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Boundary force exerted on spatial solitons
in cylindrical strongly nonlocal media
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We investigate the propagation of spatial solitons in cylindrical strongly nonlocal media by a method of im-
age beam of light. The dynamic force of the soliton steering resulting from the boundary effect is equivalent
to the force between the soliton beam and the image beam. The trajectory of the soliton is analytically stud-
ied, which is in good agreement with the experimental results. © 2009 Optical Society of America
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Nonlocal spatial solitons have been extensively in-
vestigated [1–16] since the pioneering work of Snyder
and Mithchell [1]. A topic that has captured a rising
interest is the interaction between solitons and
boundaries [4–8], especially in lead glass. The group
of Morderchai Segev found the boundary caused el-
liptic solitons and vortex solitons in lead glass and
discussed the influence of the boundary force on the
soliton trajectory [5,6]. In liquid crystal, Alberucci et
al. demonstrated the power-depended soliton repul-
sion at the boundary [7,8]. The nonlocal nature of
lead glass lies in the thermal optical nonlinearity
(Poisson type), which is intrinsically infinite without
boundaries [5]. Therefore, the behavior of the nonlo-
cal solitons in lead glass can be greatly influenced by
the remote boundary and one can obtain the soliton
steering controlled by the asymmetric boundary force
[6]. The long-range action of the boundary on the soli-
ton compared with the soliton width suggests that
the problem of the soliton trajectory can be settled by
the method of the equivalent particle theory and the
light ray equation [6,17], and the soliton can be taken
as a point light in the cross section of the propagation
medium.

In this Letter by analogy with the method of im-
ages in the electrostatics, we introduce a method of
image beam of light to deal with the problem of the
boundary effect on the soliton trajectory in cylindri-
cal lead glass. The boundary force exerted on the soli-
ton can be equivalent to the force of a remote image
beam of light on the soliton. The experimental data of
the soliton steering can be fitted by the analytical so-
lution in good agreement.

The system we concern is the light-induced ther-
mal self-focusing nonlinearity in lead glass. Optical
energy is weakly absorbed with an absorption coeffi-
cient � and diffused with a thermal conductivity �.
The cylindrical boundary of the lead glass is ther-
mally contacted by a copper-made heat sink at a fixed
temperature T0 described by Fig. 1(a). A temperature
gradient is yielded whose distribution is governed by
the Poisson equation [5]

�2T�X,Y� = −
�

I�X,Y�,

�
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T�X,Y��X2+Y2=R2 = T0, �1�

where T�X ,Y� is the temperature distribution,
I�X ,Y�= �A�X ,Y��2 is the light intensity with A�X ,Y�
being the paraxial beam, and R is the radius of the
cylinder. The heat transfer equation is inherently
two-dimensional with a circular boundary as the soli-
ton is invariant in the direction of propagation. The
laser-induced temperature change �T=T−T0 gives
rise to a proportional increase in the refractive index
[5] �n=��T, with � being the thermo-optical coeffi-
cient. In reverse, the refractive index change has a
strong impact on the propagation characteristics of
the light beam, including the focusing and the steer-
ing. The propagation of an optical beam in lead glass
is modeled by Eq. (1) coupled with the equation for
the paraxial beam A�X ,Y�

�2A + 2ik
�A

�z
+ 2k2

�n

n0
A = 0, �2�

where k=�n0 /c, n0 being the linear refractive index
of the medium. We rewrite Eqs. (1) and (2) in a di-
mensionless form:

i�z� +
1

2
��

2 � + N� = 0, �3a�

��
2 N�x,y� = − ���2, �3b�

Fig. 1. (a) Diagrammatic layout of a soliton launched at
an offset of x0 in a circular cross section of the sample with
radius R. (b) Sketch map of the normalized refractive in-
dexes respectively induced by the soliton beam and the im-

age beam.
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N�x,y��x2+y2=1 = 0, �3c�

where x=X /R, y=Y /R, and z=Z / �kR2� are normal-
ized coordinates; �=A /A0, with A0

2=n0� / ���k2R2�;
and N=k2R2�n /n0. It is noticeable that N and ���2 in
Eq. (3b) have their counterparts in the electrostatics,
potential, and charge density, respectively.

We solve the light-induced refractive index distri-
bution in the view of the Green’s function method. In
circular domain, the Green’s function of Poisson
equation can be deduced by the method of images
[18], which is the sum potential of the source charge
and the image charge

G =
1

2�
�ln

1

�r − r��
− ln

r�

�r − r��� = G1 + G2, �4�

where r�x ,y�, r��x� ,y��, and r��x� ,y�� are, respec-
tively, the normalized radius vectors of the field
point, the source point, and the image point, and r�
=1/r� described in Fig. 1(b). The image charge simu-
lates the influence of all the inductive charges on the
boundary, so the force applied to the source charge by
the boundary is equivalent to the force between the
image charge and the source charge. In our present
case, when the source beam of light has a beam width
small enough compared with the boundary size, it
can be taken as a point beam of light. Borrowing
ideas from the method of images in the electrostatics
we introduce the method of image beam of light. By
analogy with the expression of the charge interac-
tion, we directly write the “force” between the source
and image beams, which provides the dynamic force
for the steering of the source beam,

f =
d2xc

dz2 �
p

1/xc − xc
, �5�

where �xc ,0� is the center of the source beam and
�1/xc ,0� is the center of the image beam. y has been
set zero, since the problem is y symmetric. p=����x�
−xc ,y���2dx�dy� is the normalized light power, which
is equivalent to the charges in the electrostatics. The
1/r law of interaction is ever predicted by Rostschild
et al. [3]. It is notable that the force between the soli-
ton to its image can be only attraction force, since the
power cannot have negative values, in contrast to the
electric charge.

The interaction of the two beams is mediated by
the light-induced refractive index, which is the solu-
tion of Eq. (3b). When we make further quantitative
analysis, the solution is given by

N =� �G1 + G2����x� − xc,y���2dx�dy� = N1 + N2. �6�

The integration has been expressed in two terms of
N1 and N2. N1 is symmetric about the beam center
�xc ,0�, since G1 is shift invariant and the beam has a
symmetric profile (in the general case). It represents
the source beam induced refractive index in the free
space, which inversely serves as the focusing lens for
the source beam to form solitons. For an incident

beam with the given width w0, we can obtain the
critical power of the soliton Pc=4�n0� / ���k2w0
2� by

expanding N1 to the second order [19]. The effect of
N2 on the source beam is equivalent to the effect of
the refractive index induced by the image beam lo-
cated at the image point �1/xc ,0� indicated in Fig.
1(b).

In the case of w0	R, G2 is almost unchanged in
the profile of the light beam, N2 reads

N2 = −
1

2�
� ln

r�

�r − r��
���x� − xc,y���2dx�dy�

= −
p

2�
ln

1/xc

��x − 1/xc�2 + y2
. �7�

The steering trajectory of a light ray is governed by
the Eikonal equation [9,17]

d2xc

dz2 = 	dN2

dx 	
x=xc,y=0

= −
p

2�

1

1/xc − xc
. �8�

Just as our qualitative anticipation in Eq. (5), the ac-
celeration of the source beam center has a form
analogous to that of the interforce between the source
and the image charges. We expand the right-hand
side of Eq. (8) with respect to xc about xc=0 under the
condition of xc	1,

d2xc

dz2 = −
p

2�
�xc + xc

3 + xc
5�. �9�

We provide only the solution under the first-order ap-
proximation, since the solutions under the third- and
fifth-order approximations containing Jacobi cn func-
tions are too long to be showed,

xc
�z� = xc0 cos��p

�
z� , �10�

where xc0 is the normalized input offset. The normal-
ized output coordinate xc

�l�, where l is the normalized
length of the lead glass, is proportional to xc0 when
the input light power maintains constant.

Figure 2(a) pictures the oscillation period of the
soliton trajectory versus the input offset. The period
decreases when the input offset approaches to the
boundary. This is understandable, since strong
boundary effect accelerates the oscillation of the
beam. Figure 2(b) is the beam oscillation at the input
offset of 0.4R. The analytical result under the fifth or-
der approximation is best fit to the numerical result.

Our experimental setup is similar to that in the
work of Alfassi et al. [6]. The sample is a cylindrical
heavily lead-doped glass sample with the radius R
=1.5 mm and length L=5 cm [Fig. 1(a)]. The absorp-
tion coefficient �=0.07 cm−1, the thermo-optical coef-
ficient �=14
10−6 K−1, the refractive index n0=1.9,
and the thermal conductivity �=0.7 W/ �mK�. The
50 �m FWHM light input is produced by a double-
frequency YAG laser (Verdi 5) with the wavelength
532 nm. The soliton critical power is measured to be

500 mW, which is in good agreement with the ana-
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lytical value [19]. The data of the steering experi-
ment are obtained under the higher light power of
700 mW. Figure 3 gives the comparisons between the
experimental data and the analytical fitting curves.
The first approximation solution is a straight line; it
can be fitted to the experimental data only when the
input offset is small enough. The higher-order ap-
proximation gives the better agreement with the ex-
perimental result. It is noticeable that in Fig. 2(a) the
oscillation period of the soliton trajectory is far longer
than the length of the glass, which is only several
times of the Rayleigh distance. Yet, we cannot obtain
larger steering output via lengthening the glass,

Fig. 3. Net steering relative to the input offset verses the
input offset. Squares, experimental result; dashed-dotted
curve, first approximation solution xc0−xc

�1�; dashed curve,

Fig. 2. (a) Oscillation period of the soliton trajectory
verses the input offset. The dashed-dotted line, the dashed
curve, and the solid curve are the analytical results under
the first-order approximation, the third-order approxima-
tion, and the fifth-order approximation, respectively. The
circles are the numerical results. (b) Beam oscillation at
the input offset of 0.4R versus the propagation distance.
The comparison is between the analytical result under the
fifth-order approximation (solid curve) and the numerical
result (circles). The oscillation period in Fig. 2(a) and the
propagation distance in Fig. 2(b) are normalized by the
Rayleigh distance with w0=1/30R.
c0 c
because the absorption will result in the changing of
the beam width even the collapse of the soliton.

In conclusion, the soliton propagation in cylindrical
lead glass is studied. A method of image beam of light
is produced by analogy with the method of images in
the electrostatics. The boundary effect on the soliton
is treated as the interforce between the soliton beam
and the image beam located at the image point. The
analytical solution of the soliton trajectory is in good
agreement with the experimental results. The
method of image beam of light is useful in the treat-
ment of the boundary problems, including the influ-
ence of the boundary force on the soliton trajectory
and even the interaction between solitons via the
boundary effect.
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