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Investigation on the phase shifts of higher-order reflected light from a two-dimensional photonic crystal (PC)
demonstrates that the phase shift of −mth order reflected light is symmetric with respect to the line of kx
=m� /b in the frequency-wave vector domain, where kx and b denote the incident wave vector component along
the surface and the period of the PC along the surface, respectively, and m is an integer. Such phase symmetry
originates from the periodicity of a PC along the surface. When higher-order propagating waves appear be-
tween two band edges of a stop band, the phase change of the 0th order reflection is generally not � as reported
before. Moreover, the reflection phase can be adjusted and designed by changing the cylinder radii of the sur-
face layer. It provides a robust way to achieve a giant Goos–Hänchen shift, which is described in detail as an
example, and superluminal propagation from a PC. © 2010 Optical Society of America

OCIS codes: 050.5298, 050.5080, 120.5700.
o
e
[
o
r

fl
a
t
o

2
B
t
T
p
c
i
r
t
t
t
w
+
f
a
l

(
w

. INTRODUCTION
hotonic crystals (PCs) are artificial structures consisting
f periodic arrays of dielectric or metal materials. The
nique properties of PCs have been extensively re-
earched. Amplitude, frequency, and phase are three im-
ortant parameters indicating the characteristics of light.
o far, most investigations of PCs have been made on the
mplitude and frequency of transmitted or reflected light.
y comparison, investigations on the phase properties are
elatively few.

Many important physical phenomena are correlated
ith phase shift � of transmitted or reflected waves.
mong them, superluminal (faster-than-light) phenom-
na, attracting much attention of physicists for their mys-
erious physical hypostasis [1–3], can be characterized by
���� /d� [4–7]. Another interesting phenomenon is the
oos–Hänchen (GH) effect, which refers to the lateral

hift of a totally reflected wave beam from the path usu-
lly expected from geometrical optics. The GH shift can be
alculated analytically as −d��kx� /dkx [8–14], where kx is
he incident wave vector component along the interface.
he well-designed phase is the key to achieve superlumi-
al propagation and a giant GH shift from a PC.
Recently, the phase properties of the 0th order reflec-

ion wave from PCs have been investigated when all the
igher-order reflection waves are evanescent waves.
ome researchers reported that in the case of normal in-
idence, the 0th order reflection phase shift is � between
wo band edges of the stop band [15–18]. Using the phase
roperty of TE and TM waves reflected from a 2D PC, a
ind of broadband phase retarder is proposed [19]. On the
0740-3224/10/030358-5/$15.00 © 2
ther hand, the diffraction efficiency of PCs, which is the
nergy flux of higher-order reflection light, is researched
20–22]. However, the phase characteristics of higher-
rder reflection light from PCs have not yet been
evealed.

In this paper, the phase properties of higher-order re-
ection light from a 2D PC are revealed systematically,
nd the phase shifts can be adjusted and designed. From
hese phase properties many applications can be devel-
ped. As an example, the giant GH shift is described.

. THEORY
efore calculation, we would like to discuss the wave vec-

or matching condition at the interface of a PC structure.
his condition is represented in the conservation of the
arallel component to the interface of the wave vector. It
an been generalized to k�=kx+Gm=kx+2�m /b, where m
s an integer equal to 0, ±1, ±2, etc.; b represents the pe-
iod of the PC along the surface, and b is not always equal
o the lattice constant [20,21]; and kx and k� are parallel
o the interface component of the incident and the reflec-
ive wave vector, respectively. The mth order reflective
ave is able to propagate only when �� �kx
2�m /b�c /nin, or else it is evanescent, where nin is the re-

ractive index of incident medium. With bigger values of b
nd nin, the more higher-order waves are propagable in a
ower frequency domain.

For demonstration, the transfer matrix method [23]
TMM) is employed to obtain the phase shifts of TE or TM
aves reflected from a 2D PC. The complex reflection co-
010 Optical Society of America
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fficient can be defined as r=ur /uin, where ur is the field
f the reflected wave and uin is the field of the incident
ave. The mth order complex reflection coefficient can be
xtracted as

r�m� =
ur

�m�

uin
= �r�m��ei��m�

, �1�

here ��m� is the mth order phase shift of the reflected
ave from a 2D PC. We investigate a 2D air cylinder PC
hose unit cell is air cylinders embedded in a substrate
edium. The structure (shown in Fig. 1) is a square lat-

ice with a lattice constant of a. r denotes the radius of the
ir cylinder. The thickness of the PC along the z direction
s L. n0 and nin are the refractive index of air and the sub-
trate medium, respectively. Here, b=a along the �-X di-
ection of the square lattice. We set r=0.5a, L=10a, n0
1.0, and nin=3.4. An Si substrate �nin=3.4� with a high
efractive index is adopted to make more higher-order
aves propagable in a lower frequency domain. For a TM
ave (i.e., the electric field vector is parallel to the cylin-
ers), Fig. 2 shows the intensities and phases of different-
rder reflected waves in the �� ,kx� plane, where � is the
requency of the plane wave and kx is the wave vector
omponent of the incident light along the interface (i.e., x
irection). Among them, Figs. 2(a1)–2(c1) are the intensi-
ies of the 0th, −1st, and −2nd order reflected waves, re-
pectively; Figs. 2(a2)–2(c2) are the corresponding
hases. Since we are more interested in the phase of a
ropagating reflected wave, the field values of the region,
here either the incident or the reflected waves are eva-
escent waves, are set to zero for the reflectance and re-
ection phase in the �� ,kx� plane. Those are displayed in
he down-right or down-left corner in Figs. 2(a1)–2(c1)
nd Figs. 2(a2)–2(c2). The incident wave is an evanescent
ave inside the down-right dark corner, and the reflected
ave is an evanescent wave inside the two dark corners,

f they exist. The propagating region is over the two re-
ions. In the �� ,kx� plane, line kx�a /��=0 is correspond-
ng to normal incident light, while line ��a /2�c�
kx�a /�� /6.8 [the dashed lines in Figs. 2(a1)–2(c1)] is the

ight line corresponding to the incident angle of
0 degrees. Here, �a /2�c is defined as a normalized fre-
uency. In order to show the relationship more directly,
he dependence of the phase on kx in a fixed frequency are
resented in Figs. 2(a3)–2(c3). Among them, Fig. 2(a3)

θ

L
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kxrs

r
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z

ig. 1. (Color online) Schematic diagram of incident and re-
ected light on a PC structure of square lattice. The black and
hite denote the substrate medium and air cylinders,

espectively.
resents the 0th reflection phase in a normalized fre-
uency of 0.315, Fig. 2(b3) presents the −1st reflection
hase in a normalized frequency of 0.315, and Fig. 2(c3)
resents the −2nd reflection phase in a normalized fre-
uency of 0.552. The corresponding frequencies are
arked in Figs. 2(a2)–2(c2) with dashed lines.
As we know, for a metallic grating the diffraction prop-

rties for two polarizations are different from each other
egarding the excited surface plasma of metal. However,
or a 2D PC consisting of dielectric materials, the reflec-
ive properties of a TE wave are similar to those of a TM
ave. Therefore, in the following we only represent those
f a TM wave.

. THE PROPERTIES OF REFLECTION
HASE
he most obvious property in Fig. 2 is symmetry; the
hase shift of the −mth order reflective light is symmetric
ith respect to line kx=m� /b in the frequency-wave vec-

or domain. For the −1st order reflected wave, the inten-
ity and phase are symmetric with respect to line kx
� /a in the frequency-wave vector domain for 0�kx
2� /a. For the −2nd order reflected wave, the intensity

nd phase are symmetric with respect to line kx=2� /a in
he frequency-wave vector domain for 0�kx�4� /a. It can
e achieved that the phase shift of the −mth order re-
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ig. 2. (Color online) (a1)–(c1) are reflectance of the 0th, −1st
nd −2nd order reflected waves as functions of frequency and kx,
espectively. (a2)–(c2) are reflection phase of the 0th, −1st, and
2nd order reflected waves as functions of frequency and kx, re-
pectively. (a3) Presents the 0th reflection phase in normalized
requency of 0.315, (b3) presents the −1st reflection phase in nor-

alized frequency of 0.315, and (c3) presents the −2nd reflection
hase in normalized frequency of 0.552. The corresponding fre-
uencies are marked in (a2)–(c2) with dashed lines. The PC
tructure (Fig. 1) with r=rs=0.5a. Points A, B, and C have the
ame frequency in (b1).
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ected light is symmetric with respect to line kx=m� /a in
he frequency-wave vector domain for 0�kx�2m� /a. The
ntensity and phase of the 0th order wave are unsym-

etrical in the frequency-wave vector domain, and so are
he +1st and +2nd order wave (not presented in this pa-
er). To show the physical meaning of symmetry clearly,
he −1st order reflected wave is investigated as a sample.
hree points in Fig. 2(b1) are labelled with A, B, and C
hose corresponding kx are � /a, � /a−�k, and � /a+�k,

espectively. Points B and C are symmetric with respect
o line kx=� /a, and point A is in the symmetric line kx
� /a. The sketches of reflection in three points are shown

n Fig. 3. In point A, when a light with wave vector kx
� /a is incident to a PC, the −1st order reflected wave
ith kx=� /a−2� /a=−� /a propagates back along the in-

ident direction, as shown in Fig. 3(a). In point B, as a
ight with kx=� /a−�k is incident into a PC, shown in Fig.
(b), the −1st order reflection coefficient is set to be rB. In
oint C, as a light with kx=� /a+�k is incident into a PC,
hown in Fig. 3(c), the −1st order reflection coefficient is
et to be rC. There are two interesting characteristics ap-
earing. First, it is not difficult to find that the incident
irection in point C is inverse to the −1st order reflective
irection in point B, while the −1st order reflective direc-
ion in point C is inverse to the incident direction in point
. Second, rB is equal to rC from the symmetry of Figs.
(b1) and 2(b2). These characteristics cannot be simply
educed by the principle of reversibility, since many
igher-order propagating waves are present in reflection.
e also calculate the phase shift of a PC with only one

ayer of cylinder, more like a grating, and the symmetry
lso remains. The symmetries of the reflection phase and
eflectance originate from the displacement periodicity
long the surface of the PC.
From one band edge to the other inside the stop band,

he change of the reflection phase is not � identically.
ith only the 0th order propagating wave, the reflection

hase changes from 0 to � when going from one band edge
o the other one in the case of normal incidence [15–18].
n general, when a higher-order wave is propagating, as
n our case, the reflection phase becomes complicated in-
ide the bandgap. For simplicity, we consider the 0th or-
er wave of Figs. 2(a1) and 2(a2). With normal incidence
kx=0�, the total reflected energy flux as a function of a
ormalized frequency is shown in Fig. 4(a), and the reflec-
ance and the reflection phase of the 0th order reflected
ave as functions of a normalized frequency are plotted

n Figs. 4(b) and 4(c), respectively. The change of the re-
ection phase plotted in Fig. 4(c) is 1.1� across the first
andgap, while it is 0.4� across the second bandgap. As
he incident angle is close to 90 degree, the reflectance is
igh even in the pass band for the 0th reflected wave in
ig. 2(a1), and the reflection phase is about −0.85� in the

0th
-1st

photonic crystal
(a) (b) (c)

ig. 3. (Color online) (a)–(c) Sketches of reflection in points A, B,
nd C of Fig. 2(b1), respectively. Lines with arrows indicate the
ave vectors of incident, the 0th, and the −1st order reflected

ights, respectively.
hole frequency domain shown in Fig. 2(a2). Similar phe-
omena appear in total internal reflection when an inci-
ent angle is bigger than a critical angle. That is not sur-
rising since the refractive index of an incident medium is
arger than the average refractive index of a PC. We have
lso calculated the phase for different structure and lat-
ice constants. It is found that the phase change between
wo band edges of a stop band of the 0th order reflection is
ot �, in general, as higher-order propagating waves are
ppearing.
The phase can be modulated by modifying the surface

ayer. We investigate a 2D PC with almost the same struc-
ure as that in Fig. 2. The only difference is that the radii
f the surface layer cylinders are set to 0.4a. The reflec-
ance and the reflection phase are shown in Fig. 5. Among
hem, Figs. 5(a1)–5(c1) are the intensity of the 0th, −1st,
nd −2nd order reflected waves, respectively; Figs. 5(a2)–
(c2) are the corresponding phases. Figure 5(a3) presents
he 0th reflection phase in the normalized frequency of
.315, Fig. 5(b3) presents the −1st reflection phase in the
ormalized frequency of 0.315, and Fig. 5(c3) presents the
2nd reflection phase in the normalized frequency of
.552. The phase is fully changed inside the stop band,
nd the reflected energy flux redistributes among the dif-
erent reflected orders. A most obvious change is the con-
ave that appears inside the first stop band of the 0th or-
er and −1st order. The phase and reflectance near to the
oncave vary drastically in the �� ,kx� plane. As mentioned
bove, it is possible to achieve superluminal propagation
nd a giant GH shift near the concave. As the strongest
eld localizes in a PC surface inside the stop band gener-
lly, the phase is sensitive to perturbation of surface
ayer. When the radii of the cylinders in the surface layer
re changed, the phase will change accordingly. It is
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ection bands, in which the total reflection energy flux is greater
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nown that light cannot propagate in a PC when the fre-
uency is inside the stop band. A wave vector kz with a
onzero imaginary part is introduced to describe the stop
and confinement, i.e., the field in the PC is evanescent
long the z direction [24]. The situation is similar to deal-
ng with total internal reflection between two homoge-
eous media. The perturbation-to-surface layer will make
he field redistributed in the PC to meet Maxwell equa-
ions; as a result, it will affect the reflection phase for the
lectromagnetic boundary conditions of continuity. Owing
o the strongest field near the surface, the phase is sensi-
ive to perturbation. By modulating the surface layer,
hase shifts can be adjusted and designed.
We should mention the fact that the symmetry of the

eflection phase and the reflectance remain, even if the
adii of the cylinders change. It would not be difficult to
nderstand, since the displacement periodicity along the
urface of the PC remains when the radii of the surface
ylinders are changed.

. GIANT GH SHIFT
s mentioned before, superluminal propagation and a gi-
nt GH shift from a PC can be achieved by modifying the
hase. As an example, the giant GH shift is described
ere.
By designing the reflection phase, the giant GH shift is

chieved for reflected light inside a stop band. For an in-
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ig. 5. (Color online) (a1)–(c1) Reflectance of the 0th, −1st, and
2nd order reflected waves as functions of frequency and kx, re-
pectively. (a2)–(c2) Reflection phase of the 0th, −1st, and −2nd
rder reflected waves as functions of frequency and kx, respec-
ively. (a3) Presents the 0th reflection phase in normalized fre-
uency of 0.315, (b3) presents the −1st reflection phase in nor-
alized frequency of 0.315, and (c3) presents the −2nd reflection

hase in normalized frequency of 0.552. The corresponding fre-
uencies are marked in (a2)–(c2) with dashed lines. The PC
tructure (Fig. 1) with r=0.5a and rs=0.4a.
ident beam that is sufficiently wide �k�k, the GH shift
f a reflected beam can be calculated analytically as
d��kx� /dkx [8–14]. Here, we consider the 2D PC (shown
s Fig. 1) illuminated by a Gaussian beam with a finite
idth. The incident beam can be expressed by [10]

E�i��z,x� =
1

�2�
� A�kx�exp�i�kzz + kxx��dkx, �2�

here A�kx�= �Wx /�2��exp�−Wx
2�kx−k0 sin 	i�2 /4� is the

ngular spectrum of the Gaussian beam centered at x=0
n the plane of z=0, and Wx is the waist of the Gaussian
eam. Then the reflected beam is given by

E�r��z,x� =
1

�2�
� r�m��kx�A�kx�exp�i�− kzz + kxx��dkx.

�3�

ince the center of the incident beam is at x=0, the GH
hift (the displacement between the centers of the inci-
ent and reflected beams) can be calculated by

G =�
−


+


x�E�r��0,x��2dx	�
−


+


�E�r��0,x��2dx. �4�

ere, the PC structure is the same as that in Fig. 5, i.e.,
ith a modified surface layer (r=0.5a, rs=0.4a). The beam
idth Wx of the incident Gaussian beam is 25a. The GH

hift of the 0th order reflected light as a function of fre-
uency and kx is shown in Fig. 6. Inside the first stop
and, maximum giant GH shifts of about ±30a appear in
ome areas, while in other areas the GH shift is almost
a. The area with giant GH shifts in Fig. 6 corresponds to
he concave in Fig. 5 with bigger �−d��kx� /dkx�. It indi-
ates that a well-designed reflection phase is constructive
o achieve a giant GH shift. The inset shows the GH shift
s a function of kx in a normalized frequency of 0.315. The
ppearance of a giant GH shift for a 0th reflected wave
an be explained by the existence of a high-order ampli-
ed evanescent wave. When the incident light is reflected
y the surface of a PC, a high-order evanescent wave is
timulated and part of the energy is transferred from the
ncident light to an evanescent wave. Accompanying the
ropagating of evanescent waves along the surface for-

0 1 2

0

30

G
H

sh
ift

(a
)

k
x

(π/a)

(a)

ig. 6. (Color online) GH shift of the 0th order reflected wave as
function of frequency and kx. The PC structure with r=0.5a,

s=0.4a. The incident Gaussian beam width Wx=25a. The inci-
ent wave is an evanescent wave to be neglected. The inset
hows the GH shift as a function of kx in a normalized frequency
f 0.315.
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ard or backward, the energy is transferred back to a 0th
rder reflected wave gradually, and the center of the re-
ected beam shifts forward or backward correspondingly.

. SUMMARY
n summary, we present an investigation on the reflection
hase of a 2D PC. The phase shift of the −mth order re-
ected light is symmetric with respect to line kx=m� /b in
he frequency-wave vector domain. The phase can be
odulated by modifying the surface layer. Our investiga-

ion provides a robust way to design the reflection phase,
rom which giant positive or negative GH shifts are ob-
ained.
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