mathbf{s} = (c_{ijk}^T, i + j + k = d, T \in \Delta)$ be the coefficient vector to denote a spline function in $S_d^{-1}(\Delta)$. This setup can include the discontinuous We use the de Casteljau algorithm to evaluate a Bernstein-Bézier polynomial at any point inside the triangle. It is a simple and stable computation. See [Lai and Schumaker, 2007^{17}]

It is also used for computation of derivatives Let $T = \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle$ and $S|_T = \sum_{i+j+k=d} c_{ijk} B_{ijk}(x, y)$. Then directional derivative

$$D_{\mathbf{v}_2-\mathbf{v}_1}S|_T = d \sum_{i+j+k=d-1} (c_{i,j+1,k} - c_{i+1,j,k})B_{ijk}(x,y).$$

Similar for $D_{\mathbf{v}_3-\mathbf{v}_1}S|_T$.

 D_x and D_y are linearly combinations of these two directional derivatives.

May 20, 2017 17 / 50

Ming-Jun Lai (UGA)

¹⁷M. -J. Lai and Larry L. Schumaker, Spline Functions over Triangulations, Cambridge University Press, 2007.

Smoothness Condition between Triangles

Let T_1 and T_2 be two triangles in Δ which share a common edge e. Then $S \in C^r(T_1 \cup T_2)$ if and only if the coefficients of $c_{ijk}^{T_1}$ and $c_{ijk}^{T_2}$ satisfy the following linear conditions. E.g.,

$$S \in C^{0}(T_{1} \cup T_{2}) \text{ iff } c_{0,j,k}^{T_{1}} = c_{j,k,0}^{T_{2}}, j + k = d$$

 $S \in C^{1}(T_{1} \cup T_{2}) \text{ iff } c_{1,j,k}^{T_{1}} = b_{1}c_{j+1,k,0}^{T_{2}} + b_{2}c_{j,k+1,0}^{T_{2}} + b_{3}c_{j,k,1}^{T_{2}}$
for $i + k = d - 1$ and etc. (cf. [Farin'86] and [de Boor'87]). We code them by H**c**=0.

May 20, 2017

18 / 50

Integration

Let s be a spline in $S_d^r(\triangle)$ with $s|_T = \sum_{i+j+k=d} c_{ijk}^T B_i jk(x, y), T \in \triangle$. Then

$$\int_{\Omega} s(x,y) dx dy = \sum_{T \in \Delta} \frac{A_T}{\binom{d+2}{2}} \sum_{i+j+k=d} c_{ijk}^T.$$

If $p = \sum_{i+j+k=d} a_{ijk} B_{ijk}(x, y)$ and $q = \sum_{i+j+k=d} b_{ijk} B_{ijk}(x, y)$ over a triangle T, then

$$\int_{\mathcal{T}} p(x, y) q(x, y) dx dy = \mathbf{a}^{\top} M_d \mathbf{b},$$

where $\mathbf{a} = (a_{ijk}, i + j + k = d)^{\top}$, $\mathbf{b} = (b_{ijk}, i + j + k = d)^{\top}$, M_d is a symmetric matrix with known entries (cf. [Chui and Lai, 1990]). Similarly, we have

$$\int_{\mathcal{T}} p(x,y)q(x,y)r(x,y)dxdy = \mathbf{a}^{\top}A_d\mathbf{b}\odot\mathbf{c}.$$

which can be used for weighted inner products of polynomials.

Ming-Jun Lai (UGA)

Spline Approximation Order

Theorem ([Lai and Schumaker'98)

^a] Suppose that \triangle is a β -quasi-uniform triangulation of domain $\Omega \in \mathbb{R}^2$ and suppose that $d \ge 3r + 2$. Fix $0 \le m \le d$. Then for any f in a Sobolev space $W_p^{m+1}(\Omega)$, there exists a quasi-interpolatory spline $Q_f \in S_d^r(\triangle)$ such that

$$\|f - Q_f\|_{k,\rho,\Omega} \le C|\triangle|^{m+1-k}|f|_{d+1,\rho,\Omega}, \forall 0 \le k \le m+1$$
(9)

for a constant C > 0 independent of f, but dependent on β and d.

^aLai, M. J. and Schumaker, L. L., Approximation Power of Bivariate Splines, Advances in Computational Mathematics, vol. 9 (1998) pp. 251–279.

When $d \ge 3r + 2$, $S_d^r(\triangle)$ has a super-spline subspace which consists of a locally supported basis and achieves the full approximation order (9).

(日) (周) (三) (三)

Let S be a spline space which has a locally supported stable basis $\{B_{\xi}, \xi \in \mathcal{M}\}$. Let $S_f = \sum_{\xi \in \mathcal{M}} c_{\xi} B_{\xi}$ be the approximation of f satisfying

$$\sum_{\xi \in \mathcal{M}} c_{\xi} \int_{\Omega} \int_{\Omega} \mathcal{K}(\mathbf{x}, \mathbf{y}) B_{\xi}(\mathbf{y}) B_{\eta}(\mathbf{x}) d\mathbf{y} d\mathbf{x} = \int_{\Omega} \mathcal{F}(\mathbf{x}) B_{\eta}(\mathbf{x}) d\mathbf{x} \qquad (10)$$

for all $B_{\eta} \in S$. This is called the Galerkin method. The linear system $A\mathbf{c} = \mathbf{b}$ with

$$A = [A_{\xi,\eta}], A_{\xi,\eta} = \int_{\Omega} \int_{\Omega} K(\mathbf{x}, \mathbf{y}) B_{\xi}(\mathbf{y}) B_{\eta}(\mathbf{x}) d\mathbf{y} d\mathbf{x}.$$
(11)

We say $K(\mathbf{x}, \mathbf{y})$ is positive definite with respect to a spline space S if $\int_{\Omega} B_{\eta}(\mathbf{x}) \int_{\Omega} K(\mathbf{x}, \mathbf{y}) B_{\xi}(\mathbf{y}) d\mathbf{y} d\mathbf{x} > 0$ for all $B_{\eta}, B_{\xi} \in S$.

▲ロト ▲掃ト ▲ヨト ▲ヨト ニヨー わえの

Theorem

Suppose that $K(\mathbf{x}, \mathbf{y})$ is positive definite with respect to a spline space S. There exists a unique solution S_f satisfying the weak equations (10).

Theorem

Suppose that $K(\mathbf{x}, \mathbf{y})$ is positive definite with respect to the standard $L^2(\Omega)$ and bounded from the above. Suppose that $f \in H^{\ell+1}(\Omega)$ for $\ell \geq 0$. Then

$$\|f - S_f\|_{2,\Omega} \le C|\triangle|^{\ell+1} |f|_{\ell+1,\Omega}$$

$$\tag{12}$$

for a positive constant C independent of f, where $0 \le \ell \le d$.

Similarly, we can extend these results to the setting when $F(\mathbf{x}) = \int_{\Omega} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$ is a compact operator mapping from $L^2(\Omega)$ to itsself and is a bi-injection.

イロト 不得下 イヨト イヨト 二日

Computational Consideration

Definition

A kernel function K decays off diagonally if

$$|\mathcal{K}(\mathbf{x},\mathbf{y})| \leq rac{C}{d(\mathbf{x},\mathbf{y})^{\sigma}+1},$$

for $\sigma > 0$, where $d(\mathbf{x}, \mathbf{y})$ is the distance between the **x** and **y**.

For example, $K(\mathbf{x}, \mathbf{y}) = \exp(-\sigma \|\mathbf{x} - \mathbf{y}\|^2)$. When the support Ω_{ξ} of B_{ξ} and Ω_{η} of B_{η} are far away, our spline method gives

$$|A_{\xi,\eta}| = |\int_\Omega \int_\Omega K(\mathbf{x},\mathbf{y}) B_{\xi}(\mathbf{y}) B_{\eta}(\mathbf{x}) d\mathbf{y} d\mathbf{x}| \leq rac{\mathcal{C}}{d(\Omega_\eta,\Omega_\xi)^\sigma+1},$$

where Ω_{ξ} and Ω_{η} are the support of B_{ξ} and B_{η} , respectively.

We now propose a few new scheme to approximate f from the given information F.

- A Least Squares Method;
- Discrete Least Squares Method;
- Penalized Least Squares Method;
- Some Nonlinear Schemes;

A Least Squares Method

For a given convolution function

$$F(\mathbf{x}) = \int_{\Omega} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y},$$

we approximate f by $S_f \in S_d^r(\triangle)$ which solves the following minimization problem:

$$S_{f} = \arg\min_{s \in S_{d}^{r}(\Delta)} \int_{\Omega} \left(F(\mathbf{x}) - \int_{\Omega} K(\mathbf{x}, \mathbf{y}) s(\mathbf{y}) d\mathbf{y} \right)^{2} d\mathbf{x}.$$
(13)

This is a standard least squares approach for de-convolution.

- Let us see that the minimizer S_f exists and is unique.
- We also need to determine how well S_f approximates f in terms of size |△| of triangulation of Ω.
- How do we compute the solution and what the computational cost is.

Coerciveness and Uniqueness

Definition

We say $K(\mathbf{x}, \mathbf{y})$ is coercive with respect to spline space $S_d^r(\triangle)$ if

$$\int_{\Omega} K(\mathbf{x}, \mathbf{y}) s(\mathbf{y}) d\mathbf{y} = 0, \text{ a.e. on } \Omega,$$

then $s(\mathbf{y}) = 0$, on Ω .

Then, we have the following

Theorem (Existence and Uniqueness)

Suppose that the kernel function $K(\mathbf{x}, \mathbf{y})$ is coercive with respect to a spline space $S_d^r(\triangle)$. Then the minimization problem (13) has a unique solution in $S_d^r(\triangle)$.

(日) (周) (三) (三)

Let $S_d^r(\triangle) = \{\phi_1, \dots, \phi_m\}$ and let $\{\phi_j, j = m + 1, m + 2, \dots, \}$ be a basis of the orthogonal complement space of $S_d^r(\triangle)$ in a Hilbert space, e.g, $H = L_2(\Omega)$ or Sobolev space $H = W_2^r(\Omega)$. Then we can write

$$f=\sum_{j=1}^{\infty}c_j\phi_j.$$

Note that f is the solution of the following the minimization:

$$f = rgmin_{c_1,c_2,\cdots} \int_\Omega \left(F(\mathbf{x}) - \int_\Omega K(\mathbf{x},\mathbf{y}) \sum_{j=1}^\infty c_j \phi_j(\mathbf{y}) d\mathbf{y}
ight)^2 d\mathbf{x}.$$

イロト イポト イヨト イヨト 二日

Approximation of Least Squares Method

It follows that

$$\int_{\Omega} \int_{\Omega} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y} \int_{\Omega} K(\mathbf{x}, \mathbf{y}) \phi_j(y) d\mathbf{y} d\mathbf{x} = \int_{\Omega} F(\mathbf{x}) \int_{\Omega} K(\mathbf{x}, \mathbf{y}) \phi_j(\mathbf{y}) d\mathbf{y} d\mathbf{x}$$

for all $j=1,2,\cdots,\infty$ while the spline minimization in (13) gives

$$\int_{\Omega}\int_{\Omega} \mathcal{K}(\mathbf{x},\mathbf{y}) \mathcal{S}_{f}(\mathbf{y}) d\mathbf{y} \int_{\Omega} \mathcal{K}(\mathbf{x},\mathbf{y}) \phi_{j}(\mathbf{y}) d\mathbf{y} d\mathbf{x} = \int_{\Omega} \mathcal{F}(\mathbf{x}) \int_{\Omega} \mathcal{K}(\mathbf{x},\mathbf{y}) \phi_{j}(\mathbf{y}) d\mathbf{y} d\mathbf{x}$$

for all $j = 1, 2, \cdots, m$. It thus follows that

$$\int_{\Omega} \int_{\Omega} \mathcal{K}(\mathbf{x}, \mathbf{y}) \left(f(\mathbf{y}) - S_f(\mathbf{y}) \right) d\mathbf{y} \int_{\Omega} \mathcal{K}(\mathbf{x}, \mathbf{y}) \phi_j(\mathbf{y}) d\mathbf{y} d\mathbf{x} = 0$$
(14)

for all $j = 1, 2, \cdots, m$.

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

Approximation of Least Squares Method

Let Q_f be the quasi-interpolatory spline in $S_d^r(\triangle)$ which achieves the optimal order of approximation of f from $S_d^r(\triangle)$. Then (14) implies that

$$\begin{split} &\int_{\Omega} \left(\int_{\Omega} \mathcal{K}(\mathbf{x},\mathbf{y})(f(\mathbf{y}) - S_f(\mathbf{y})) dy \right)^2 dx \\ &= \int_{\Omega} \int_{\Omega} \mathcal{K}(\mathbf{x},\mathbf{y}) \left(f(\mathbf{y}) - S_f(\mathbf{y}) \right) dy \int_{\Omega} \mathcal{K}(\mathbf{x},\mathbf{y}) \left(f(\mathbf{y}) - Q_f(\mathbf{y}) \right) dy dx \\ &\leq \left(\int_{\Omega} \left(\int_{\Omega} \mathcal{K}(\mathbf{x},\mathbf{y})(f(\mathbf{y}) - S_f(\mathbf{y})) dy \right)^2 dx \right)^{\frac{1}{2}} \times \\ &\left(\int_{\Omega} \left(\int_{\Omega} \mathcal{K}(\mathbf{x},\mathbf{y})(f(\mathbf{y}) - Q_f(\mathbf{y})) dy \right)^2 dx \right)^{\frac{1}{2}}. \end{split}$$

That is, we have

$$\int_{\Omega} \left(\int_{\Omega} K(\mathbf{x}, \mathbf{y})(f(\mathbf{y}) - S_f(\mathbf{y})) dy \right)^2 dx \leq \int_{\Omega} \left(\int_{\Omega} K(\mathbf{x}, \mathbf{y})(f(\mathbf{y}) - Q_f(\mathbf{y})) dy \right)^2 dx$$

$$Ming-Jun Lai \quad (UGA)$$
May 20, 2017 29 / 50

Approximation of De-Convolution

When $K(\mathbf{x}, \mathbf{y})$ is coercive with respect to $L^2(\Omega)$, we can show there exists a positive constant C_K such that

$$\int_{\Omega} (\int_{\Omega} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y})^2 \geq C_{\mathcal{K}} \int_{\Omega} (f(\mathbf{x}))^2 d\mathbf{x}, \quad \forall f \in L^2(\Omega).$$

By using the quasi-interpolant Q_f of f (cf. Theorem 1 above), we obtain the following

Theorem (Approximation Properties)

Suppose that the kernel function $K(\mathbf{x}, \mathbf{y})$ is bounded above and coercive. Suppose that $f \in C^{\ell+1}(\Omega)$ for $0 \le \ell \le d$. Then the solution S_f from the minimization problem (13) approximates f in the following sense:

$$\|f(\mathbf{x}) - S_f(\mathbf{x})\|_{L_2(\Omega)} \leq C | riangle |^{\ell+1} |f|_{\ell+1,\Omega}$$

for a constant C dependent on d, $\frac{M_K}{C_K}$ and the boundary of Ω , where $|\Delta|$ is the maximal length of the edges of Δ and $|f|_{\ell,\Omega}$ denotes the L_2 norm of the ℓ^{th} derivatives of f over Ω .

Ming-Jun Lai (UGA)

Coercivity

What kind of kernel functions K are coercive with respect to $L^2(\Omega)$? It is clear when $K(\mathbf{x}, \mathbf{y}) = K_1(\mathbf{x})K_2(\mathbf{y})$ is a separate kernel, $K(\mathbf{x}, \mathbf{y})$ will not be coercive.

Theorem

Suppose that $K(\mathbf{x}, \mathbf{y}) = K(\mathbf{x} - \mathbf{y})$ and $\widehat{F}(\omega) \neq 0$. Then K is coercive.

The following kernels are coercive:

•
$$K(\mathbf{x}, \mathbf{y}) = \exp(-\sigma ||\mathbf{x} - \mathbf{y}|^2)$$
, for some $\sigma > 0$
• $K(\mathbf{x}, \mathbf{y}) = \exp(-\sigma ||\mathbf{x} - \mathbf{y}|)$, where $\sigma > 0$;
• $K(\mathbf{x}, \mathbf{y}) = \sqrt{\sigma + ||\mathbf{x} - \mathbf{y}|^2}$, where $\sigma > 0$;
• $K(\mathbf{x}, \mathbf{y}) = 1/\sqrt{\sigma + ||\mathbf{x} - \mathbf{y}|^2}$, where $\sigma > 0$;
• $K(\mathbf{x}, \mathbf{y}) = 1/(\sigma + ||\mathbf{x} - \mathbf{y}|^2)$, where $\sigma > 0$;

イロト イ団ト イヨト イヨト 三日

Next we consider the discrete least squares approximation of f. Let $\mathbf{x}_i, i = 1, \dots, n$ be some designed points in Ω which are evenly distributed with respect to $S_d^r(\Delta)$ in the following sense.

Definition

We say that $\mathbf{x}_i \in \Omega$, $i = 1, \dots, n$ are evenly distributed over Ω with respect to $S_d^r(\triangle)$ if $\int_{\Omega} K(x_\ell, y) f(y) dy = 0, \forall \ell = 1, \dots, n$ for a spline function $f(y) \in S_d^r(\triangle)$, then $f(y) \equiv 0$.

The discrete least squares approximation $\widehat{S_{f,n}} \in S_d^r(\triangle)$ is the solution of

$$\widehat{S_{f,n}} = \arg\min_{s \in S_d^r(\triangle)} \frac{1}{n} \sum_{i=1}^n \left(F(\mathbf{x}_i) - \int_{\Omega} K(\mathbf{x}_i, \mathbf{y}) s(\mathbf{y}) d\mathbf{y} \right)^2.$$
(15)

To study the minimizer $\widehat{S_{f,n}}$ of (15), we may relate it to the least squares solution S_f . The following well-known lemma is needed.

Lemma

Let A be an invertible matrix and \tilde{A} be a perturbation of A satisfying $\|A^{-1}\| \|A - \tilde{A}\| < 1$. Suppose that x and \tilde{x} are the exact solutions of Ax = b and $\tilde{A}\tilde{x} = \tilde{b}$, respectively. Then

$$\frac{\|x-\tilde{x}\|}{\|x\|} \leq \frac{\kappa(A)}{1-\kappa(A)\frac{\|A-\tilde{A}\|}{\|A\|}} \left[\frac{\|A-\tilde{A}\|}{\|A\|} + \frac{\|b-\tilde{b}\|}{\|b\|}\right]$$

Here, $\kappa(A)$ denotes the condition number of matrix A.

< □ > < 同 > < 臣 > < 臣 > 三 三 つ <

In addition, we need the following

Lemma

Suppose that \triangle is a β -quasi-uniform triangulation. Suppose that $d \ge 3r + 2$. Then there exist two positive constants C_1 and C_2 independent of \triangle such that for any spline function $S \in S_d^r(\triangle)$ with coefficient vector $\mathbf{s} = (s_1, \cdots, s_m)^T$ with $S = \sum_{i=1}^m s_i \phi_i$,

$$C_1|\triangle|^2\|\mathbf{s}\|^2 \leq \|S\|^2 \leq C_2|\triangle|^2\|\mathbf{s}\|^2.$$

A proof of this lemma can be found in [Lai and Schumaker, 2007¹⁸].

¹⁸M. J. Lai and L. L. Schumaker, Spline Functions over Triangulations, Cambridge University Press, 2007.

May 20, 2017

34 / 50

Ming-Jun Lai (UGA)

Approximation of Discrete Least Squares Method

Theorem

Suppose that the kernel function $K(\mathbf{x}, \mathbf{y})$ is nontrivial, bounded and coercive on Ω . Suppose that the designed points $x_{\ell}, \ell = 1, \dots, n$ are evenly distributed with respect to $S_d^r(\Delta)$. Suppose that $f \in C^{\ell}(\Omega)$ for $0 \leq \ell \leq d+1$. Then the solution $\widehat{S_{f,n}}$ from the minimization problem (15) approximates g in the following sense:

$$\|f(x) - \widehat{S_{f,n}}(x)\|_{L_2(\Omega)} \le C_3 |\Delta|^{\ell} |f|_{\ell,\Omega} + \frac{C_4 \|f\|_{L_2(\Omega)}}{n}$$

for a constant C_3 dependent on d, $\frac{M_2}{M_1}$ and the smallest angle θ_{\triangle} , and for a constant C_4 dependent on d, C_1 , C_2 and $\kappa(A)$.

イロト 不得下 イヨト イヨト 二日

Penalized Discrete Least Method

In general, it is not easy to figure out if the designed points are evenly distributed over Ω with respect to $S_d^r(\Delta)$ or not. We thus propose another approach to approximate the function f. Mainly we seek a solution $\widetilde{S_{f,n,\lambda}} \in S_d^r(\Delta)$ which solves the following minimization problem:

$$\widetilde{S_{f,n,\lambda}} = \arg\min_{s \in S_d^r(\Delta)} \frac{1}{n} \sum_{i=1}^n (f(x_i) - \int_{\Omega} K(x_i, y) s(y) dy)^2 + \lambda E_r(s), \quad (16)$$

where $\lambda > 0$ is a parameter and $E_q(s)$ denotes the energy functional of s in the following sense:

$$E_q(s) = \int_{\Omega} \sum_{k=0}^q \sum_{i+j=k} (D_1^i D_2^j s)^2 dx,$$

where q is an integer with $0 \le q \le r$ and D_1 and D_2 stand for the partial derivatives with respect to the first and second variables.

Ming-Jun Lai (UGA)

May 20, 2017 36 / 50

Approximation of Penalized Least Squares Method

Theorem

Suppose that the kernel function $K(\mathbf{x}, \mathbf{y})$ is nontrivial, bounded and coercive on unit square $\Omega = [a, b] \times [c, d]$. Suppose that the designed points $x_{\ell}, \ell = 1, \dots, n$ are evenly distributed with respect to the polynomial space \mathcal{P}_{q-1} . Suppose that $f \in C^{\ell}(\Omega)$ for $0 \leq \ell \leq d+1$. Then the solution $\widetilde{S_{f,n,\lambda}}$ from the minimization problem (16) approximates g in the following sense:

$$\|f(x) - \widetilde{S_{f,n}}(x)\|_{L_2(\Omega)} \leq C_3 |\triangle|^\ell |f|_{\ell,\Omega} + C_4(\frac{1}{n} + \lambda) \|f\|_{L_2(\Omega)}.$$

Here C_3 is a constant dependent on d, $\frac{M_2}{M_1}$ and the smallest angle θ_{\triangle} , C_4 is a constant dependent on d, C_1 , C_2 , dimension of spline space $S_d^r(\triangle)$, and the condition number of $\kappa(A)$ of A.

When the kernel function k is ill-posed, we can regularize the L^2 minimization by considering: Find the minimizer $u_{f,\lambda} \in L^2(\Omega)$ of the following

$$\min_{\boldsymbol{s}\in L^2(\Omega)} \frac{1}{2} \int_{\Omega} \left(F(\mathbf{x}) - \int_{\Omega} K(\mathbf{x}, \mathbf{y}) s(\mathbf{y}) d\mathbf{y} \right)^2 d\mathbf{x} + \frac{\lambda}{2} \int_{\Omega} s(\mathbf{y})^2 d\mathbf{y}, \quad (17)$$

where $\lambda > 0$ is a parameter and the last term is a standard regularizer. Certainly, in general, we should study the minimization problem:

$$\min_{\boldsymbol{s}\in H^1(\Omega)} \frac{1}{2} \int_{\Omega} \left(F(\mathbf{x}) - \int_{\Omega} K(\mathbf{x}, \mathbf{y}) s(\mathbf{y}) d\mathbf{y} \right)^2 d\mathbf{x} + \frac{\lambda}{2} \int_{\Omega} |\nabla s(\mathbf{y})| d\mathbf{y}, \quad (18)$$

where ∇s stands for the gradient of s. Many standard analysis can be carried out. We omit the details.

イロト 不得下 イヨト イヨト 二日

We have already seen that a linear system associated with least squares method has a problem that

$$A_{ij} \neq 0, \forall i, j = 1, \cdots, n$$

and *n* is usually large for a problem in \mathbb{R}^2 or \mathbb{R}^3 . Solution of $A\mathbf{c} = \mathbf{b}$ is not easy when *n* is large. Similar for discrete least squares, penalized least squares methods, etc..

For integral equation of the second kind, A multiscale method was proposed to reduce the computational difficulty. See [Chen, Micchelli, Xu, 2015¹⁹] which summarizes many research results developed in the last 20 years by these researchers and their collaborators.

¹⁹Z. Chen, C. A. Micchelli, Y. Xu, Multiscale Methods for Fredholm Integral Equations, Cambridge University Press, 2015

Following the ideas in [Chen, Micchelli, and Xu, 2015], let $S_0 = S'_d(\triangle)$ be a spline space over a triangulation \triangle of domain Ω and $S_k = S'_d(\triangle_k)$ for $k \ge 1$, where \triangle_k is the *k*th uniform refinement of \triangle . It is known that $S_k \subset S_{k+1}$ and $\bigcup_{k>0} S_k = L^2(\Omega)$. Writing

$$S_k = W_k \oplus S_{k-1}$$

for $k \geq 1$ and letting $W_0 = S_0$, we have

$$L^2(\Omega) = \bigcup_{k\geq 0} W_k.$$

We can use these subspaces W_k , $k \ge 0$ to de-convolution.

▲ロト ▲掃ト ▲ヨト ▲ヨト ニヨー わえの

Polynomial Decay of Kernel Functions

Recall $K(\mathbf{x}, \mathbf{y}) = K(\mathbf{x} - \mathbf{y})$ has a good decay property if

$$|\mathcal{K}(\mathbf{x},\mathbf{y})| \leq \frac{\mathcal{C}}{|\mathbf{x}-\mathbf{y}|^{\sigma}+1}, \quad \forall |\mathbf{x}-\mathbf{y}| \to \infty$$
 (19)

for some $\sigma > 0$.

Furthermore, K is of smooth decay of order $k \ge 1$ if

$$|D_{\mathbf{x}}^{\alpha}D_{\mathbf{y}}^{\beta}K(\mathbf{x},\mathbf{y})| \leq \frac{C}{|\mathbf{x}-\mathbf{y}|^{\sigma+|\alpha|+|\beta|}+1}, \quad \forall |\mathbf{x}-\mathbf{y}| \to \infty$$
(20)

for some $\sigma > 0$ and $\alpha, \beta \in \mathbb{Z}_+^2$ with $|\alpha| \le k, |\beta| \le k$. For example, $K(\mathbf{x}, \mathbf{y}) = \exp(-\alpha |\mathbf{x} - \mathbf{y}|^2)$. For another example, $K(\mathbf{x}, \mathbf{y}) = 1/(|\mathbf{x} - \mathbf{y}| + 1)$.

▲ロト ▲掃ト ▲ヨト ▲ヨト ニヨー わえの

Advantages of Multiscale Methods

According to [Chen, Micchelli and Xu, 2015], a multiscale method enables us to have a linear system whose coefficient matrix with faster decay property:

Lemma (Chen, Micchelli and Xu, 2015, p. 205)

Suppose that the kernel $K(\mathbf{x}, \mathbf{y})$ is of smooth decay of order $k \ge 1$. Then for $\phi_i \in W_i$ and $\phi_j \in W_j$ with $i \ne j$,

$$|A_{ij}| \le C 2^{-k(i+j)}, \tag{21}$$

if W_0 contains all polynomials of degree $\leq k$.

Their construction of $W_j, j \ge 1$ is based on discontinuous piecewise polynomial functions over a rectangular domain based on tensor products. How to construct $W_j, j \ge 1$ for spline space $S_d^r(\triangle)$ over an arbitrary triangulation of any polygonal domain Ω is still a **difficulty**.

Our Construction of $W_j, j \ge 1$

Construction of W_j is not easy, in particular, when $r \ge 1$. Let me explain how I do it.

- 1) Consider Š_j = S⁻¹_d(△_j) first.
 For any s ∈ Š_j, we can write s in terms of Š_{j+1}. As these spline spaces are of finite dimensions, we can express in terms of the coefficient vector of a spline s ∈ Š_j. Let c_j be the coefficient vector of s ∈ Š_j.
- 2) Next for s ∈ S^r_d(△_j), r ≥ 0, we have a smoothness matrix H such that H_jc_j = 0.
- 3) Since $\tilde{S}_j \subset \tilde{S}_{j+1}$, we can write any spline $s \in \tilde{S}_j$ in term of \mathbf{c}_{j+1} . One can find a refinement matrix R_j such that

$$\mathbf{c}_{j+1} = R_j \mathbf{c}_j \tag{22}$$

イロト 不得下 イヨト イヨト 二日

with $H_j \mathbf{c} = 0 = H_{j+1} \mathbf{c}_{j+1}$. Note that R_j is a tall matrix.

Our Construction of $W_j, j \ge 1(\mathsf{II})$

We need spline $w \in W_{j+1} \subset S_d^r(\triangle_{j+1})$ with coefficent vector $\mathbf{d}_{j+1} = Q_j \mathbf{a}_{j+1}$ with Q_j being a tall matrix such that

$$0 = \int_{\Omega} s_j w dx dy = \mathbf{c}_{j+1}^{\top} M_{j+1} \mathbf{d}_{j+1} = \mathbf{c}^{\top} R_j^{\top} M_{j+1} Q_j \mathbf{a}_{j+1}, \qquad (23)$$

where M_{j+1} is a mass matrix introduced before. For R_j , we can find Q_j such that $R_j^{\top} M_{j+1} Q_j = 0$. That is, Q_j is matrix whose columns spanning the null space $M_{j+1}R_j$.

In order to make w whose coefficient vector $Q_j \mathbf{a}$ in $S_d^r(\triangle_{j+1})$, $Q_j \mathbf{a}$ must satisfy the smoothness conditions. Thus, we look for

$$Q_j \mathbf{a} \in \text{ span } \{ Q_j \mathbf{a} : H_{j+1} Q_j \mathbf{a}_j = 0 \},$$
(24)

where H_{j+1} is the smoothness condition matrix. In order to find some locally supported orthogonal basis functions in W_{j+1} , we use a compressive sensing technique to solve

$$\min \|Q_j \mathbf{a}\|_0 : H_{j+1}Q_j \mathbf{a} = 0, \mathbf{a} \neq 0\}. \tag{25}$$

May 20, 2017

44 / 50

Ming-Jun Lai (UGA)

- One is able to find a few locally supported basis functions in W_j . However, there are many globally supported basis functions.
- Research Problem: Does there exist a set of locally supported functions in W_j spanning W_j ?
- Research Problem: if they exist, are they scaleble?

イロト 不得下 イヨト イヨト 二日

For a continuous function $F(\mathbf{x})$ defined on $\mathbf{x} \in \Omega$, we can use spline interpolation of F over all domain points of degree d on triangle T for all $T \in \Delta$ to approximate F. That is, let

$$\mathcal{S}_{\mathcal{F}}(\mathbf{x}) = \sum_{T \in \bigtriangleup} \sum_{i+j+k=d} c^{\mathcal{F}}_{ijk,T} \phi_{ijk,T}(\mathbf{x})$$

be the spline interpolation of F satisfying

$$S_F(\xi_{ijk}^T) = F(\xi_{ijk}^T), \quad \forall i+j+k = d, T \in \triangle.$$

where $\phi_{ijk,T}$ is a Bernstein-Bézier polynomial of degree *d* supported only on triangle $T \in \triangle$. This can be done easily.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの

Spline Approximation of Kernels (II)

For any continuous function $K(\mathbf{x}, \mathbf{y})$ with $\mathbf{x} = (x_1, x_2)$ and $\mathbf{y} = (y_1, y_2)$ defined on $\Omega \times \Omega$, we let

$$S_{\mathcal{K}}(\mathbf{x},\mathbf{y}) = \sum_{T_1 \in \triangle} \sum_{T_2 \in \triangle} \sum_{i+j+k=d} \sum_{o+p+q=d} c_{ijk,opq}^{T_1,T_2} \phi_{ijk,T_1}(\mathbf{x}) \phi_{opq,T_2}(\mathbf{y})$$

be a spline interpolant of $K(\mathbf{x}, \mathbf{y})$ satisfying

$$S_{\mathcal{K}}(\xi_{ijk}^{T_1},\xi_{opq}^{T_2}) = \mathcal{K}(\xi_{ijk}^{T_1},\xi_{opq}^{T_2}), \quad \forall i+j+k = d, o+p+q = d,$$
(26)

for all $T_1, T_2 \in \triangle$, where $\xi_{ijk}^T, i + j + k = d$ are domain points on triangle T for all $T \in \triangle$ and $\phi_{ijk,T}, i + j + k = d$ are Bernstein-Bézier polynomials defined on triangle T for all $T \in \triangle$.

There is a way to use $O(N_{\triangle}^2)$ to compute S_K , where N_{\triangle} stands for the number of triangles in \triangle .

イロト (過) (日) (日) (日) (日) (日)

Spline Approximation of Kernels: Numerical Results

Let us show $\|S_{\mathcal{K}}(\mathbf{x},\mathbf{y}) - \mathcal{K}(\mathbf{x},\mathbf{y})\|_{\infty}$ as follows.

functions	8 triangles	32 triangles	128 triangles
$\exp(-10((x_1-y_1)^2+(x_2-y_2)^2))$	0.1889	0.0760	0.0229
$\frac{1}{10 + (x_1 - y_1)^2 + (x_2 - y_2)^2}$	0.000940	0.000238	0.0000599
$\log(1 + ((x_1 - y_1)^2 + (x_2 - y_2)^2))$	0.0876	0.0234	0.0060
$1 + (x_1 - y_1)^2 + (x_2 - y_2)^2$	0.0960	0.0240	0.0060

Table : Maximum Errors for various functions

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

Summary

- De-convolution is an inverse problem and has many applications of potential importance.
- We have discussed how to use bivariate splines for numerical de-convolution. A few new approaches are proposed. Approximation properties are studied. It is interesting to know how well we have

$$\|f - S_f\|_{L^{\infty}(\Omega)}$$
, and $\|f - S_f\|_{L^1(\Omega)}$. (27)

- A coercive concept for kernel functions is introduced. What kind of kernels $K(\mathbf{x}, \mathbf{y})$ are coercive in general?
- De-convolution is computationally expensive. It requires more in-depth study. More study on construction of the orthogonal complements is needed.
- Our study can be easily extended to the 3D setting by using trivariate spline functions.
- We also plan to extend our study to deal with blind de-convolution problem.

・ロト ・回ト ・ヨト ・ヨ

Thank you mjlai@uga.edu

Ming-Jun Lai (UGA)

May 20, 2017 50 / 50

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで