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Abstract We consider a model utilizing the concept of
impedance matching, which can be applied to design the
coupled cascaded plasmonic cavity waveguide with desired
properties. We use a transfer matrix method to obtain its
transmission and dispersion diagrams. Base on this method,
we demonstrate that a band-pass metal–dielectric–metal
plasmonic filter with quasi-flat group velocity and tunable
bandwidth can be achieved.
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Introduction

It is widely known that electromagnetic waves (EM) suffer
from steeper variation at the boundaries with discontinuity
of permittivity and permeability, leading to reflection of
EMs at the interfaces. The first effort to reduce EM
reflection was made by Lord Rayleigh in 1880 [1]. The

other great effort to conquer the reflection is the
interference-based coatings proposed in 1935 by Alexander
Smakula of Carl Zeiss Optics Company. Nowadays, these
ideas are generalized and widely used in the EM-related
industry.

The concept of impedance matching (IM), in which the
input impedance (INI) of an electrical load is designed to
match the output one of its corresponding signal source, is
firstly proposed to maximize the power transfer from the
signal source in electronics. Analog to its electrical
counterpart, IM can be applied to other fields where the
maximize power output is asked for. The macroscopic
transmission lines in microwave [2] as well as the
microscopic plasmonic antennas [3, 4], coupled-resonator
optical waveguides [5], and the junction of the plasmonic
waveguide [6, 7] are the particular examples.

Having the advantage of overcoming the diffraction limit
of light, surface plasmon polariton (SPP)-related compo-
nents can be built in the nanoscale. One of the examples is
the SPP channel waveguide which is very important in the
high compact optical circuit [8]. A great deal of attention is
paid to such kind of waveguide due to its potential
application [8–31].

In this paper, we discuss how to use the IM model and
transfer matrix method (TMM) to investigate the dispersive
coupled cascaded plasmonic cavity waveguide (CCPCW).
We show that this model allows one to get a deeper insight
of the physical phenomena of bonding and anti-bonding
states as well as the SPP Bragg reflector. We would like to
mention that a typical physical situation when this model
can be employed directly to design a tunable flattop band-
pass filter with small group velocity dispersion. The paper
is organized as follows. In the section “Model,” we describe
the theory models about CCPCW. In “Applications of this
Model,” we give a certain example in which the upper
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proposed models can work effectively in designing the SPP
waveguide components. By comparing with the numerical
experiments, the models demonstrate themselves more
efficiency to understand the physical properties and obtain
the transmission properties of the CCPCW. “Conclusions”
concludes the paper.

Model

An infinite plasmonic waveguide, i.e., metal–dielectric–
metal (MDM) waveguide can be modeled as a transmission
line with a characteristic impedance [6]. Because of its
subwavelength width (in our case tens of nanometers), only
the symmetric mode is considered. Fabry-Perot (F-P) MDM
cavity, a normal plasmonic waveguide component as shown
in Fig. 1a, can be modeled as a load connecting to the
source by a finite transmission line with characteristic
impedance Zd. Both load and source are regarded as semi-
infinite transmission lines with characteristic impedance Za
in which the subscripts a and d stand for air and dielectric,
respectively. By regarding the transverse electric fields as
voltage and transverse magnetic fields as a current [6, 16],
the characteristic impedance of the two-dimensional infinite
transmission line which represents the output impedance
can be obtained as:

Za;d � Exd

Hy
¼ gw

jw"0"a;d
ð1Þ

where w stands for the width of the MDM waveguide. εa,d
is the dielectric permittivity of the waveguide core. The INI
can be calculated from the lossy transmission line theory
[2] as in the following

Zin ¼ Zd
Za � iZd tanh gddð Þ
Zd � iZa tanh gddð Þ ð2Þ

where gd ¼ bd þ jad represents the complex propagation
constant of the fundamental propagating transverse mag-
netic (the electric field is in the plane of propagation) mode
in the MDM waveguide and d stands for the length of the
F-P MDM cavity. β determines the guided index. For N
transmission lines cascaded between the source and the
load as shown by Fig. 1b, we can simplify it as a source
with an effective load, and the effective INI can be
expressed as

Zin ¼ ZN
Z N�1ð Þin � iZN tanh gNdð Þ
ZN � iZ N�1ð Þin tanh gNdð Þ ð3Þ

where Z(N−1)in can be deduced by the same procedure from
the nearest neighbor. With this kind of method, we can
describe the INI of any combination of cascaded structures,
i.e., CCPCW. The reflection coefficient between the source
and effective load can be calculated by

R ¼ Zin � Za
Zin þ Za

ð4Þ

In electronics, people use impedance conjugate matching
to maximize the power transferred from the source to the
resistive load, i.e., Zout � Z

»
in where * denotes the complex

conjugate. However, as we can see from Eq. 4, the
minimum reflection appears at the condition in which INI
is equal to the output impedance. This is the key idea to
design band-pass plasmonic waveguide components. The
mismatch between the input and output impedance of a
waveguide system, |Zin − Zout|, gives us an insight into the
physical properties of this plasmonic waveguide. In order to
obtain the theoretical transmission curve, we use the
alternative TMM [32], which is more convenient in
obtaining the group velocity and include the dispersive
nature of the plasmonic waveguide. Note that we are
interested in the deep subwavelength region; the high order
modes excited at the impedance discontinuity have a very
small decay length compared to the fundamental one. This
can be confirmed by looking at the steady state (the
pseudovector, magnetic field) obtained by the finite-
difference time-domain (FDTD) numerical experiment in
which the Drude model [12] is used to obtain the
parameters of the metal, and fine grid 1×1 nm is used.
From Figs. 2a, we can see that the field pattern at the
waveguide discontinues and is dominated by the funda-
mental mode which means that the reflection from the
interface excites mostly the fundamental mode only due to
the subwavelength binding. With the pre-find phase shift of
the pseudovector at the interface and the assumption of
immediately recovering of the fundamental mode these
allow one to describe the scattering interface by a simple
matrix. It is different from the situation that the waveguide

Zin

Zd ZaZa

x

z

(a) 

(b) 

(c) 

S L Zd ZaZa

d 

S L …
ZN ZN-1 Z1

Z (N-1)in

Fig. 1 a The structure detail of the F-P MIM waveguide. Za and Zd
represent the characteristic impedance of the infinite transmission line
when the filling content is air and dielectric (nd=3.4), respectively.
The white arrow indicates the effective INI. b Electronic analog of the
F-P MIM waveguide. c Schematic view of N cascaded transmission
lines. ZN−1 stands for the characteristic impedance of the (N−1)th F-P
cavity while Z(N−1)in represents the (N−1)th INI
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junction is wavelength scale, and coefficients of the
scattering matrix should be obtained by numerical simula-
tion [7]. Supposing the phase shifts of the reflection are
f1,2, we have S1� ¼ reiϕ1S1þ; S

10
� ¼ reiϕ2S1

0
þ in the left

interface. If we choose the referred input and output planes
according to the phase shift and suppose the scattering at
the interface is elastic and reciprocal, the transfer matrix is
well defined. We further look at the reflection phase shift of
Hy calculated by FDTD, as shown in Fig. 2b, we find that
the phase shift of Hy when the fundamental mode travel
from the metal–air–metal (MAM) to the MDM (or vice
versa) is about 0 (π) among the interest spectrum. So the
transfer matrix can be written in the manner of Eqs. 5 and
6, which denotes transformation from MAM to MDM and
MDM to MAM, respectively.

S1�
S1þ

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p 1 �r

�r 1

� �
S1

0
þ

S1
0

�

� �
ð5Þ

S2�
S2þ

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p 1 r

r 1

� �
S2

0
þ

S2
0

�

� �
ð6Þ

where r is the amplitude reflectivity. If we describe the
reflection amplitude as r 1ð Þ ¼ n 1ð Þ�1

n 1ð Þþ1

��� ���, n 1ð Þ ¼ Re neff�MAM 1ð Þð Þ
Re neff�MDM 1ð Þð Þ,

the transmission of the F-P cavity can be deduced by the
TMM

Ts ¼ 1� r2 1ð Þ
r2 1ð Þeidd 1ð Þ � e�idd 1ð Þ

����
����
2

ð7Þ

Where r(1) and dd 1ð Þ ¼ bd þ jadð Þd represent reflection
amplitude and phase shift accompanied with the loss
respectively. γ is obtained by applying the boundary
conditions of continuity of the tangential field components
[33]. By using the same method as Ref. [34], the group
veloc i ty can be der ived Vg wð Þ ¼ DT wð Þ= y0 wð Þx wð Þ�½
x0 wð Þy wð Þ� where D is the total length of the structure, x
(ω) and y(ω) are the real and imaginary parts of the
complex transmission coefficient, respectively. When
calculating the group velocity, the metal loss is not
included.

Applications of this Model

It is straightforward to use this model to construct some
useful components of an optical circuit. High order filters
were theoretically designed and experimentally demonstrat-
ed by using microresonators [35–39]. As mentioned above,
SPP-related components can manipulate light in a nano-
scale. A lot of effort have been paid to construct the first
order filter based on the metal–insulator–metal (MIM)
waveguide [9, 11, 12, 14–16, 19, 22]. Only several cases
paying attention to the subwavelength reflection filter based
on higher order bands were considered in the literature [18,
27, 31]. Tao et al. numerically investigate the high order
band-pass filter with asymmetrical multiple teeth-shaped
structure [23]. A. Pannipitiya et al. proposed a method
which is based on the transmission line theory to
theoretically describe such a system [25]. Here, using the
theory developed above, we propose a high order MDM
broadband filter with flattop transmission and quasi-flat
group velocity of which is very crucial when the signal is
an ultrafast pulse. However, it should be given more
attention in the lossy SPP channel waveguide because the
matching must be fulfilled both with the real and imagined
parts of the impedance.

Having the advantage of flatter passbands, sharper roll-
off, and higher out-of-band signal rejection, high order filter
becomes an important component of optical integrated
circuit.

As have been pointed out by one of the authors, S. Lan,
the response of an optical component including large
contrast in transmittance as well as the oscillation of group
velocity would severely affect the transmission of ultrashort
temporal pulses [40].

Lossless total transmission resonance can be modeled
with the use of two waveguides coupled directly to an
optical cavity. For the simplest transmission resonance
model, which can be referred to as the F-P MDM cavity
mentioned above, the transmission peak at the output port
comes from the constructive multiple interferences at the
resonance frequency. From the IM point of view, the INI
and the output impedance are both real and is equal to each

(b)(a)
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Fig. 2 a Steady state (magnetic
field) of an impedance disconti-
nuity with left port input. The
dashed lines outline the struc-
ture detail and the dotted lines
show the referring plane. Inci-
dent wavelength is 1.55 μm, w=
0.05 μm, and d=0.17 μm. b
Phase shifts between S1� S2�

� �
and S1þ S2þ

� �
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other at the resonant wavelength if the system is lossless.
As can be seen from Fig. 3a, the EM field at the left end of
the F-P is effectively matched at the resonant wavelength.
We also notice that the differences between the imaginary
parts become more sensitive than the real one when the
wavelength moves away from the resonance point. If the
metal loss is introduced, the situation is slightly different.
From Fig. 3b we can see that the real parts of the input and
output impedance match at two points around the red
arrows. The imaginary parts, however, match at only one
point. We thus name this as quasi-matching since the real
and imaginary parts of the impedance cannot match in the
same wavelength and the refection still exists. Comparing

with the lossless case, quasi-matching changes the trans-
mission slightly (the width of the resonance becomes fat). It
is an alternative view to understand why by introducing
losses (or the inner loss of the cavity) will enlarge the full
high half width of a resonator [13]. Figure 3c gives the
transmission results when d is 0.17 μm (black solid line),
2×0.17 μm (black dotted line), and 3×0.17 μm (gray solid
line). As one can see that the transmission peaks are
corresponding to quasi-match points. Due to more sensi-
tivity in the phase shift, which can be seen from Eq. 2, the
resonance is much narrower when the F-P cavity lengths
are taken as the high order impedance matching conditions.
It means that we can control the spectrum of IM by simply
modifying the matching orders. The quasi-matching can
only be realized in a narrow spectrum by using a single
resonant cavity. It is clear that the transmission is nonflat.

From the above-mentioned analysis, it can be concluded
that realizing a flattop broadband filter by utilizing a single

(b) 
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Fig. 4 a 2D plot of the input and output impedance mismatch for two
F-P cavities. The color scale is corresponding to the value of |Zin −
Zout|. In the calculation, d=0.17 μm and nd=3.4. b Theoretical
transmission of two-coupled F-P MIM waveguide when L=0.22 μm.
Black solid line represents the cavity length d=0.17 μm. Black dotted
line and gray solid line stands for d ¼ 2� 0:17mm and
d ¼ 3� 0:17mm, respectively. Inset shows the structure detail

(a) 

(b) 

(c) 

Fig. 3 The real and imagined parts of the input and output impedance
of a lossless and b lossy MIM F-P cavity. c Theoretical transmission
of the F-P MIM waveguide. The black solid line represents the cavity
length d=0.17 μm. Black dotted line and gray solid line stands for
d ¼ 2� 0:17mm and d ¼ 3� 0:17mm, respectively

340 Plasmonics (2011) 6:337–343



F-P cavity is impossible. To achieve a flat band-pass
response with no intensity and group velocity variation
over the spectrum, i.e., a broadband IM, it is necessary to
use at least two resonators, through which additional
parameters can be used to tune the INI. First of all, we

consider the case of two coupled identical F-P MDM
cavities (d=0.17 μm). Each individual supports a resonance
within the bandwidth of interest as shown in the inset of
Fig. 4b. Using Eq. 3, the equivalent INI can be derived as:

Zin ¼ Z1ZaZd � iZa2Zd tanh gaLð Þ � iZaZd2 tanh gddð Þ � Z1Zd2 tanh gaLð Þ tanh gddð Þ
ZaZd � iZ1Zd tanh gaLð Þ � iZ1Za tanh gddð Þ � Za2 tanh gaLð Þ tanh gddð Þ ð8Þ

where Z1 can be obtain by Eq. 2. The matching map |Zin −
Zout| for varied coupling lengths among 0.8 to 2 μm is
shown by Fig. 4a. By modulating the coupling strength, i.
e., the distance L between the two F-P cavities, we can
match the real and imaginary parts of the input and output
impedance simultaneously. Moreover, when L is larger than
0.22 μm, the impedance can be matched over a band as
broad as 130 nm. So the EM fields are effectively
continuous at the input plane. It is interesting to note that
when L is smaller than 0.15 μm, the analogous bond and
anti-bond states [41–43] can also be observed in a very low
quality factor system. This kind of phenomenon can be
understood as the modulation of the impedance mismatch.

The transmission of the coupled F-P cavities can be
obtained by cascading the transmission matrixes and have
the form

T ¼ 1� r2 lð Þð Þ2
4r2 lð Þsin2 dd lð Þð Þei da lð Þð Þ þ e�i da lð Þð Þ r2 lð Þei dd lð Þð Þ � e�i dd lð Þð Þð Þ2
�����

�����
2

ð5Þ

Theoretical result of the transmission for L=0.22 μm and
d=0.17 μm, 2×0.17 μm, and 3×0.17 μm are presented in
Fig. 4b. It can be seen that different matching conditions
are corresponding to different bandwidths of flattop
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Fig. 5 a 2D plot of the input
and output impedance mismatch
for three F-P cavities. The color
scale is corresponding to the
value of |Zin − Zout|. In the
calculation, d=0.17 μm and nd=
3.4. b Dispersion relationship
corresponds to a when L is taken
to 0.3 μm. c Theoretical trans-
mission of the structure shown
above the figure (black solid
line represents the cavity length
d=0.17 μm. Black dotted line
and gray solid line stands for
d ¼ 2� 0:17mm and
d ¼ 3� 0:17mm, respectively),
FDTD result (gray dashed line).
In all the case, L=0.3 μm. d The
corresponding group velocity
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response as mentioned above. High order IM facilitates the
narrowing of the passband.

For getting sharper roll-off and higher out-of-band signal
rejection, we can cascade more cavities and then modulate
the coupling strength by using the same method, i.e., form a
CCPCW. For example, we can just add an identical F-P
cavity together. It should be noted that we are operating at
the passband of the SPP Bragg reflectors. The matching
map of |Zin − Zout| is plotted in Fig. 5a. A quasi-flat top
passband with a width over 280 nm appears when L=
0.3 μm and d=0.17 μm can be confirmed by Fig. 5a, c. We
take the case when d=0.17 μm as an example to validate
the theoretical result by the FDTD numerical experiment
(shown by the gray dash line). Within this band, the smooth
dispersion curve (shown in Fig. 5b) indicates the small
variation of the group velocity (shown in Fig. 5d). For
comparison, the transmission and the group velocity of the
situation d ¼ 2� 0:17mm and d ¼ 3� 0:17mm are plotted
in Fig. 5c, d. With more cascaded cavity, the roll-off can be
sharper and the out-of-band transmission is further sup-
pressed with the expense of ripple in the transmittance.

Conclusions

It was demonstrated that the proposed IM model provides a
general physical picture of the CCPCW while the TMM
can describe the transmission properties of the system. We
have studied, both analytically and numerically, the box-
like band-pass filter by using these methods. The theoretical
analysis and FDTD numerical experiment demonstrate that
the IM model works well at understanding and designing
such component. It allows one to design semi-analytical
waveguide components in advances of time consuming
simulation. For example, the Bragg reflection filter can be
easier understood in terms of IM [9, 11, 16, 19, 22, 27, 28].
A defect mode in the bandgap can be regarded as a
perfectly matched state at a certain wavelength. It should be
noted that in obtaining the transfer matrix of the scattering
interface, we have first numerically calculated the phase
shift. If the phase shift is not zero or π, the transfer matrix
must be complex, making the whole analysis more
cumbersome. We would like to emphasize that this model
can also be generalized to a variety of different systems like
couple cavities in photonic crystal [43], long period fiber
grating [44], etc. In particular, we believe the result of the
recent publication [45] can be obtained by modulating the
coupling distance between the cavities instead of adding
layers at the input and output ports.
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