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Abstract. Second harmonic generation (SHG) of femtosecond pulses in
layered photonic crystal with combined nonlinearity is analyzed. Within the
approximation of plane wave, the problem under consideration is solved
analytically. One shows the possibility of a multistable mode of frequency
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depending on thickness of layers of the photonic crystal and wavelength
of laser radiation. C© 2011 Society of Photo-Optical Instrumentation Engineers (SPIE).
[DOI: 10.1117/1.3609798]

Subject terms: photonic crystals; quadratic and cubic nonlinear responses; second
harmonic generation; bistability; femtosecond pulse.

Paper 10117R received Jan. 10, 2011; revised manuscript received Jun. 15, 2011;
accepted for publication Jun. 20, 2011; published online Aug. 16, 2011.

1 Introduction
At present, photonic crystals are being widely investigated
in the world in various aspects of their interaction with laser
radiation. In particular, great attention is attracted to second
harmonic generation (SHG) in photonic crystals. With this
aim, one considers crystals with defects1–3 and one-,1–17 and
two-dimensional18–26 periodic structures with nonlinear re-
sponse. Basically, modern investigations have revealed the
various mechanisms for the possibility of SHG efficiency
enhancement: in the vicinity of the defect,1–3 near the edge
of photonic bandgap,6, 7 and due to the special choice of
propagation parameters.8–10, 13–15, 24, 25 Solitons and solitary
waves in photonic crystals are also of great interest.11, 12, 21–23

Further research in this direction require investigation of the
influence of nonlinearities and dielectric permittivities and
sizes of photonic crystal elements on considering process
and require construction of photonic crystals with required
properties. For example, in Refs. 18–20 the radial structures
to support second harmonic (SH) Bessel beams and other
multiple processes for the purpose of cascading, nonlinear
beam shaping, and nonlinear polarization switching are de-
signed.

It is obvious that qualitative analysis of the system of
nonlinear equations, which describe the interaction of a fem-
tosecond pulse with nonlinear photonic crystal, can clarify
an opportunity of achievement for requiring characteristics
of process under analysis. Thus, in previous papers,28, 29 we
have solved the SHG problem in homogeneous media with
cubic and quadratic nonlinear response in the framework of
long pulse duration and plane-wave approximation. It should
be stressed that such a combined response of the medium
appears for nonsymmetric crystal [for example, potassium
dideuterium phosphate (DKDP crystal) or lithium triborate

0091-3286/2011/$25.00 C© 2011 SPIE

(LBO crystal)] with quadratic susceptibility at SHG of high-
intensity femtosecond laser pulse and they are well known
in the literature.30–33 In dependence of the crystal, the power
density of laser pulse, at which the combined response takes
place, occurs from 80 GW/sm2. However, in Ref. 2 it was
shown that the quadratic response in photonic crystal appears
also in the centrosymmetric medium. We analyze the SHG
in a layered structure, which consists of layers with different
dielectric permittivities and quadratic susceptibilities.

The main feature of our approach is the use of invariants
(conservation laws) of the problem to build the solution. As
a result, several regimes of frequency conversion were found
due to the parametrical analysis of the solution. Essentially,
that computer simulation, made on the base of conservative
finite difference schemes, gives the same results as the ana-
lytical ones under certain conditions. It is very important that
a comparison of computer simulation results to the physical
experiment showed a good agreement33 between them. Note,
as well, that without using the invariants it is impossible to
write an analytical solution of considered equations.

In this paper, the same approach is used for the analy-
sis of SHG in photonic crystals with combined nonlinearity.
We obtain the analytical solution of this problem and in-
vestigate possible regimes of frequency conversion as well
as conditions for their realization. Among them we stress
the bistability regime, the regime of unchanging initial in-
tensities of waves, and the regime of full conversion of the
energy for fundamental wave. It is essential that without cu-
bic susceptibility the appearance of bistable regime of SHG
is impossible.

At the bistability regime, the generation of doubled-
frequency waves with either low or high efficiency is possi-
ble. It takes place, for example, when both waves at basic and
double frequency fall on the crystal. In this case, the realiza-
tion of low- or high-efficiency conversion of energy of the
basic wave depends on initial amplitudes of interacting waves
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and on the difference of their phases. Nevertheless, there is an
opportunity to achieve a highly efficient regime of frequency
conversion for the practically important case of the absence
of an input wave at double frequency. It should be mentioned
that the investigation of dependence of the regimes on the
phase difference is very important for practical purposes.
For the example, it is necessary for the visualization of the
terahertz laser radiation.34–36 There are also another two pa-
rameters that determine a realization of mentioned regimes
of frequency conversion. The first one is the ratio of dimen-
sionless parameters, which is defined by quadratic and cubic
nonlinearities that characterize conversion of the energy of
the waves and their self-action. The second is the ratio of
dielectric permittivities, which determine wave-vector mis-
match of interacting waves.

All analytical expressions derived in the paper are con-
firmed by computer simulation on the basis of nonlinear
Schrödinger equations for interaction of laser radiation with
1-D photonic crystal. We show how to obtain the required
regime of generation using the results of our analytical
research.

2 Basic Equations
The case of laser pulse interaction with photonic-crystals
that we consider here is shown in Fig. 1. To write equations
that describe a femtosecond pulse propagation in layered
photonic crystal, we used the approach proposed in Ref.
27. The main feature of this approach is the refusal from
preferential direction of laser pulse propagation. Here, we
apply this approach to describe the interaction of two laser
pulses in 2-D (layered) photonic crystal, taking into account
the wave-vector mismatch between propagating waves.

As is well known, the propagation of laser pulse is de-
scribed by the wave equation

∂2 E

∂z2
+ ∂2 E

∂x2
− 1

c2

∂2 E

∂t2
= 4π

c2

∂2 P

∂t2
, 0 < z < Lz,

0 < x < Lx , 0 < t < Lt . (1)

Here, E(x,z,t) is the strength of the electrical field; P(x,z,t) is
the polarization of the medium; x and z are the space coordi-
nates along the layers of photonic crystal and perpendicular
to them, correspondingly; t is the time coordinate; Lz and Lx
are the lengths of the domain, which contain, in particular,

2

cL zL0

z

x

Fig. 1 Scheme of the laser pulse interaction with layered photonic
crystal.

the photonic crystal (Fig. 1); Lt is the time interval under
consideration; and c is the light velocity in vacuum. It is well
known that a response of the medium on the frequency ω at
propagation of the high-intensity femtosecond laser pulse is
written as follows:

P = χ (1)(x, z)E + χ (2)(x, z)E2 + χ (3)(x, z)E3, (2)

χ (1), χ (2), χ (3) are the linear, quadratic, and cubic suscepti-
bilities of the medium, correspondingly.

To describe SHG, one introduces slow varying complex
amplitudes in time on the fundamental frequency ω1 = ω
and on the double frequency ω2 = 2ω as

E j (z, t) = 0.5{ ˜̃A j (z, t) exp[i(ω j t−k j z)]+c.c.}, j = 1, 2,

(3)

where c.c. denotes a conjugation of complex functions and
kj is a wavenumber of corresponding wave. The expressions
for kj are the following:

k j =
√

ε(ω j , x, z)ω j

c
, j = 1, 2.

Thus, we take into account the dispersion of substance at
a propagation of the laser pulse in a layered structure. It is
necessary to emphasize that the dependence of group veloc-
ity from dielectric permittivity of layers and light frequency
is considered by us at computer simulation. Influence of the
periodic structure on the laser radiation propagation arises
from a presence in equations written below the parameter
describing the frequency of the structure. The second-order
dispersion is not ingenuously included in equations. Never-
theless, we take into account the diffraction of light in the
propagation direction. In linear case of light propagation, this
is the equivalent of consideration of second-order dispersion
of a laser pulse.

Substituting Eq. (3) into Eq. (1) and neglecting the second
derivatives on time ∂2 ˜̃A j/∂t2 within the chosen approxima-
tion on the first step of writing the mathematical model, one
obtains the following set of equations for complex amplitudes
of waves on fundamental and double frequencies:

∂2 ˜̃A1

∂x2
+ ∂2 ˜̃A1

∂z2
− 2ik1

∂ ˜̃A1

∂x
− iε(ω1, x, z)

2ω1

c2

∂ ˜̃A1

∂t

+
[
ε(ω1, x, z)ω2

1

c2
−k2

1

]
˜̃A1+4πχ (2)(x, z)

c2
ω2

1
˜̃A1

∗ ˜̃A2e−i�kx

+ 3πχ (3)(x, z)

c2
ω2

1
˜̃A1(| ˜̃A1|2 + 2| ˜̃A2|2) = 0,

∂2 ˜̃A2

∂x2
+ ∂2 ˜̃A2

∂z2
− 2ik2

∂ ˜̃A2

∂x
− iε(ω2, x, z)

2ω2

c2

∂ ˜̃A2

∂t

+
[
ε(ω2, x, z)ω2

2

c2
− k2

2

]
˜̃A2 + 2πχ (2)(x, z)

c2
ω2

2
˜̃A1

2
ei�kx

+3πχ (3)(x, z)

c2
ω2

2
˜̃A2(| ˜̃A2|2 + 2| ˜̃A1|2) = 0,

0 < t ≤ Lt , 0 < x < Lx , 0 < z < Lz, (4)

with the initial distribution of the amplitudes

˜̃A j (x, z, t = 0) = Ã j0 A0 j (x, z), j = 1, 2,
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0 ≤ x ≤ Lx , 0 ≤ z ≤ Lz,

and zero-value boundary conditions

˜̃A j (x, z = 0, t) = ˜̃A j (x, z = Lz, t) = ˜̃A j (x = 0, z, t)

= ˜̃A j (x = Lx , z, t) = 0.

where Ã j0 is the square root of maximal intensity of the
corresponding wave, ε(ωj,x,z) = 1 + 4πχ (1)ε(ωj,x,z), �k
= k2 − 2k1 is the mismatch of wave-vectors. At writing of
Eqs. (4), as usual, we neglected the dependence of χ (2) and
χ (3) on the frequency. Also as usual, the mismatching of
wave-vectors appears in Eq. (4) as the exponential factor.

The next step is made with the aim of simplification of
Eqs. (4) for computer simulation. Using some algebra, we
remove the first derivative on x coordinate in Schrödinger
equations. In this case, one of the invariants (conservation
laws) of Eqs. (4) will be self-valid for any finite difference
schemes. With this aim, multiplying the first of Eqs. (4)
by exp( − k1x) and the second one by exp( − k2x) and then
introducing the new variables

Ã1(x, z, t) = ˜̃A1(x, z, t) exp(−ik1x) and Ã2(x, z, t)

= ˜̃A2(x, z, t) exp(−ik2x),

we get the following equations:

iε(ω1, x, z)
2ω1

c2

∂ Ã1

∂t
+ ∂2 Ã1

∂x2
+ ∂2 Ã1

∂z2
− ε(ω1, x, z)ω2

1

c2
Ã1

+ 4πχ (2)(x, z)

c2
ω2

1 Ã∗
1 Ã2 + 3πχ (3)(x, z)

c2

×ω2
1 Ã1(| Ã1|2 + 2| Ã2|2) = 0,

iε(ω2, x, z)
2ω2

c2

∂ Ã2

∂t
+ ∂2 Ã2

∂x2
+ ∂2 Ã2

∂z2
− ε(ω2, x, z)ω2

2

c2
Ã2

+ 2πχ (2)(x, z)

c2
ω2

2 Ã2
1 + 3πχ (3)(x, z)

c2
ω2

2 Ã2(| Ã2|2

+ 2| Ã1|2) = 0, 0 < x < Lx , 0 < z < Lz, (5)

with the initial distribution of amplitudes

Ã j (x, z, t = 0) = Ã j0 A0 j (x, z)e−ik j x ,

j = 1, 2, 0 ≤ x ≤ Lx , 0 ≤ z ≤ Lz .

For application of Eqs. (5), it is necessary to answer the main
question, which is, what terms in new equations describe the
wave-vector mismatching? We discuss this question next.

Because we consider a layered structure on the z coor-
dinate and homogeneous structure on the x coordinate (1-D
photonic crystal) with two different layers, which lengths are
denoted as d ′

1 and d ′
2 and dielectric permittivities equal to ε11,

ε12 and ε21, ε22 on frequencies ω1 and ω2 correspondingly
for each layer, let us define, for convenience, the parameter
d = (

d ′
1 + d ′

2

)
/4, which characterizes the periodic structure

of photonic crystal. It is necessary to stress that, in this case,
the optical properties of medium are the same in any section
of x coordinate. Hence, the following relations are valid:

ε(ω j , x ′, z′) = ε(ω j , z′), χ (s)(x ′, z′) = χ (s)(z′),

j = 1, 2, s = 1, 2, 3.

Introducing the dimensionless variables

z′ = z

d
, x ′ = x

d
, t ′ = t

c

d
, k̄ j = k j d,

j = 1, 2, L̄ x = Lx

d
, L̄ z = Lz

d
, L̄ t = cLt

d
,

Ā j (x ′, z′, t ′) = Ã j (x ′, z′, t ′)
Anor

, A j0 = Ã j0

Anor
, j = 1, 2,

where Anor = √
Inor and Inor is an intensity of normalization,

we get from Eq. (5) the following set of equations:

ε(ω1, z′)
∂ Ā1

∂t ′ + i D

(
∂2 Ā1

∂x ′2 + ∂2 Ā1

∂z′2

)
+ iβγ (z′) Ā∗

1 Ā2

+ iβ[ε(ω1, z′) + α(z′)(| Ā1|2 + 2| Ā2|2)] Ā1 = 0,

ε(ω2, z′)
∂ Ā2

∂t ′ + i
D

2

(
∂2 Ā2

∂x ′2 + ∂2 Ā2

∂z′2

)
+ iβγ (z′) Ā2

1

+i2β[ε(ω2, z′) + α(z′)(| Ā2|2 + 2| Ā1|2)] Ā2 = 0,

0 < x ′ < Lx , 0 < z′ < L̄ z, 0 < t ≤ L̄ t ,

with the initial distribution of complex amplitudes

Ā j (x
′, z′, t ′ = 0) = A j0 A0(x ′, z′)e−i k̄ j x ′

, j = 1, 2,

0 ≤ x ′ ≤ L̄ x , 0 ≤ z′ ≤ L̄ z .

In the above set of equations, other notations are defined as

D = 1

4π�
, β = π�, � = dω1

2πc
= d

λ1
,

γ (z′) = 4πχ (2)(z′)Anor, α(z′) = 3πχ (3)(z′)A2
nor,

where λ1 = 2πc/ω1 is a wavelength of the fundamental wave,
and we have taken into account the relationship between
frequencies of interacting waves ω2 = 2ω1.

As we consider a two-layer structure, let us introduce
parameters α1, γ 1 and α2, γ 2 as values of α(z) and γ (z) in
two different layers.

The last step is an introduction of the following functions:

A1(x ′, z′, t ′) = Ā1(x ′, z′, t ′) exp(iβt ′),

A2(x ′, z′, t ′) = Ā2(x ′, z′, t ′) exp(i2βt ′),

and omitting the accents at z′ and t′ and line at another variable
as well. Thus, one obtains the following equations, which
are written in a final form, for describing the femtosecond
laser pulse propagation in photonic crystal with quadratic
and cubic nonlinear response:

ε(ω1, z)
∂ A1

∂t
+ i D

(
∂2 A1

∂x2
+ ∂2 A1

∂z2

)
+ iβγ (z)A∗

1 A2

+ iβα(z)A1(|A1|2 + 2|A2|2) = 0

ε(ω2, z)
∂ A2

∂t
+ i

D

2

(
∂2 A2

∂x2
+ ∂2 A2

∂z2

)
+ iβγ (z)A2

1

+ i2βα(z)A2(|A2|2 + 2|A1|2) = 0,

0 < t ≤ Lt , 0 < x < Lx , 0 < z < Lz, (6)
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with the initial distributions of complex amplitudes:

A1(x, z, t = 0) = A10 A01(x, z)e−i
√

ε(ω1,z)2π�[x−(Lx /2)],

A2(x, z, t = 0) = A20 A02(x, z)e−i
√

ε(ω2,z)4π�[x−(Lx /2)],

0 ≤ x ≤ Lx , 0 ≤ z ≤ Lz . (7)

These initial conditions correspond to a propagation of laser
pulses along the x coordinate.

Note that Eq. (6) with initial conditions [Eq. (7)] describes
the interaction with mismatch of wave-vectors also if ε(ω1,z)
is not equal to ε(ω2,z). Indeed, taking into account the ex-
pressions for k1, k2 the mismatching of wave-vectors of in-
teracting waves can be written as follows:

�k = (k2 − 2k1)d = 2ω1d

c

[√
ε(ω2, z) −

√
ε(ω1, z)

]
= 4π�

[√
ε(ω2, z) −

√
ε(ω1, z)

]
. (8)

Let us stress that the set of Eqs. (6) have not been met in the
previous papers.

If A20 = 0 (this case is very important for practice), then
only a laser pulse on the fundamental frequency falls on
the photonic crystal and SHG takes place in the photonic
crystal. In the case of nonzero A20, a wave propagation on the
doubling frequency first occurs in a homogeneous medium
before the photonic crystal, for example, and then both waves
interact in photonic crystal.

Thus, this written set of equations contains all the fea-
tures of well-known equations describing the SHG. Thus,
equations that are used by us are more convenient for com-
puter simulations because the first derivative on x coordinate
is absent in our equations, and one of the invariants of the
equations are self-valid.

3 Plane-Wave Approximation
Many features of the SHG process by femtosecond pulses
in photonic crystal can be analyzed in the framework of
plane waves approximation, suggesting D→0, which is valid
for large-enough values of � and/or for small intervals
of time for observation. In this case, the second terms in
Eqs. (6) can be neglected and laser pulses interaction in each
point of photonic crystal can be described by the first-order
differential equations,

ε(ω1)
d A1

dt
+ iβγ A∗

1 A2 + iβαA1(|A1|2 + 2|A2|2) = 0,

0 < t ≤ Lt ,

ε(ω2)
d A2

dt
+ iβγ A2

1 + i2βαA2(|A2|2 + 2|A1|2) = 0. (9)

Note that in Eq. (9), the values of ε(ω1) = ε1 = {ε11,ε12},
ε(ω2) = ε2 = {ε21,ε22}, α = {α1, α2}, γ = {γ 1,γ 2} and the
evolution of complex amplitudes as a consequence, depends
on the z coordinate, parametrically. For brevity, we do not
write this dependence in the functions, keeping it in mind.

Let us introduce real functions: amplitudes aj and phases
ϕj of the fundamental and SH waves as

A j = a j e
iϕ j , j = 1, 2.

In this case the Eq. (9) can be rewritten as follows:

ε1
da1

dt
= βγ a1a2 sin ϕ, ε2

da2

dt
= −βγ a2

1 sin ϕ,

dϕ

dt
= −2

βα

ε1ε2

[
(ε1 − 2ε2) a2

2 − (ε2 − 2ε1) a2
1

]

− βγ

ε1ε2
cos ϕ

(
ε1

a2
1

a2
− 2ε2a2

)
, ϕ = ϕ2 − 2ϕ1,

(10)

with initial conditions

a2|t=0 = a20, a1|t=0 = a10, ϕ|t=0 = ϕ0.

For Eqs. (10), the following invariants are valid

I1 = a2
1 + a2

2
ε2

ε1
= a2

1 + a2
2s,

I3 = 2γβa2a2
1 cos ϕ + αβ(|a1|4 + |a2|4 + 4|a1|2|a2|2),

(11)

or in other notations (introducing the modified third invariant
¯̄I 3),

¯̄I 3 = I3 − αβ I 2
1

= a2
[
2βγ a2

1cosϕ + 2βαa2
1a2(2 − s) + βαa3

2(1 − s2)
]
,

(12)

where s = ε2/ε1 is a function of the z coordinate. Comparing
the parameter s and Eq. (8), it becomes clear the parameter s
characterizes mismatching of wave-vectors.

For the further analysis, it is convenient to introduce the
new parameter q = γ /α and to rewrite the invariant

Ĩ3 = ¯̄I 3/(βα)=a2
[
2qa2

1cosϕ + 2a2
1a2(2 − s)+a3

2(1 − s2)
]
.

(13)

Combining the invariants I1, Ĩ3, and the first Eq. (10), we
obtain an equation for the normalized intensity P1 = a2

1/I1
at the fundamental wave. Obviously, from the first invari-
ant in Eq. (11) one gets the normalized intensity P2 = a2

2/I1
= (1 − P1)/s for the double-frequency wave. Thus, we mul-
tiply the first equation from the system in Eq. (10) by a1 and
derive the expression

cos ϕ = Ĩ3 − a2
2

[
2a2

1(2 − s) + a2
2(1 − s2)

]
2a2

1a2q
(14)

from the invariant in Eq. (13). Then we divide the numera-
tor and denominator in Eq. (14) by I 2

1 and, employing the
trigonometric formulas and expression for the first invariant
in Eq. (11), we get the following dependence:

sin ϕ =
√

ε1ε2
d P1

dt
2γβ

√
I1 P1

√
1 − P1

=±

√√√√√√√√1−

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ĩ3

I 2
1
− (1−P1)

1

s

[
2P1(2−s)+(1−P1)

1

s
(1−s2)

]

2P1
√

1−P1

√
1

s

q√
I1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

2

(15)
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from the first equation of Eq. (10). Integrate two last parts of Eq. (15) by t, and write the
equation with respect to intensity of the fundamental wave
as:

∫ P1

(P1)0

dx√
4x2 (1 − x)

(
q√
I1

)2

s3 −
{

Ĩ3

I 2
1

s2 − (1 − x)[1 − s2 − x(s2 − 4s + 1)]

}2
=

∫ P1

(P1)0

dx√
f (x)

= ±αβ I1

sε2
t + C. (16)

The plus or minus sign in Eq. (16) is chosen in accordance of
initial values of (P1)0 and ϕ0: “ + ” should be chosen for 0 <
ϕ0 < π and “ − ” for π < ϕ0 < 2π . For ϕ0 = 0 and ϕ0 = 2π ,
an additional analysis should be made (we present it in Sec.
4). Note that the integral in Eq. (16) is an elliptical one. Its
form (and, consequently, the frequency conversion regime) is
governed by the relationship between the constants s, q/

√
I1

and Ĩ3/I 2
1 . Mention, that initial values (P1)0 and (P2)0 of

fundamental and double-frequency waves meet the equality

(P1)0 + (P2)0 s = 1,

which follows from the first invariant (11).

4 Analysis of Elliptical Integral
Obviously, solution of the problem depends on properties
of polynomial f(x), which are specified by parameters s, q,
initial amplitudes of waves a10, a20 and phase difference ϕ0.
There are two main differences between the considered case
and the case investigated in Ref. 29. First, the coefficient (r
= (s2 − 4s + 1)2 at the high power in the polynomial f(x)
depends on the parameter s and may be equal to zero. Thus,
it is necessary to consider two different cases: (i) r = 0 and
(i) r �= 0. Thus, polynomial f(x) may have two, three, or four
real roots.

Second, in contrast to the previously considered case, the
value of the first invariant I1 depends on parameter s, if a20 is
not equal to zero. Because of this dependence on parameter s,
we have chosen a normalization of waves amplitudes that is
different from amplitudes values. In the opposite case under
the investigation of frequency conversion regimes on the
plane (q,s), we deal with the situation when parameter q
should also depend on s through dependence of I1 from the
input intensities of double-frequency wave. Obviously, it is
not convenient for analysis.

4.1 Regions of Various Regimes of Frequency
Conversion on the Plane of Parameters (q,s)

First of all, note that our analysis can be confined to the case
a2

10 + a2
20 = 1. Indeed, it is easy to see that the regions on

the plane (q,s) for the arbitrary initial amplitudes a′
10, a′

20 are
similar ones for a10 = a′

10/
√

A, a20 = a′
20/

√
A, where a′

10+ a′
20 = A. They are only stretched or compressed along the

q-axis by a10/a′
10 = √

A times. However, at constant value
of the parameter q, the regions of various solutions depend
on initial amplitudes (a01, a02) of the waves.

The dependence of the parameter q on the laser light inten-
sity gives us the opportunity to take into account waveguide

loss. In this case, the corresponding point on the plane (q,s)
continuosly moves along horizontal line toward bigger val-
ues of parameter q as time grows. Thus, if the point at the
initial time moment is in the bistability region, then it moves
into region 1 and 2, correspondingly, or straight into region
2 in the dependence of absorption coefficient of medium.

Sub-regions on the plane (q,s), corresponding to various
numbers and properties of the roots (positive, negative, com-
plex, etc.) of the polynomial f(x), are shown in Figs. 2 and
3. Note, that all real roots of polynomial f(x) are ≤1. Indeed,
from Eq. (16) one follows that f(x) is <0 for x > 1 and hence
cannot be equal to zero.

Our analysis shows, that despite the values of a10, a20,
and ϕ0, three regions are distinguished in the plane (q,s). For
parameters in region 3 there are four real positive roots of
the polynomial f(x). Hence, the bistability regime takes place
and each pair of roots defines the possible intensity range for
frequency conversion. These regimes differ in efficiency and
will refer to them as high- and low-efficiency ones. It is very
important that, for these regimes, the difference of phases
and invariants of interacting waves are the same. It gives one
the opportunity to switch from one regime to another. Thus,
region 3 can be divided into two subregions, which are de-
noted as 3.1 and 3.2. Note that bistability regime cannot be
realized if the ratio of dielectric permittivities on the funda-
mental and double frequencies does not belong to the interval
2 − √

3 < s < 2 + √
3.

For parameters in region 2, there are two positive and
two negative roots. In this case, the two positive roots define
maximal and minimal intensities in the limits of which the
solution is changing in time. While for parameters in region
1, only two real roots take place, both of them being positive.
In contrast to Ref. 29, in region 1 there are two subregions
that do not intersect. One of these subregions lies in the band
2 − √

3 < s < 2 + √
3, and the other satisfies s < 2 − √

3.
If the difference of phase for interacting waves is equals to ϕ0
= 0,π the curve, named curve 3, appears in the plane (q,s).
For parameters in this curve, the initial wave amplitudes do
not change in time. Essentially, for ϕ0 �= 0,π such curve is
absent.

Figure 2 shows the typical configuration of the regions for
ϕ0 = 0,π and for values of ϕ0 from the interval (0,π ), as well
as for the practically important case of the absence of the SH
wave a20 = 0 at the initial moment. Evolution of the regions
with ϕ0, varying from 0 to π , for small (a20 = 0.2; Fig. 2,
left half) and big (a20 = 0.8; Fig. 2, right half) initial ampli-
tudes of the second harmonic wave is shown in Fig. 3. (Note
that we consider the case a2

10 + a2
20 = 1.) Note also that, for

considered parameters a20, ϕ0, all the previously described
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Fig. 2 Regions (denoted as numbers in circles), corresponding to different modes of SHG and their boundaries (denoted as numbers without
circles) on the plane of parameters (q,s) for the following values of difference of phases of interacting waves and amplitude of second harmonics
(ϕ0, a20) = (π /2;0.8), (0;0.8), (π ,0.4). Region 3 corresponds to the bistability mode and is divided into two subregions: the high-efficient regime
of SHG is realized in subregion 3.1 and the low-efficient regime of SHG is realized in subregion 3.2. For parameters from regions 1 and 2, the
unique mode of SHG takes place, while analytical solutions in these areas are different.
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Fig. 3 Transformation of regions of different modes of SHG (Fig. 2) on the plane (q,s) in dependence on initial phase difference for a20 = 0.2
and a20 = 0.8.
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regions exist in the plane (q,s). Although the configuration of
their boundaries depends on the initial amplitudes and phase
difference of waves. Evolution of P1 for parameters from
different regions and boundaries of these regions is depicted
in Fig. 4. Let us discuss the main features of the regions.

Thus, as was already mentioned, if the values of param-
eter s do not meet the inequalities 2 − √

3 < s < 2 + √
3,

then the bistable regime of the frequency conversion (region
3) cannot be realized. The range of the values q,s for realiza-
tion of the bistable regime becomes narrower as parameter
q = γ /α grows, and it vanishes for the respectively small
self-action. On the contrary, 100% energy conversion takes
place only for the relatively small values of self-action (curve
2). The regime of unchanging initial intensities (curve 3) be-
comes possible only for the initial phase difference ϕ0 equal
to 0 or π . While for zero values of ϕ0 this regime is stable
for all possible parameters of its realization, at ϕ0 = π the
stability of this regime takes place only for the self-action,
which is small enough when compared to the coefficient of
coupling of interacting waves. As the initial intensity of the
fundamental wave grows, the critical value of self-action for
the stability of the regime of unchanging initial intensities
decreases (compare Fig. 3 for a20 = 0.2 and a20 = 0.8 ).

Essentially, for the initial intensity of the fundamental
wave many times greater than the intensity of SH (a10 �
a20), the subregion of the high-efficiency generation (subre-
gion 3.1) is practically absent (Fig. 3). The growth of initial
phase difference ϕ0 results in the increase of region 3. This is
most pronounced for the small initial values of the fundamen-
tal wave intensity a2

10. On the contrary, the part of region 1
that lies in the band 2 − √

3 < s < 2 + √
3 is shrinking sig-

nificantly along the axis of parameter q, as the initial phase
difference ϕ0 grows.

Let us also stress the difference of the region configura-
tion for the case of zero and nonzero initial amplitude of
the SH wave (Fig. 2). Thus, regime of unchanging initial
amplitudes is unavailable for zero initial SH wave [curve 3
is absent in the plane (q,s)]. Subregion 3.1 of region 3 (the
subregion of high-effective generation) is also absent, similar
to the case of small SH initial amplitude (Fig. 3, left half),
which means impossibility for realization of high-efficiency
generation. Curve 2 turns into a line, and full energy conver-
sion is possible only for parameters that meet the equality s
= 1 and inequality q > 1, simultaneously. Bistability regime
cannot take place, if parameter s does not satisfy inequalities
1 < s < 2 + √

3.

4.2 Analytical Solution for Pure Cubic
and Quadratic Nonlinearities

Before we consider the general case, let us focus on some
important particular cases.

4.2.1 Analytical solution for pure quadratic
nonlinearity: Case a20 �= 0

The case of pure quadratic nonlinearity (α = 0, γ �= 0) has
already been investigated.37 In this case, the second invariant
in Eqs. (11), (14), and (16) can be rewritten as follows:

I3 = 2γβa2a2
1 cos ϕ, cos ϕ = I3

2a2
1a2γβ

,

∫ P1

(P1)0

dx√
4x2 (1 − x) (γ /

√
I1)2s3 − [(

I3/β I 2
1

)
s2

]2

=
∫ P1

(P1)0

dx√
f (x)

= ±β I1

sε2
t + C,

consequently. The last equations can take the form∫ P1

(P1)0

dx√
x2 (1 − x) − κ̃

= ±2βγ
√

I1√
ε1ε2

t + C,

κ̃ = cos2 ϕ0
(a20/a10)2 s

[1 + (a20/a10)2 s]3
.

It is well seen from the last expression that the inequality
κ̃ ≤ (4/27) is valid for all possible a10, a20 and ϕ0. Hence,
the polynomial f(x) has three real roots (P1)1, (P1)2, (P1)3:
two of them are positive and one is negative. From the anal-
yses of the polynomial f(x), it follows that P1(t) belongs to
the interval between the positive roots: (P1)3 < 0 < (P1)2
≤ P1(t) ≤ (P1)1 < 1.

In this case, the evolution P1(t) oscillates [Fig. 4(a)] and
is described by an elliptical sine,

P1(t) = (P1)1 − h2[(P1)1 − (P1)2],

h = sn

[
βγ

√
I1√

ε1ε2

√
(P1)1 − (P1)3t − t ′

∣∣∣∣ m

]
,

t ′ = F(θ0 |m )

{
1, 0 ≤ ϕ0 < π

−1, π ≤ ϕ0 < 2π
,

θ0 = arcsin

√
(P1)1 − (P1)0

(P1)1 − (P1)2
, m = (P1)1 − (P1)2[

(P1)1 − (P1)3

] ,

with the half-period of oscillation as follows:

t̄ =
√

ε1ε2

βγ
√

I1

K (m)√
(P1)1 − (P1)3

.

In the degenerate case, when the initial intensities a10,
a20 and phase difference of waves ϕ0 is governed by the
equalities

ϕ0 = 0 or ϕ0 = π and

(
a20

a10

)2

s = 1

2
,

equality κ̃ = 4/27 takes place and two positive roots coin-
cide: (P1)3 < 0 < (P1)2 = P1(t) = (P1)1 < 1. In this case,
initial intensities preserve their values.

4.2.2 Analytical solution for pure quadratic
nonlinearity: Case a20 = 0

The other degenerate case corresponds to the zero initial
amplitude of the second harmonic wave: a20 = 0. In this
case, an equation for the normalized intensity P1 can be
obtained from the following consideration. We divide the
third equation [Eq. (10)] by the first one,

dϕ

da1
= −ctgϕ

a2
1 − 2sa2

2

sa1a2
2
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Fig. 4 Evolution of normalized intensity of the fundamental wave in time for the parameters from the following regions shown in Fig. 2: (a) regions
1, 2, and the boundary 1.4 between these regions; (b) region 3 of bistability regime; (c) curve 2 of the full energy conversion, belonging to the
region 2; (d) boundaries 1.1, 1.2; (e) boundary 1.3 between the regions 3 and 1; (f) boundary between regions 3 and 2 and curve 3 in region 3.2.

and derive the following invariant:

cos ϕ
√

sa2a2
1 = cos ϕ0

√
sa20a2

10

from this equation. Taking into account a20 = 0, we conclude
cosϕ = 0 and sinϕ = − 1 {case sinϕ = 1 results in negative
values of a2 from the second Eq. (10), which contradicts
determination of a2 as nonnegative quantity}. Thus, from the
first Eq. (10), we obtain the following equation for P1:∫ P1

(P1)0

dx√
x2 (1 − x)

=
∫ P1

(P1)0

dx√
f (x)

= −2βγ
√

I1√
ε1ε2

t + C

The polynomial f(x) has thus two zero and one positive
roots (P1)3 = 0 = (P1)2 ≤ P1(t) ≤ (P1)1 = 1 and the evolution
P1(t) can be described by hyperbolic tangent

P1(t) = 1 − h2, h = th

(
βγ

√
I1√

ε1ε2
t

)
.

4.2.3 Analytical solution for pure cubic nonlinearity
As is well seen from Eqs. (10), in the case of pure cubic non-
linearity (α �= 0, γ = 0), amplitudes of both waves preserve
their initial values. It should be mentioned that for param-
eters from the region of bistability 3, two possible modes
of wave propagation occurs. The realization of these modes
depends on subregion to which the parameters of laser pulse
interaction belong: their initial intensities. Thus, in subregion
3.1 the intensity of the second wave is greater than the inten-
sity of first wave. For subregion 3.2, the opposite relation of
intensities takes place.

4.3 Analytical Solution for Various Regions
In this section, we give the analytical expressions for P1(t)
from Eq. (16). Essentially, this expressions depend on the
number and arrangement of the roots of polynomial, which
are determined by parameters q,s, initial amplitudes a10, a20
(if a20 �= 0) and difference of phases ϕ0. It should be empha-
sized once more that P1(t) + P2(t) · s = 1.

Thus, for the region 1 (Figs. 2 and 3) the polynomial f(x)
has two real roots (P1)1 and (P1)2, which satisfy the inequality
0 < (P1)2 < (P1)1 < 1. The normalized intensity P1(t) of
the fundamental wave is located between the roots (P1)2
≤ P1(t) ≤ (P1)1 and oscillates periodically in time [Fig. 4] in
accordance with the following expressions:

P1 (t) = (P1)2 c (h − 1) − (P1)1 d(h + 1)

c (h − 1) − d(h + 1)
,

h = cn

(
αβ I1 |r0|

ε2

√
cdt − t ′

∣∣∣∣m
)

r0 = s2 − 4s + 1

s
,

t ′ = F(θ0 |m )

{
1, 0 ≤ ϕ0 < π

−1, π ≤ ϕ0 < 2π
,

θ0 = arccos
[(P1)0 − (P1)2]c − [(P1)1 − (P1)0]d

[(P1)0 − (P1)2]c + [(P1)1 − (P1)0]d
,

F (ψ |m ) =
∫ ψ

0

dθ√
1 − m sin2 θ

, (17)
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where F(ψ |m) is an incomplete elliptic integral of the first
kind and cn(t|m) is the elliptic cosine. Parameters m, c, and

d in Eq. (17) are related with the roots of the polynomial f(x)
in Eq. (16) as follows:

m = cd + [(P1)3 − (P1)2][(P1)1 − (P1)3] − (P1)2
4

2cd

c =
√

[(P1)1 − (P1)3]2 + (P1)2
4, d =

√
[(P1)2 − (P1)3]2 + (P1)2

4

. (18)

Note that (P1)3 ± i(P1)4 are the complex roots.
The moments of the reaching of extreme values (maxi-

mums and minimums) of P1 are spaced by multiples of

t̄ = K (m)

(αβ I1 |r0| /ε2)
√

cd
,

where K(m) = F[(π /2)|m] is a complete elliptical integral of
the first kind. Therefore, t̄ is the half-period of the intensity
oscillations.

In regions 2 and 3, the polynomial f(x) has four real roots
(P1)1, (P1)2, (P1)3, and (P1)4. Note that in region 2, only
two of these roots have physical meaning because the other
two are negative (P1)4 < (P1)3 < 0 < (P1)2 < (P1)1 < 1.
However, in region 3, each of the roots has physical meaning
and intensity of a fundamental wave can vary between the
roots in the first or second pair, with the roots being renum-
bered in growing order. In both regions, the intensity P1(t)
also oscillates in time [Figs. 4(a) and 4(b)]. Nevertheless,
the expressions, which describe the evolution of intensity,
are different in regions 2 and 3 and are different from corre-
sponding expressions in region 1. Thus, the dependence P1(t)
for the parameters from region 2 is described by an elliptical
sine [Fig. 4(a)]

P1(t) = (P1)1 [(P1)2 − (P1)4] + h2 (P1)4 [(P1)1 − (P1)2]

(P1)2 − (P1)4 + h2
[
(P1)1 − (P1)2

] ,

h=sn

{
αβ I1 |r0|

2ε2

√
[(P1)1 − (P1)3][(P1)2 − (P1)4]t−t ′

∣∣∣∣ m

}

t ′ = F(θ0 |m )

{
1, 0 ≤ ϕ0 < π

−1, π ≤ ϕ0 < 2π
, (19)

θ0 = arcsin

√
[(P1)2 − (P1)4]

[(P1)1 − (P1)2]

[(P1)1 − (P1)0]

[(P1)0 − (P1)4]
,

m = [(P1)1 − (P1)2][(P1)3 − (P1)4]

[(P1)1 − (P1)3]
[
(P1)2 − (P1)4

] . (20)

In this case, the half-period for changing of intensity is equal
to

t = 2ε2

αβ I1|r0|
K (m)√

[(P1)1 − (P1)3][(P1)2 − (P1)4]
. (21)

As was mentioned, in region 3 all the roots of the polyno-
mial f(x) are positive 0 < (P1)4 < (P1)3 < (P1)2 < (P1)1
< 1. Hence, the two stable regimes of SHG take place

[Fig. 4(b)]. Depending on the choice of initial intensities
of interacting waves, one can realize for chosen q and s the
high- or low-efficiency regime of frequency conversion. In
subregion 3.1, inequalities (P1)4 ≤ P1(t) ≤ (P1)3 take place
and they correspond to SHG with high efficiency. The evo-
lution of P1(t) in time is described by

P1(t) = (P1)4[(P1)1 − (P1)3] + h2(P1)1[(P1)3 − (P1)4]

(P1)1 − (P1)3 + h2[(P1)3 − (P1)4]
,

h = sn

{
αβ I1|r0|

2ε2

√
[(P1)1−(P1)3][(P1)2−(P1)4]t−t ′

2|m
}

,

t ′
2 = F(θ0|m)

{−1, 0 ≤ ϕ0 < π

1, π ≤ ϕ0 < 2π
,

θ0 = arcsin

√
[(P1)1 − (P1)3]

[(P1)3 − (P1)4]

[(P1)0 − (P1)4]

[(P1)1 − (P1)0]
.

Half-period t̄ of intensity oscillations and parameter m are
determined by Eqs. (20) and (21).

For the other choice of a10, corresponding to subregion
3.2, the intensity of the fundamental wave satisfies inequal-
ities (P1)2 ≤ P1(t) ≤ (P1)1 and the low-efficiency regime of
SHG takes place. In this case, the evolution of the P1(t) case
is determined by Eqs. (19)–(21) for region 2.

With respect to these regimes, two circumstances should
be emphasized. The first is that the low-efficiency regime
of frequency conversion is also possible for parameters q
and s from the subregion 3.1 for the other initial conditions.
Similarly, for the parameters from subregion 3.2, it is pos-
sible to achieve a high-efficiency regime. The second is a
consequence of realization of the extreme intensities P1 for
the both regimes at the same time moments. As parame-
ters s and q reach the values at the boundary with region
2, the ultimate intensities corresponding to the high- and
low-efficiency regimes tend to be equal to the same value.
However, the time moment t̄ of its realization tends to infinity.

Other important results conclude in the impossibility of
realizing the full energy conversion from the fundamental
wave to the double-frequency wave for the parameters from
regions 1 and 3. Next, we will show that, in contrast, this can
take place for the parameters from region 2.

4.4 Analytical Solution for Parameters
from the Boundaries of the Regions

For parameters from the boundaries of considered regions,
the elliptical integral [Eq. (16)] can be reduced to the simple

Optical Engineering August 2011/Vol. 50(8)084201-9



Trofimov, Lysak, and Lan: Multistable mode of second harmonic generation in photonic crystal with combined nonlinear response

tabular integrals. In this case, the intensity of the waves is de-
scribed by elementary functions. Thus, for parameters from
the boundary between regions 1 and 3 (curves 1.1, 1.2, and
1.3 in Figs. 2 and 3) four positive roots exist, similar to region
3. Nevertheless, unlike region 3, at least one pair of coincid-
ing roots take place. In particular, for parameters q and s,

which lie on curves 1.1 and 1.2, the inequalities 0 < (P1)4
< (P1)3 = (P1)2 < (P1)1 < 1 are valid. That is why, similar to
the case of region 3, two different (low- and high-efficiency)
regimes of SHG take place. The evolution of intensity P1(t)
in these regimes is described by the expressions

P (k)
1 (t) = (P1)2[(P1)1 − (P1)4]2 − (−1)k2h{(P1)4[(P1)1 − (P1)2] − (P1)1[(P1)2 − (P1)4]} + (P1)2h2

[(P1)1 − (P1)4]2 − (−1)k2h{[(P1)1 − (P1)2] − [(P1)2 − (P1)4]} + h2
,

h = exp

{
±(−1)k αβ I1|r0|

ε2

√
[(P1)1 − (P1)2][(P1)2 − (P1)4]t + t ′

}
,

{
" + ", 0 ≤ ϕ0 < π

"−", π ≤ ϕ0 < 2π
,

t ′ = ln
[
√

[(P1)1 − (P1)2][(P1)0 − (P1)4]−
√

[(P1)2 − (P1)4][(P1)1 − (P1)0]]2

|(P1)2 − (P1)0| k = 1, 2. (22)

The first set of formulas (k = 1) describes the high-efficiency
SHG, for which the choice of a10 results in validity of
inequalities: (P1)4 ≤ P1(t) ≤ (P1)3. This regime is re-
alized for parameters at boundary 1.1. The other set (k
= 2) corresponds to the low-efficiency SHG, so that the in-
equalities (P1)3 ≤ P1(t) ≤ (P1)1 take place for corresponding
choice of a10. This regime is realized at curve 1.2. It should
be stressed that the intensities in high- and low-efficiency
regimes tend to each other exponentially with time growth
[Fig. 4(d)]. As parameters cross boundaries 1.1 and 1.2, the
regime of frequency conversion changes dramatically, being

the result of merging (splitting) of high- and low-efficiency
regimes. For example, Figs. 5(b) and 5(c) illustrate this sit-
uation. Abrupt growth/decrease of intensities is well seen at
the small changes in dielectric permittivity ε2 (parameter s)
for both boundaries.

For parameters in the curve 1.3, due to the choice of
a10, the real roots of polynomial f(x) and intensity of funda-
mental wave P1(t) are related as 0 < (P1)4 ≤ P1(t) ≤ (P1)3
< (P1)2 = (P1)1 < 1. Therefore, the high-efficiency regime of
SHG takes place and is described by the following periodical
function [Fig. 4(e)]:

P1(t) = (P1)3[(P1)1 − (P1)4] + (P1)4[(P1)1 − (P1)3] − h(P1)1[(P1)3 − (P1)4]

[(P1)1 − (P1)4] + [(P1)1 − (P1)3] − h[(P1)3 − (P1)4]
,

h = sin

{
±αβ I1|r0|

ε2

√
[(P1)1 − (P1)3][(P1)1 − (P1)4]t + t ′

}
,

{
" − ", 0 ≤ ϕ0 < π

" + ", π ≤ ϕ0 < 2π
,

t ′ = arcsin
[(P1)1 − (P1)4][(P1)3 − (P1)0] + [(P1)3 − (P1)1][(P1)0 − (P1)4]

[(P1)1 − (P1)0][(P1)3 − (P1)4]
. (23)

Then, the half-period of changing the intensity is expressed
as

t̄ = ε2

αβ I1|r0|
π√

[(P1)1 − (P1)3][(P1)1 − (P1)4]
. (24)

As can be well seen in Fig. 5(d), extreme intensities of the
fundamental wave are changing smoothly at parameter values
crossing boundary 1.3.

It is possible to choose other initial conditions a10, a20,
and ϕ0, so that for parameters from curve 1.3 takes place
unchanging of initial amplitudes. These initial conditions
correspond to the following arrangement of the roots and
intensity: 0 < (P1)4 ≤ (P1)3 < (P1)2 = P1(t) = (P1)1 < 1.
For example, this regime is shown in Fig. 5(e).

At the boundary between regions 1 and 2 (curve 1.4), as
well as in region 2, only two positive roots of the polyno-
mial f(x) exist and the fundamental wave intensity is between
them: (P1)4 = (P1)3 < 0 < (P1)2 ≤ P1(t) ≤ (P1)1 < 1. That
is why the full conversion of the energy of the fundamen-
tal wave into the energy of the double-frequency wave is
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Fig. 5 Configuration of the regions (a) and evolution in time of the intensity of the fundamental wave for the parameters values in the vicinity of
boundaries: (b) 1.1, (c) 1.2, (d) 1.3, and (e) curve 3 for a10 = 0.6, a20 = 0.8, and ϕ0 = 0, α = 0.05, γ = 0.005, ε1 = 1 and values of ε2 shown in
the figures. Corresponding values of s and q are shown by dots and dashed circles in (a).
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impossible. In this case, the intensity P1(t) of the fundamen-
tal wave oscillates according to the following rule [Fig. 4(a)]:

P1(t) = (P1)1[(P1)2 − (P1)3] + (P1)2[(P1)1 − (P1)3] − h(P1)3[(P1)1 − (P1)2]

[(P1)2 − (P1)3] + [(P1)1 − (P1)3] − h[(P1)1 − (P1)2]
,

h = sin

{
±αβ I1|r0|

ε2

√
[(P1)1 − (P1)3][(P1)2 − (P1)3]t + t ′

}
,

{
" + ", 0 ≤ ϕ0 < π

"−", π ≤ ϕ0 < 2π
,

t ′ = arcsin
[(P1)1 − (P1)0][(P1)3 − (P1)2] + [(P1)1 − (P1)3][(P1)0 − (P1)2]

[(P1)1 − (P1)2][(P1)0 − (P1)3]
. (25)

The half-period of the energy conversion is given by

t̄ = ε2

αβ I1|r0|
π√

[(P1)1 − (P1)3][(P1)2 − (P1)3]
. (26)

At the boundary between regions 2 and 3 (which is the part
of curve 2), the two roots of the polynomial f(x) is equal to
zero and the choice of initial intensities of interacting waves
corresponds to the following relation between the roots and
P1(t): (P1)4 = (P1)3 = 0 < (P1)2 ≤ P1(t) ≤ (P1)1 < 1. Then,
the low-efficiency regime of SHG takes place with periodi-
cal dependence of P1(t) [Fig. 4(f)], which is determined by
Eqs. (25) and (26) for (P1)3 = 0. Note that curve 2 is deter-
mined by

a20
[
2qa2

10cosϕ0 + 2a2
10a20(2 − s) + a3

10(1 − s2)
]

= 1 − s2

s2

(
a2

10 + a2
20s

)2
.

To obtain this expression, we put a1 = 0 in the expression
for the modified invariant [Eq. (14)),

˜̄I 3 = a4
2(1 − s2),

then express a2
2 for a1 = 0 from the first invariant

[Eq. (11)]

a2
2 = I1/s

and take into account preservation of the first and the modi-
fied third invariants

˜̄I 3 = a20
[
2qa2

10cosϕ0 + 2a2
10a20(2 − s) + a3

20(1 − s2)
]
,

I1 = a2
10 + a2

20s.

If on the photonic crystal laser radiation falls only on the
double frequency, then no energy conversion to the basic
wave takes place for parameters from this part of curve 2
[line P1(t) = 0 in Fig. 4(f)].

Essentially, region 2 includes curve 2, at which the 100%
energy conversion of the fundamental wave is achieved
(Figs. 2 and 3). For these parameters, one root of the
polynomial is negative and two others are zero (P1)4 < 0
= (P1)3 = (P1)2 < P1(t) < (P1)1 < 1. Hence, the inten-
sity of the fundamental wave decreases from (P1)0 to 0 for
0 < ϕ0 < π (Fig. 4(c)), while for π < ϕ0 < 2π it first grows
up to (P1)1 and then decreases to 0. It changes in accordance

with Eqs. (22) for k = 2 and (P1)2 = 0. A zero value of P1(t)
is reached at the infinite moment of time with accordance to
exponential law.

As mentioned above, curve 3 exists in the plane (q,s) for
two values of the initial phase difference ϕ0, which is equal to
π and 0, and nonzero input intensity of the double-frequency
wave. It is determined by

q cos ϕ0
(
a2

10 + a2
20s

) + 2a20
(
a2

10 + a2
20s

)
(2 − s)

−3qsa2
20 cos ϕ0 + 2(s2 − 4s + 1)a3

20 = 0

ϕ0 = 0, π

If ϕ0 equals π , then part of curve 3 represents the boundary
between subregions 3.1 and 3.2 of region 3 (Fig. 2). This is a
result of the merging of boundary 1.1 with part of boundary
1.2 in the limit ϕ0→π (Figs. 2 and 3). In this case, because of
choosing of a10, the polynomial roots and intensity P1(t) are
related as follows: 0 < (P1)4 < (P1)3 = P1(t) = (P1)2 < (P1)1
< 1 and the regime of unchanging initial intensities takes
place. However, it is unstable in practice. That means that
small perturbations of intensity lead to catastrophic changing
of one. At the same time, the other part of curve 3, belonging
to regions 3.2 and 2, corresponds to the stable regime of
unchanging intensities. For its realization, it is necessary
to choose the initial intensity of the fundamental wave in a
special way. In this case, the polynomial roots and normalized
intensity P1(t) are related as 0 < (P1)4 < (P1)3 < (P1)2
= P1(t) = (P1)1 < 1 in region 3.2, and (P1)4 < (P1)3 < 0
<(P1)2=P1(t)=(P1)1<1 in region 2. Note that in region 3.2,
a high-efficiency regime of SHG can also take place. It occurs
for certain initial intensities and corresponds to parameters
q and s of boundary 1.3 between regions 1 and 3 [Fig. 4(e)].
Evolution of intensities is described by Eqs. (23) and (24).

For the zero value of the initial phase difference ϕ0, curve 3
divides each of regions 1 and 2 into two parts. For parameters
q, s, and a10 from curve 3 in region 1, there are two real
roots of the polynomial f(x), being equal each to other: 0
< (P1)2 = (P1)1 < 1. The value of P1(t) is equal to them.
In region 2. there are four real roots, but only two of them
have physical meaning: (P1)4 < (P1)3 < 0 < (P1)2 = (P1)1
< 1. Similar to the previous case, due to the choice of a10
the normalized intensity of the basic wave is equal to the
positive roots. In both cases, initial intensities of interacting
waves stay constant and the stable regime of unchanging
initial amplitudes takes place [Fig. 5(e)].
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In the contrast to Ref. 29, the two line 4’s, which are
determined by conditions s = 2 ± √

3, exists in the plane
(q,s). For the parameter values from these lines, the poly-
nomial f(x) has only three real roots: (P1)1, (P1)2, (P1)3.
Two of them have physical meaning. For the initial inten-
sity a10 corresponding to these situations, P1(t) belongs to
the interval between the positive roots: (P1)3 < 0 < (P1)2
≤ P1(t) ≤ (P1)1<1. In this case, the evolution P1(t) oscillates
[Fig. 4(a)] and is described by an elliptical sine,

P1(t) = (P1)1 − h2
[
(P1)1 − (P1)2

]
,

h = sn

[
βγ

√
I1√

ε1ε2

√
(P1)1 − (P1)3t − t ′

∣∣∣∣ m

]
,

t ′ = F(θ0 |m )

{
1, 0 ≤ ϕ0 < π

−1, π ≤ ϕ0 < 2π
,

θ0 = arcsin

√
(P1)1 − (P1)0

(P1)1 − (P1)2
, m = (P1)1 − (P1)2[

(P1)1 − (P1)3

] ,

with the half-period of oscillation as follows:

t̄ =
√

ε1ε2

βγ
√

I1

K (m)√
(P1)1 − (P1)3

.

With parameters corresponding to the cuspidal point of the
curve 1 (see Fig. 2), which is a common one of curves 1.1
and 1.3, for ϕ0 �= π , the coincidence of two positive roots
of the polynomial takes place 0 < (P1)4 ≤ (P1)3 = (P1)2
= (P1)1 < 1 and the evolution of P1(t), which varies between
them, is given by

P1(t) = h (P1)1 + (P1)4

h + 1
,

h =
{
±αβ I1 |r0|

2ε2
[(P1)1 − (P1)4]t + t ′

}2

,

{
" − ", 0 ≤ ϕ0 < π

" + ", π < ϕ0 < 2π
, t ′ =

√
(P1)0 − (P1)4

(P1)1 − (P1)0
.

For ϕ0 = π , this point corresponds to the tangency one of
curves 1 and 3 (the common point of curves 1 and 3). Then
a regime of unchanging initial intensities takes place, which
is unstable in practice.

For the parameters corresponding to the tangency point of
curves 1 and 2 (the common point of curves 1.2, 1.4, and 2),
the following relation of roots and intensity of the first wave
0 = (P1)4 = (P1)3 = (P1)2 ≤ P1(t) ≤ (P1)1 < 1 takes place
and the energy conversion is described by

P1(t) = (P1)1
1

h + 1
, h =

[
±αβ I1 |r0|

2ε2
(P1)1 t + t ′

]2

,

{
" + ", 0 ≤ ϕ0 < π

" − ", π ≤ ϕ0 < 2π
, t ′ =

√
(P1)1 − (P1)0

(P1)0
. (27)

5 Results of Computer Simulation
In this section, we consider some examples of two-wave
interactions with a layered structure to illustrate the validity

of written solutions and to clarify the conditions of their
application. For simplicity, we consider the evolution of SHG
in the photonic crystal unbounded in the x coordinate. (This
corresponds to situation when the length of crystal along the
x coordinate is many times less than a diffraction length lx of
each subbeam in the domain of layer. This length is equal to
lx = 2π d̃2, where d̃ is the smallest thickness of layers.) In
this case, one can consider only 1-D photonic crystal. Hence,
next we neglect a dependence of complex amplitudes on the
x coordinate and do not take into account a propagation of
laser pulses in the x direction. As a consequence of this, the
initial distribution of complex amplitudes depends only on
the z coordinate,

Aj(z, t = 0) = A j0 A0(z), A0(z) = e−(1/2){z−[Lz/1]/a}2
,

j = 1, 2, 0 ≤ z ≤ Lz, (28)

with maximal amplitudes

A20 = 0.4, A10 =
√

1 − A2
20. (29)

As follows from Eq. (28), the intensity of laser pulses is
constant in time. Next, we discuss the evolution of inten-
sity profiles in time and provide a comparison between the
beam profiles calculated both from the analytical solution
and computer simulation.

The first considered example corresponds to the case of
equal layer lengths d1 = d2 = 2 with a large value of pa-
rameter � = 104. This value corresponds to thickness of
d = 104λ1. Hence, for λ1 = 0.5 μm, d1 + d2 = 2 cm. Obvi-
ously, it is a very large structure for visible light. Neverthe-
less, for problems of frequency conversion of high-intensity
pulses, this structure can be applied for the wide-aperture
beam: the beam radius is ∼0.5 m. For such a thickness of
layers, the diffraction length is equal to 103 m. As one shows
[Fig. 7(a)], the analytical solution is valid for t ≤ 10. This
dimensionless value of time corresponds to 100 ps. Next, we
will discuss, of course, the other ration d/λ. In all examples,
the total number of layers is equal to 15.

Figures 6–10 show the evolution of the intensity profiles
of fundamental and doubled-frequency waves, which were
obtained due to computer simulation, for three sets of pa-
rameters. The first of them is characterized by proportional
values of parameters for odd and even layers

ε11 = 1, ε21 = 1.0395, α1 = γ1 = 10−4, for odd layers,

ε12=2, ε22=2×1.0395, α2=γ2=2×10−4, for even layers.

(30)

It should be stressed that the notations γ 1 and γ 2 refer to
the layers and their values are the same for both equations.
For the intensity at the axis of the beam, chosen parame-
ters correspond to the point in curve 3 that corresponds to
unchanging initial intensity (Fig. 2 for ϕ0 = π ), while the
parameters for the other points of profile belong to region
2. Because of the negligible influence of diffraction on the
time interval 0 ≤ t ≤ 1, evolution of each point of the initial
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Fig. 6 Profiles of (a) intensity of the fundamental wave and (b) the wave with doubled frequency for t = 0 (dashed curves), 0.5 (dotted curves), 1

(solid curves). Parameters ε11 = 1, ε21 = 1.0395, α1 = γ 1 = 10− 4, ε12 = 2, ε22 = 2 × 1.0395, α2 = γ 2 = 2 × 10− 4, A20 = 0.4, A10 =
√

1 − A2
20.

profiles is described by Eqs. (19)–(21). As a result, the in-
tensity profiles of both waves approximately conserve their
initial profiles [Figs. 6(a) and 6(b)]. Note that the same evo-
lution is observed for � = 100 (in this case, the thickness of
layer is ∼2 mm) and αj = γ j = 10− 2 (j = 1,2), as well as
for homogeneous media with parameters [Eq. (30)].

The second set the parameters of interacting waves

ε11 = ε12 = 1, ε22 = 1.0395, ε21 = 1.5,

α1 = α2 = γ1 = γ2 = 10−4.

is also chosen in such a way that the intensity at the axis
of the beam corresponds to the point in curve 3 (Fig. 2
for ϕ0 = π ). Other points of the beam belong to region
2. As a result, an intensity profile remains approximately

constant in the even layers, including the intensity at the
beam axis, while the interaction of beams in odd layers
is characterized by significant energy conversion (Fig. 7).
Hence, a different evolution of intensities for odd and even
layers takes place and the intensity profiles reflect a crys-
tal structure in a pronounced way (see profiles at t = 2 in
Fig. 7).

For this set of parameters, we also made a comparison of
the results of computer simulation to the analytical solutions
for three values of parameter � = 104, 102, 10, and three sets
of quadratic and cubic nonlinearities: α1 = α2 = γ 1 = γ 2
= 10− 4 for � = 104; α1 = α2 = γ 1 = γ 2 = 10− 2 for �
= 102; α1 = α2 = γ 1 = γ 2 = 10 for � = 10 during the time
interval that is equal to 10 dimensionless units. It should be
stressed that the values � = 102, 10 correspond to thickness

0 2 4 6 8 10
0,0

0,2

0,4

0,6

0,8

1,0
 |A

1
|2 

t

z=0

z=2

z=4

0 2 4 6 8 10

0,74

0,76

0,78

0,80

0,82
z=0.9

 |A
1
|2 

t

   

0 2 4 6 8 10
0,2

0,3

0,4

0,5
z=2.8 |A

1
|2 

t

0 2 4 6 8 10
0,14

0,16

0,18

0,20
z=4.8 |A

1
|2 

t

 
 

(a)

-15 -10 -5 0 5 10 15
0,0

0,2

0,4

0,6

0,8

1,0
|A

1
|2

t=2

z

-15 -10 -5 0 5 10 15
0,0

0,2

0,4

0,6

0,8

1,0

z

t=2|A
2
|2

 

-15 -10 -5 0 5 10 15
0,0

0,2

0,4

0,6

0,8

1,0

z

 |A
1
|2 t=4

-15 -10 -5 0 5 10 15
0,0

0,2

0,4

0,6

0,8

z

 |A
2
|2 t=4

 

-15 -10 -5 0 5 10 15
0,0

0,2

0,4

0,6

0,8

1,0

z

 |A
1
|2 

t=10

-15 -10 -5 0 5 10 15
0,0

0,2

0,4

0,6

0,8

z

 |A
2
|2 t=10

 

(b)

Fig. 7 Comparison of evolution of the intensity at the centers and near the edges of the layers for the fundamental wave: (a) computer simulation
(solid curves) and theoretical results (dashed curves); (b) intensity profiles of the fundamental wave and of the doubled frequency wave at t = 0
(dashed curves) and at different times (solid lines). Parameters � = 10,000, ε11 = ε12 = 1, ε21 = 1.0395, ε21 = 1.5, α1 = α2 = γ 1 = γ 2 = 10− 4

and A20 = 0.4, A10 =
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Fig. 8 Comparison of evolution of the intensity at the centers and near the edges of the layers for the fundamental wave: (a) computer simulation
(solid curves) and theoretical results (dashed curves); (b) intensity profiles of the fundamental wave and of the doubled frequency wave at
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Fig. 9 Comparison of evolution of the intensity at the centers and near the edges of the layers for the fundamental wave: (a) computer simulation
(solid curves) and theoretical results (dashed curves); (b) intensity profiles of the fundamental wave and of the doubled frequency wave at t
= 0 (dashed curves) and at different times (solid lines). Parameters � = 10, ε11 = ε12 = 1, ε21 = 1.0395, ε21 = 1.5, α1 = α2 = γ 1 = γ 2

= 10− 1 and A20 = 0.4, A10 =
√
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Fig. 10 Intensity profile of (a) the fundamental wave and (b) the doubled frequency wave for t = 0 (dashed curves), 0.5 (dotted curves), 1 (solid
curves); (c) evolution of the intensity at the centers of the layers for the fundamental wave (solid curves) and for the SH waves (dashed curves).
Parameters ε11 = ε21 = ε12 = ε22 = 1, α1 = α2 = 2 × 10− 4, γ 1 = 10− 4, γ 2 = 2 × 10− 4, A20 = 0, A10 = 1.

of layers 1 mm and 100 μm, correspondingly. On a time
scale, these layer thicknesses correspond to 500 and 50 fs,
correspondingly. Thus, the analytical solution can be valid
at least for a layered structure with an approximate length of
5 cm, 5 mm, 500 μm for the three values of parameter �.

As is well seen from Figs. 7–9, the time interval for which
analytical results coincide with the results of computer sim-
ulation depends on � and location of the point of intensity
profile with respect to the layer’s edge. Thus, for larger � the
corresponding time interval is larger. It is also an increase for
the points, corresponding to the center of the layer and for the
points with coordinates far from the beam’s center because
of a decreasing intensity for these points. For example, a time
interval of coincidence of the solutions is ∼10 dimensionless
units for � = 104; four units for � = 102, and about two
units for � = 10 for the points at the axis beam (z = 0).
Time intervals of the coincidence of analytical solution, with
computer simulation results for the points in the center of
the second (z = 2) and third layers (z = 4) are even greater.
Thus, for � = 102 and z = 4, the time interval is more than
six dimensionless units; whereas for � = 102 and z = 4,
it is equal to three dimensionless units. At the edge of the
central layer, which corresponds to the beam axis (z = 0.9),
the time interval of validity of the analytical solution is about
six units for � = 104, about one unit for � = 102, and ∼0.4
units for � = 10. Corresponding values of the time interval
during which the analytical solution is close to the computer
simulation result for the edge of the second layer (z = 2.8)
are 2 for � = 102 and 1 for � = 10. Whereas at the edge of
the third layer (z = 4.8), they almost reach the values for the

axis beam: four units for � = 102 and about two units for
� = 10. Obviously, influence of diffraction of the beam,
which is the most pronounced in the vicinity of the layers’
edges, drastically disturbs the beam profile at t = 10 for �
= 104, t = 4 for � = 102, and t = 2 for � = 10.

Let us discuss in detail the influence of diffraction on the
z coordinate on the beam profile evolution as a whole and
intensity evolution for separate points on the z coordinate.
As follows from Figs. 7–9 and the discussion above, small
diffraction, which corresponds to � = 104, allows neglecting
the diffraction without considerable distortion of evolution
of intensity profile during the considered time interval. Only
areas where it becomes noticeable at the end of the time
interval, are the edges of the central layer. The cause is a
quite different evolution of intensities for the points from
the odd and even layers, which follows from analytical con-
sideration. Thus, the intensity profile remains approximately
constant in the central layer, while oscillations of intensity
with significant amplitudes takes place for the points corre-
sponding to the boundaries with neighbor layers. As a result,
the second-order derivatives on the z coordinate from ampli-
tude distribution in the vicinity of the layers edges become
so large that the corresponding terms in the equations should
not be neglected, despite the small diffraction (determined
by �).

It should be mentioned that the appearance of irregularity
of the beam profile inside the layers arrises from dependence
of the period of the intensity oscillation in time from
the value of intensity at this point of the beam profile.
The diffraction of the laser beam tends to suppress these
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oscillations. As is well seen from Fig. 7, the diffraction of
the beam tends to the redistribution of the light energy from
the edges of the central layer to its center. This is also true
for the points of the beam profile that are far from the central
layer, including their edges because of relatively small
intensities.

The time interval, for which the analytical solution is valid
at computer simulation, decreases with growth of laser beam
diffraction. It can be roughly estimated as two dimensionless
units for � = 102 and one dimensionless unit for � = 10.
Figures 8 and 9 show that the diffraction of the beam affects
first at the edges of the central layers. As a result, the energy
redistributes between the layer’s edges and its center. Thus,
the intensity evolution for separate points of the profile be-
comes far from a regular one. The same is valid for the layers
close to the central one. Gradually, diffraction spreads its in-
fluence over other layers edges, causing the redistribution of
energy and irregular behavior of evolution.

Figure 10 shows a comparison of computer simulation
results to analytical solutions for the layers that are different
in quadratic nonlinearity γ . For example, we suppose that
the quadratic nonlinearities differed by a factor of 2 for the
considered frequencies. The parameters for this case are

ε11 = ε21 = ε12 = ε22 = 1, α1 = α2 = 2×10−4,

γ1 = 10−4, γ2 = 2×10−4, � = 104.

At the initial moment of time, the SH wave is absent: A10
= 1, A20 = 0 and the parameters for all profile points lie in
line 2 (Fig. 2). The point at the axis of the beam coincides
with the common point of curves 1 and 2. For this point, as
well as, for the other points belong to the central layer, the full
energy conversion takes place [Eq. (27)] [Fig. 10(c), curves
for z = 0]. For the points from the two layers, neighboring
the central one, the parameters lie in the part of line 2, which
is the boundary of regions 2 and 3. Thus, no full energy
conversion takes place in these two layers [Fig. 10(c), curves
for z = 2]. For the other layers, the full energy conversion
is also realized [Fig. 10(c), curves for z = 4]. As a result, at
t = 1, odd layers are characterized by the large intensity of
the SH wave, while even layers are characterized by the large
intensity of the fundamental wave [Figs. 10(a) and 10(b)].

6 Conclusion
We developed the theory of SHG in layered photonic crystal
with combined nonlinearity in the framework of the plane-
wave approximation. To obtain the solution, we use the
invariants (conservation laws) of considered problem. The
uniqueness and multiplicity of solutions of the problem are
investigated. The evolution of solutions is attained in ana-
lytical formulas. Various modes of generation are obtained;
among them one stresses the bistability mode, the mode of
stabilization of initial amplitudes, and mode of full energy
conversion. It is essential that without cubic susceptibility
the appearance of a bistable regime of SHG is impossible.

We verified our analytical results on the base of the nu-
merical simulation that was made for some examples. We
demonstrated good agreement between analytical results and
computer simulation results during the time interval, which
depends on the parameters of the problem. We also provide
estimations of sizes of photonic crystal and the time interval
of the validity of the analytical solution.
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