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Introduction: the Research Problem

Suppose that we are given a Fredholm integral equation of first kind
F = [ Kexy)flo)dy. xe 1)

over a bounded polygonal domain Q € R%. We are interested in how to
approximate f(y), y € , assuming that K(x,y) is a given kernel function
and F(x). When K(x,y) = K(x —y), F(x) is a convolution function. It is
an inverse problem.

More precisely, we are going to use bivariate splines ([Lai and Schumaker,
20072] and [Awanou, Lai and Wenston, 2006%]) to approximate f(y).

2M. J. Lai and L. L. Schumaker, Spline Functions over Triangulations, Cambridge
University Press, 2007.
3G. Awanou, M. J. Lai, and P. Wenston: The multivariate spline method for
numerical solution of partial differential equations and scattered data interpolation,
Wavelets and Splines (G. Chen and M. J. Lai, eds.). Nashboro Press, 24-74:(2006).
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Introduction: Motivations

This research problem has several motivations. Let me explain some of
them as follows.

@ Numerical Solution of Integral Equations of Second Kind
o Image De-blurring

@ Boundary Element Methods for Numerical Solution of Poisson
Equations

Learning Theory

Machine Learning

@ etc....
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Motivation (1)

One often needs to numerically solve a linear integral equation of second
kind: find u € L?(Q) satisfying

// (x,y)u(y)dy + F(x), xe€Q, (2)

where K(x,y) and F(x) are given (cf, [M. Schultz,73%] and [Chen,
Micchelli Xu, 20155]) Letting d(x,y) be a Dirac function over € such
that f(x) = [, 0(x,y)f(y)dy, we can rewrite (2) in

Flx) = /Q (6(cy) — K(x.y))uly)dy, x€Q 3)

Thus, letting K(x,y) = d(x,y) — K(x,y), (2) is our research problem.
*M. H. Schultz, Spline Analysis, Prentice-Hall, 1973.

5Z. Chen, C. A. Micchelli, and Y. Xu, Multiscale Methods for Fredholm Integral
Equations, Cambridge University Press, 2015
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Kernel Functions

Typically, K(x,y) = K(x —y) is a given kernel function. A weakly singular
kernel function or a Mercer kernel are typical examples.

0 d(x—y)=— f exp(ip(x — y))dp in the univariate setting. It can
be apprOX|mated by nascent delta function . such that f x . — f as
€ — 0_|_.

o In RY with d > 2,

— 3 I AR ifd =2
K(x—y)= { 2m Olg x Y|1 !f . ()
T (d2)wg_1 [x—y]T-1> I > 3.

o K(x —y) = exp(—alx — y|?) for some a > 0.
@ box spline kernels, radial basis kernel, etc..
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Image De-Convolution

A blurred image is usually modeled as a convolution of a clean image with
a blurring kernel with some noises:

F(x) = /Q K(xy)f(y)dy + N(x), x€Q (5)

where K is a blurring kernel, f(y) is a clean image, N(x) stands for noises.
That is, given F(x) noised blurred image, find a clean image f(y). It is
also called non-blind image deconvolution if K(x,y) is known. Otherwise,
it is called blind image deconvolution (cf. e.g. [Chai and Shen, 2007°],
[Daubechies, Teschke, Vese, 20077], [Cai and Shen, 20108]).

5A. Chai and Z. Shen, Deconvolution: A wavelet frame approach, Numer. Math.,
106 (2007), pp. 529-587.
I. Daubechies, G. Teschke, and L. Vese, Iteratively solving linear inverse problems
under general convex constraints, Inverse Problems and Imaging, 1 (2007), pp. 29-46.
8J. Cai and Z. Shen, Framelet based deconvolution, J. Comput. Math. 28 (3) (2010)
289-308.
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Geopotential Estimate

More precisely, suppose that the geopotential on an orbital surface S,,
e.g., 500 km above the Earth surface is given. One is interested in
estimating the geopotential on the ground level S, of the Earth. Since the
geopotential G(z) is a harmonic function satisfying the Laplace equation
with boundary values at Earth surface with radius R, = 6378.136km, one
knows
G(z) :/ K(z,x)G(x)dx (6)

with a known Poisson kernel K(z,x) (cf. [Heiskanen and Moritz, 67°]),
where S, denotes a spherical surface around the Earth with radius R and
G(z) is given at |z| = R. 4+ 500km (cf. e.g. [Lai, Shum, Baramidze and
Wenston, 2009%°])

9W. Heiskanen and H. Moritz, Physical Geodesy, Freeman, San Franscico, 1967.

1 ai, M. -J., Shum, C. K., Baramidze, V. and Wenston, P., Triangulated Spherical
Splines for Geopotential Reconstruction, Journal of Geodesy, vol. 83 (2009) pp.

695-708.
Y




Geopotential Reconstruction !
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" ai, M. J., Shum, C. K., Baramidze, V. and Wenston, P., Triangulated Spherical
Splines for Geopotential Reconstruction, Journal of Geodesy, vol. 83 (2009) pp.
695—708.
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Spherical Spline Interpolation

We use spherical splines to reconstruct the geopotential values from the
geopotential measurements from a German satellite which was lunched

around 2002. Our spline surface interpolates the given-data set.
nLai (UGA) May 20, 2017 10 / 50




Classic Learning Theory

Another example is the computation in the classic learning theory. To
estimate the regression function f,

f(x) = /X ydp(ylx), x€X,

one would like to approximate the minimizer f," of the quadratic functional

fy = arg min /(f £ )dox + Ml (7)
feHk Jx

where X > 0 is a fixed penalty parameter, Hy is a Reproducing Kernel

Hilbert Space (RKHS) and p is a conditional probability.

Here K is a continuous, symmetric and positive semidefinite kernel.

115 = /X () /X K(x, y)F(y)dpx (¥)dpx (x).
0112].

12F Cucker and S. Smale, On the mathematical foundations of learning. Bull. Amer.
Math. Soc., 39(2001), 773-795.
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Classic Learning Theory

It is known that fy exists, is unique, and satisfies the following

M (x) + /X K% y)fa(y)dpx(y) = /X Kxo)hy)dox(y)  (8)

We refer to [Smale and Zhou, 20033] and [F. Cucker, D.-X. Zhou,
200714 for details.

Similar to the integral equation of second kind, the above (8) can be
formulated as a de-convolution.

13S. Smale and D.-X. Zhou, Estimating the approximation error in learning theory.
Anal. Appl. 1(2003), 17-41.

14F Cucker and D. -X. Zhou, Learning theory : an approximation theory viewpoint,
Cambridge University Press, 2007
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Existing Numerical Methods

There are many approaches to tackle the numerical approximation of the
de-convolution.

@ Framelet Approach (cf. [Cai and Shen, 2010]);

@ Galerkin Methods (cf. [Chen, Micchelli, Xu, 2015]);

@ Collocation Methods (cf. [Chen, Micchelli, Xu, 20021%]);

@ Petrov-Galerkin Methods (cf. [Chen and Xu, 1998°]),

@ Degenerate Kernel Methods (cf. [Chen, Micchelli, Xu, 2015])

@ Multiscale Methods (cf. [Chen, Micchelli, Xu, 2015])

@ Learning Schemes, (cf. D. X. Zhou and his collaborators, Smale and Y. Yao,
2006, ...)

157 Chen, C. A. Micchelli, Y. Xu, Fast collocation methods for second kind integral
equations, SIAM J. Numerical Analysis, 40(2002), 344-375.

167, Chen and Y. Xu, The Petrov-Galerkin and integral Petrov-Galerkin methods for
second kind integral equations, SIAM J. Numerical Analysis, 35(1998),-406—-434.
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Difficulties and Challenges

Major difficulties in numerical computation for de-convolution are

@ 1) the matrix associated with linear systems from the most methods
is dense and the size of the matrix increases quickly in the
multi-dimensional setting;

@ 2) A given F(x) is noisy and has some errors, how can one recovery
f(y) accurately?

@ 3) When K(x,y) is very smooth, even f(y) is not smooth at all, the
given F(x) is very reasonable. In this case, can we recovery f(y)?

@ 4) Another problem is how to deal with this problem over irregular
domains, any polygonal domain in R? and R3,

Can we use spline functions to help?

Ming-Jun Lai (UGA) May 20, 2017 14 / 50
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What are Multivariate Splines?

Let P4 be the space of all polynomials of degree d > 1. Let A be a
triangulation of a domain Q C R2. For integers d > 1, —1 < r < d define
by

Si(A) ={s e C"(Q),s|: € Py, t € A}

the spline space of smoothness r and degree d over A.
In general, let r = (r1,- -+, ry) with r; > 0 be a vector of integers. Define
SY(B) = {s € CHQ), 5], € C"", ¢ € E},

where E is the collection of interior edges of A. Each spline in S§(A) has
variable smoothness.

This can handle the situation of hanging nodes in a triangulation!

Ming-Jun Lai (UGA) May 20, 2017 15 / 50



Definition of Spline Functions

Let T = ((x1,y1), (x2,¥2), (x3,¥3)). For any point (x, y), let by, b, b3 be
the solution of

X bix1 + byxo + bzxs

y = biy1i+ by + b3ys
1 = by + b+ bs.

Fix a degree d > 0. For i +j+ k =d, let

db ik
i!j!k!bl 273
which is called Bernstein-Bézier polynomials.
Foreach T € A, let

Bijk(x,y) =

Slr=">_ chBilxy).
i+j+k=d
We use s = (clﬁ7 i+j+k=4d, T € A) be the coefficient vector to denote

a spline function in S, *(A). This setup can include the discontinuous
May 20, 2017 16 / 50



Evaluation and Derivatives

We use the de Casteljau algorithm to evaluate a Bernstein-Bézier
polynomial at any point inside the triangle. It is a simple and stable
computation. See [Lai and Schumaker, 200717]

It is also used for computation of derivatives

Let T = (vi,v2,v3) and S|7 =3, 4 CijkBik(x,y). Then directional
derivative

Dy,—v,S|T=4d Z (Cijt1k — Cit1.k)Bijk(x, ).
itjtk=d—1

Similar for Dy,_y, S| 7.
Dy and D, are linearly combinations of these two directional derivatives.

M. -J. Lai and Larry L. Schumaker, Spline Functions over Triangulations, Cambridge
University Press, 2007.
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Smoothness Condition between Triangles

Let T; and T, be two triangles in A which share a common edge e. Then
S € C'(T1 U Ty) if and only if the coefficients of c; kl and c 2 satisfy the
following linear conditions. E.g.,

SeCY(TuUT) |ch0’Jk—ch0,J+k_d

SeCYTLU Ty)iff C1 k= = bicf; J+1 ko T b2C k+10 T b3Cj,T/f,1
for i+ k =d — 1 and etc. (cf. [Farin’86] and [de Boor'87]). We code
them by He=0.

Ming-Jun Lai (UGA) May 20, 2017 18 / 50
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Integration

Let s be a spline in S;(A) with |7 =3, 4 4 clﬁB,-jk(x,y)7 T e A.

Then A
/Qs(x,y)dxdy: Z (d:;) Z cUTk

TeA \ 2 ) i+j+k=d

If p= Ei+j+k:d ajjk Bijk(x, y) and q = Ei+j+k:d bij Bjjk(x, y) over a
triangle T, then

/ p(x,¥)q(x, y)dxdy = a’ Myb,
-
where a = (aji,i+j+k=d)", b= (bj,i +j+k=d)", Myisa

symmetric matrix with known entries (cf. [Chui and Lai, 1990]).
Similarly, we have

/ p(x,¥)a(x,y)r(x,y)dxdy = a'Asb O c.
.

which can be used for weighted inner products of polynomials.
May 20, 2017 19 / 50
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Spline Approximation Order

Theorem ([Lai and Schumaker'98)

2] Suppose that A is a (3-quasi-uniform triangulation of domain Q € R?
and suppose that d > 3r+2. Fix0 < m < d. Then for any f in a Sobolev
space W"1(Q), there exists a quasi-interpolatory spline Qf € Sj(A)
such that

I — Q|

kp,2 < CIA™M K fl g1 0, VO < k< m+1 (9)

for a constant C > 0 independent of f, but dependent on 3 and d.

?Lai, M. J. and Schumaker, L. L., Approximation Power of Bivariate Splines,
Advances in Computational Mathematics, vol. 9 (1998) pp. 251-279.

When d > 3r 42, S}(A) has a super-spline subspace which consists of a
locally supported basis and achieves the full approximation order (9).
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The Galerkin Method

Let S be a spline space which has a locally supported stable basis
{Be,§ € M}. Let S¢ = ) ¢ pq CeBe be the approximation of f satisfying

Z c,:// x,y)Be(y)By(x )dydx:/QF(x)Bn(x)dx (10)

£eM

for all B, € §. This is called the Galerkin method.
The linear system Ac = b with

A= [Acn) Acy = /Q /Q K(x,y)Be(y) By(x)dydx. (11)

We say K(x, ) is positive definite with respect to a spline space S if
Jo Bn(x) Jo K(x,y)Be(y)dydx > 0 for all B, B: € S.

Ming-Jun Lai (UGA) May 20, 2017 21 / 50
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The Galerkin Method (I1)

Theorem

Suppose that K(x,y) is positive definite with respect to a spline space S.
There exists a unique solution S¢ satisfying the weak equations (10).

Theorem

Suppose that K(x,y) is positive definite with respect to the standard
L2(Q) and bounded from the above. Suppose that f € H*(Q) for £ > 0.
Then

I — 5¢

20 < CIA Y fli1a (12)

for a positive constant C independent of f, where 0 < £ < d.

Similarly, we can extend these results to the setting when
F(x) = Jo K(x,y)f(y)dy is a compact operator mapping from L%(Q) to
itsself and is a bi-injection.

Ming-Jun Lai (UGA) May 20, 2017 22 / 50



Computational Consideration

Definition
A kernel function K decays off diagonally if
C
K x7 < TV R
Koy < oy

for o > 0, where d(x,y) is the distance between the x and y.

For example, K(x,y) = exp(—a|/x — y||?).
When the support Q¢ of B¢ and €2, of B, are far away, our spline method
gives

C
A ://Kx,yB y)B,(x)dydx| < —————,
Aol =1 | || KGy)Bely)By(x)yax| < Jrg ooy

where €¢ and €, are the support of B¢ and B, respectively.

Ming-Jun Lai (UGA) May 20, 2017 23 / 50



Some New Approximation Schemes

We now propose a few new scheme to approximate f from the given
information F.

@ A Least Squares Method;
@ Discrete Least Squares Method,;
@ Penalized Least Squares Method,;

@ Some Nonlinear Schemes;

Ming-Jun Lai (UGA) May 20, 2017 24 / 50



A Least Squares Method

For a given convolution function
F(x) = QK(x,y)f(y)dy,

we approximate f by S¢ € SJ(/\) which solves the following minimization
problem:

Sf =arg min /Q(F(x)—/ﬂK(x,y)s(y)dy>2dx. (13)

seSi(D)

This is a standard least squares approach for de-convolution.

@ Let us see that the minimizer Sf exists and is unique.

@ We also need to determine how well 5S¢ approximates f in terms of
size |A| of triangulation of Q.

@ How do we compute the solution and what the computational cost is.

Ming-Jun Lai (UGA) May 20, 2017
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Coerciveness and Uniqueness

Definition

We say K(x,y) is coercive with respect to spline space S} (A) if

/K(x,y)s(y)dy: 0, a.e. on Q,
Q

then s(y) =0, on Q.

Then, we have the following

Theorem (Existence and Uniqueness)

Suppose that the kernel function K(x,y) is coercive with respect to a
spline space S (A\). Then the minimization problem (13) has a unique
solution in S[ ().

Ming-Jun Lai (UGA) May 20, 2017 26 / 50



Approximation of Least Squares Method

Let SQ(A) = {qbla”' 7¢m} and |et {¢J7J =m+ 17m+2a' o 7} be a baSiS
of the orthogonal complement space of S(A) in a Hilbert space, e.g,
H = L2(2) or Sobolev space H = WJ ().

Then we can write
[e e}

fF=> g

Jj=1

Note that f is the solution of the following the minimization:

f =arg min / F(x) — / X,y chqﬁj dx.
Q

C1,C2,

Ming-Jun Lai (UGA) May 20, 2017 27 / 50
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Approximation of Least Squares Method

It follows that

/Q/QK(XJ)’C(Y)CIY/QK(XaY)¢J(Y)dde=/QF(X)/QK(x,y)gbj(y)dydx

for all j =1,2,---, 00 while the spline minimization in (13) gives

/Q/QK(x7y)5f(Y)dy/ﬂK(X’Y)¢J(Y)dydx:/QF(X)/QK(&y)qu(y)dydx

forall j=1,2,--- ,m. It thus follows that

| [ Ky ()= Sio dy [ Kxyyestdydx =0 (14)

forall j=1,2,---,m

Ming-Jun Lai (UGA) May 20, 2017 28 / 50



|
Approximation of Least Squares Method

Let Qf be the quasi-interpolatory spline in S7(/A) which achieves the
optimal order of approximation of f from SJ(A). Then (14) implies that

/Q (/ K(x,y)(f(y) - 5f(y))dy>2 dx

Q
- / / K(x.y) (F(y) — S¢(y)) dy / K(xy) (F(y) — Qr(y)) dydx
QJQ Q

( L/ K(x,yxf(y)—sf(y)>dy)2dx>é y
(/Q </Q K(X,Y)(f(Y)—Qf(Y))dy>2dX>é_

That is, we have

K (F) — S ) ax< [ ([ Keey)(eis) — Qrtyey

Q JO N\,
Ming-Jun Lai (UGA) May 20, 2017 29 / 50
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Approximation of De-Convolution

When K(x,y) is coercive with respect to L2(Q), we can show there exists a
positive constant Ck such that

/Q ( /Q K(x,y)f(y)dy)® > Ck /Q (F()2dx,  ¥F € 13(Q).

By using the quasi-interpolant Q¢ of f (cf. Theorem 1 above), we obtain the
following

Theorem (Approximation Properties)

Suppose that the kernel function K(x,y) is bounded above and coercive. Suppose
that f € C**1(Q) for 0 < ¢ < d. Then the solution S¢ from the minimization
problem (13) approximates f in the following sense:

1£(x) = St ()l o) < CIAI T Fler0

for a constant C dependent on d, ’\C”—s and the boundary of Q, where |A| is the

maximal length of the edges of A\ and |f|;q denotes the L, norm of the oth
derivatives of f over Q.
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Coercivity

What kind of kernel functions K are coercive with respect to L2(Q)?

It is clear when K(x,y) = K1(x)Ka(y) is a separate kernel, K(x,y) will not
be coercive.

Theorem

Suppose that K(x,y) = K(x —y) and IA-_(w) # 0. Then K is coercive.

The following kernels are coercive:

b ( ) = eXP(—U”X — y!z), for some o > 0;
o K(x,y) =exp(—o|x —yl|), where o > 0;

° K(x,y) = \/m, where o > 0;

° K(x,y) = 1/\/m, where o > 0;

o K(x,y) =1/(c + ||x — y|?), where ¢ > 0;

Ming-Jun Lai (UGA) May 20, 2017 31 /50
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A Discrete Least Squares Method

Next we consider the discrete least squares approximation of f. Let
X;,i =1,---,n be some designed points in Q which are evenly distributed
with respect to S7(A) in the following sense.

Definition
We say that x; € Q,i=1,--- are evenly distributed over 2 with
respect to S (A) if fQ (x¢,y)f(y)dy =0,¥¢=1,---  nfor a spline

function f(y) € 5’( ), then f(Y)

The discrete least squares approximation S¢ , € S5(A) is the solution of

n

2
sfn—argserg;p&)f]z@(xi)— | Kystay) . )

=1

Ming-Jun Lai (UGA) May 20, 2017 32 /50



A Useful Lemma

To study the minimizer S¢ , of (15), we may relate it to the least squares
solution S¢. The following well-known lemma is needed.

Lemma

Let A be an invertible matrix and A be a perturbation of A satisfying

|A7L|[|A - ANH < 1. Suppose that x and X are the exact solutions of
Ax = b and Ax = b, respectively. Then

= +
X T IA-A] A b
vy =T} R T R

Ix =%l _ __ #(A) PM—AH w—Bq.

Here, k(A) denotes the condition number of matrix A.
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Another Useful Lemma

In addition, we need the following
Lemma

Suppose that A\ is a S-quasi-uniform triangulation. Suppose that

d > 3r + 2. Then there exist two positive constants C; and C;
independent of A such that for any spline function S € S}(A) with
coefficient vectors = (sy,- - ,5m)" with S = ST sidi,

GIAPIs|? < [ISI7 < Gl APs|f?.

A proof of this lemma can be found in [Lai and Schumaker, 200718].

18M. J. Lai and L. L. Schumaker, Spline Functions over Triangulations, Cambridge
University Press, 2007.
May 20, 2017 34 / 50
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Approximation of Discrete Least Squares Method

Theorem

Suppose that the kernel function K(x,y) is nontrivial, bounded and
coercive on ). Suppose that the designed points x;,{ =1,--- ,n are
evenly distributed with respect to S7(A\). Suppose that f € C*(Q) for
0 < ¢ < d+1. Then the solution S/f\,, from the minimization problem (15)
approximates g in the following sense:

176 = Sra ey < GlALFleg + I

for a constant C3 dependent on d, % and the smallest angle O, and for
a constant C4 dependent on d, Gy, C; and k(A).
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Penalized Discrete Least Method

In general, it is not easy to figure out if the designed points are evenly
distributed over Q with respect to S}(A) or not. We thus propose another
approach to approximate the function f. Mainly we seek a solution

5?,;\ € S5 (A) which solves the following minimization problem:

g 1 <

— H . . 2
Seoa = org in, > (1) = [ Ky )s)h +AE(S). (16

where A > 0 is a parameter and E4(s) denotes the energy functional of s
in the following sense:

Eq(s)= [ > > (DiD}s)dx,

Qy—0itj=k

where g is an integer with 0 < g < r and D; and D, stand for the partial
derivatives with respect to the first and second variables.
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Approximation of Penalized Least Squares Method

Theorem

Suppose that the kernel function K(x,y) is nontrivial, bounded and
coercive on unit square Q = [a, b] X [c, d]|. Suppose that the designed
points x;,£ = 1,---  n are evenly distributed with respect to the
polynomial space Py_1. Suppose that f € CYQ) for0< ¢ <d+1. Then
the solution 5;/,,)\ from the minimization problem (16) approximates g in
the following sense:

— 1
1£(x) = Sr.a() @) < GlIA[IFlea + G+ N fll ()
Here C3 is a constant dependent on d, % and the smallest angle O, C4
is a constant dependent on d, Cy, C, dimension of spline space S;(A),
and the condition number of k(A) of A.
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Nonlinear Least Squares Methods
When the kernel function k is ill-posed, we can regularize the L2

minimization by considering:
Find the minimizer ur ) € L2(Q) of the following

seTzi(nQ); /Q <F(X)— /Q K(x, y)S(y)dy)zder; /Q s(y)’dy,  (17)

where A > 0 is a parameter and the last term is a standard regularizer.
Certainly, in general, we should study the minimization problem:

i 2 [ (R0 [ Kexypstoay) o) [ wstolay. )

where Vs stands for the gradient of s.
Many standard analysis can be carried out. We omit the details.
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The difficulty as any conventional method

We have already seen that a linear system associated with least squares
method has a problem that

AU#O’VIL]:]-:)”

and n is usually large for a problem in R? or R3. Solution of Ac = b is not
easy when n is large. Similar for discrete least squares, penalized least
squares methods, etc..

For integral equation of the second kind, A multiscale method was
proposed to reduce the computational difficulty. See [Chen, Micchelli, Xu,
2015%] which summarizes many research results developed in the last 20
years by these researchers and their collaborators.

197 Chen, C. A. Micchelli, Y. Xu, Multiscale Methods for Fredholm Integral
Equations, Cambridge University Press, 2015
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A Multiscale Method

Following the ideas in [Chen, Micchelli, and Xu, 2015], let So = S}(A) be
a spline space over a triangulation A of domain Q and S = S (A) for
k > 1, where A\ is the kth uniform refinement of A.

It is known that S C Si41 and [Ugso Sk = L2(). Writing

Sk = Wi @ Sk—1

for k > 1 and letting Wy = Sp, we have

12(Q) = | Wi

k>0

We can use these subspaces W, k > 0 to de-convolution.
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Polynomial Decay of Kernel Functions

Recall K(x,y) = K(x —y) has a good decay property if

[K(x,y) Vlx —y| = o0 (19)

| <
x—yl7+1

for some o > 0.
Furthermore, K is of smooth decay of order kK > 1 if

C
‘x — y|0+|a|+‘6| + ]_’

| DR D K(x,y)| < Vx—y| = oo (20)

for some o > 0 and «, 8 € Z2 with |a| < k,|B| < k.

For example, K(x,y) = exp(—alx — y|?). For another example,
Kx,y) = 1/(Ix —y[ +1).
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Advantages of Multiscale Methods

According to [Chen, Micchelli and Xu, 2015], a multiscale method enables
us to have a linear system whose coefficient matrix with faster decay

property:
Lemma (Chen, Micchelli and Xu, 2015, p. 205)

Suppose that the kernel K(x,y) is of smooth decay of order k > 1. Then
for ¢; € Wi and ¢ € W; with i # j,

A < C2 ki), (21)

if Wy contains all polynomials of degree < k.

Their construction of Wj,j > 1 is based on discontinuous piecewise
polynomial functions over a rectangular domain based on tensor products.
How to construct W;,j > 1 for spline space S}(A\) over an arbitrary
triangulation of any polygonal domain 2 is still a difficulty.
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Our Construction of Wj,j > 1

Construction of W; is not easy, in particular, when r > 1.
Let me explain how | do it.
1) Consider §; = S;H(L) first.
For any s € SJ, we can write s in terms of S; i+1. As these spline spaces
are of finite dimensions, we can express in terms of the coefficient
vector of a spline s € S;. Let c; be the coefficient vector of s € S;.
@ 2) Next for s € SJ(4Aj),r > 0, we have a smoothness matrix H such
that Hjc; = 0.
@ 3) Since 5; C 511, we can write any spline s € 5; in term of ¢j;1.
One can find a refinement matrix R; such that

Cj+1 = Rigj (22)

with Hjc = 0 = H;;1c;j;1. Note that R; is a tall matrix.
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Our Construction of W;,j > 1(I1)

We need spline w € W1 C SJ(Aj4+1) with coefficent vector
dj 1 = Qjaj;1 with Q; being a tall matrix such that

0= / SdeXdy = Cﬁl Mj+1dj+1 = CTf?JTMj+1 Qjaj+1, (23)
Q

where M1 is a mass matrix introduced before.

For R;, we can find Q; such that RJ-TMJ-H Q; = 0. That is, Q; is matrix
whose columns spanning the null space M;1R;.

In order to make w whose coefficient vector Q;a in SJ(Aj11), Qja must
satisfy the smoothness conditions. Thus, we look for

Qja € span {Qja: Hj;1Qja; = 0}, (24)
where Hj 1 is the smoothness condition matrix.

In order to find some locally supported orthogonal basis functions in W1,
we use a compressive sensing technique to solve

min [|Qjallo : Hj+1Qja = 0,a # 0}. (25)



More study on the construction

One is able to find a few locally supported basis functions in W;. However,
there are many globally supported basis functions.

Research Problem: Does there exist a set of locally supported functions in
W; spanning W;?

Research Problem: if they exist, are they scaleble?
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Spline Approximation of Kernels

For a continuous function F(x) defined on x € €2, we can use spline
interpolation of F over all domain points of degree d on triangle T for all
T € A to approximate F. That is, let

Z Z chie. ik, T(X)

TeA i+j+k=d

be the spline interpolation of F satisfying
SF(&h) = F(&), Vi+j+k=d,TeA.

where ¢ T is a Bernstein-Bézier polynomial of degree d supported only
on triangle T € /A. This can be done easily.
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Spline Approximation of Kernels (II)

For any continuous function K(x,y) with x = (x1,x2) and y = (y1, y2)
defined on Q x Q, we let

Z Z Z Z uTkhop2q¢Uk 71(X)Popq, 72 (¥)

T1€A T2€A i+j+k=d o+p+q=d

be a spline interpolant of K(x,y) satisfying
Sk(&p 602) = K(E]8,€03), Vi+j+k=do+p+qg=d, (26)

for all Ty, T, € A\, where guk’ i+ j 4+ k = d are domain points on triangle
T forall T € A and ¢y 7,i + j+ k = d are Bernstein-Bézier polynomials
defined on triangle T for all T € A.

There is a way to use O(Ni) to compute Sk, where N stands for the
number of triangles in A.
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Spline Approximation of Kernels: Numerical Results

Let us show ||Sk(x,y) — K(x,¥)|lec as follows.

functions 8 triangles | 32 triangles | 128 triangles
exp(—10((x1 — y1)® + (x2 — y2)?)) 0.1889 0.0760 0.0229
1
0.000940 0.000238 0.0000599
104 (xa —y1)* + (e — y2)?
log(1+ ((x1 — y1)% + (2 — ¥2)?)) 0.0876 0.0234 0.0060
L+ (0 —y1)2+ (e —y)? 0.0960 0.0240 0.0060
Table : Maximum Errors for various functions
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Summary

@ De-convolution is an inverse problem and has many applications of potential
importance.

@ We have discussed how to use bivariate splines for numerical de-convolution.
A few new approaches are proposed. Approximation properties are studied.
It is interesting to know how well we have

|f = Sl (@), and [|[f =S¢l (a)- (27)
@ A coercive concept for kernel functions is introduced. What kind of kernels

K(x,y) are coercive in general?

@ De-convolution is computationally expensive. It requires more in-depth
study. More study on construction of the orthogonal complements is needed.

@ Our study can be easily extended to the 3D setting by using trivariate spline
functions.

@ We also plan to extend our study to deal with blind de-convolution problem.
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The End

Thank you =
mjlai@uga.edu
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