
Vol 16 No 8, August 2007 c© 2007 Chin. Phys. Soc.

1009-1963/2007/16(08)/2325-06 Chinese Physics and IOP Publishing Ltd

The solutions of the strongly nonlocal spatial solitons

with several types of nonlocal response functions∗
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The fundamental and second order strongly nonlocal solitons of the nonlocal nonlinear Schrödinger equation for

several types of nonlocal responses are calculated by Ritz’s variational method. For a specific type of nonlocal response,

the solutions of the strongly nonlocal solitons with the same beam width but different degrees of nonlocality are identical

except for an amplitude factor. For a nonlocal case where the nonlocal response function decays in direct proportion to

the mth power of the distance near the source point, the power and the phase constant of the strongly nonlocal soliton

are in inverse proportion to the (m+ 2)th power of its beam width.
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1. Introduction

Solitary waves/solitons are found in a variety of

nonlinear systems.[1−13] Recently the spatial solitons

propagating in the nonlocal nonlinear media have at-

tracted much attention.[1−9] According to the ratio of

the characteristic nonlocal length to the beam width,

the degree of the nonlocality is mainly sorted into four

categories: local, weakly nonlocal, generally nonlocal

and strongly nonlocal.[1,7] In particular, the nonlocal

case is called a strongly nonlocal case when the charac-

teristic nonlocal length is much larger than the beam

width. In the present work attention is paid to the

strongly nonlocal issue. It has been experimentally

indicated that the spatial solitons in the nematic liq-

uid crystal are strongly nonlocal solitons (SNSs)[2] and

the characteristic nonlocal length of the nematic liquid

crystal can be changed by employing different voltage

bias.[3] Some properties of the SNSs and their interac-

tion are greatly different from those in the local case,

e.g. two coherent SNSs with a π phase difference at-

tract rather than repel each other,[4] the phase shift of

the SNS can be very large as compared with the local

soliton with the same beam width,[5] and the phase

shift of a probe beam can be modulated by a pump

beam in the strongly nonlocal case.[6]

As previously noted,[7] the power and phase con-

stant of the SNS are both in inverse proportion to

the 3rd power of its beam width for the nonlocal

case of an exponential-decay type nonlocal response

R(x − ξ) = (1/w) exp(−|x − ξ|/w), and are both in

inverse proportion to the 4th power of its beam width

for the nonlocal case of a Gaussian function type non-

local response R(x − ξ) = (1/w) exp[−(x − ξ)2/w2].

It will be shown in the present paper that these two

nonlocal response functions are two special cases of

a general family of nonlocal response functions. By

Ritz’s variational method we present the approximate

solutions of the fundamental and second order SNSs

for such a family of nonlocal response functions. It

is indicated that for a specific type of nonlocal re-

sponse, the solutions of the SNSs with the same beam

width but different degrees of nonlocality are identi-

cal except for an amplitude factor. For a nonlocal case

where the nonlocal response function decays in direct

proportion to the mth power of the distance near the

source point, the power and the phase constant of the

SNS are in inverse proportion to the (m+ 2)th power

of its beam width.
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2. The fundamental strongly non-

local soliton

Now we consider the (1+1)-D dimensionless non-

local nonlinear Schrödinger equation (NNLSE)[1−7]

i
∂u

∂z
+

1

2

∂2u

∂x2
+ u

∫ +∞

−∞

R(x− ξ)|u(ξ, z)|2dξ = 0, (1)

where u(x, z) is the complex amplitude envelop of the

light beam, x and z are the transverse and longitude

coordinates respectively, R(x − ξ) = R(ξ − x) > 0

is the real symmetric nonlocal response function, and

|u(ξ, z)|2 is the source that induces a perturbed refrac-

tive index of R(x− ξ)|u(ξ, z)|2dξ at a point x.

For a spatial soliton, we have |u(x, z)| = |u(x, 0)|
and |u(−x, z)| = |u(x, z)|. Let

V (x) = −
∫ +∞

−∞

R(x− ξ)|u(ξ, z)|2dξ, (2)

then we will have V (x) = V (−x). Taking the Taylor’s

expansion of V (x) at x = 0, we obtain

V (x) = V0 +
1

2µ4
x2 + αx4 + βx6 + · · · , (3)

where

V0 = V (0), (4a)

1

µ4
= V (2)(0), (4b)

α =
1

4!
V (4)(0), (4c)

β =
1

6!
V (6)(0). (4d)

Since V (x) depends on u(x, z), the parameters

V0, µ, α, β all depend on u(x, z) too. As previously

noted,[7] in the strongly nonlocal case the parameter

µ can be viewed as the beam width of the soliton,

and when x < µ, the terms αx4 and βx6 are one and

two orders of the magnitude smaller than the term

x2/(2µ4) respectively and the x8 power term and other

higher power terms of the Taylor series of V (x) are

negligible. For convenience, we simply adopt

V (x) = V0 +
1

2µ4
x2 + αx4 + βx6. (5)

By taking a transformation

u(x, z) = ψ(x)e−i(E+V0)z, (6)

the NNLSE(1) reduces to

Ĥ(x, ψ)ψ = Eψ, (7)

where

Ĥ(x, ψ) = −1

2

d2

dx2
+

(

1

2µ4
x2 + αx4 + βx6

)

. (8)

If α = 0 and β = 0, Eq.(7) will reduce to

the well-known stationary Schrödinger equation for

a harmonic oscillator that has Hermitian–Gaussian

eigenfunctions.[14] Since in the strongly nonlocal case

the terms αx4 and βx6 are far smaller than the term

x4/(2µ4), we view the terms αx4 and βx6 as perturba-

tions in the process of solving Eq.(7) and assume the

fundamental SNS to take the following approximate

form:

ψ0(A, a, b, c, d;x)

≈ A

(

1

πµ2

)1/4

e
− x

2

2µ2

×
(

1 + a
x2

µ2
+ b

x4

µ4
+ c

x6

µ6
+ d

x8

µ8

)

. (9)

To meet the requirements of the perturbation approx-

imation, we need a, b, c, d≪ 1. As will be shown, for a

specific type of nonlocal response function the param-

eters a, b, c and d are all constants that have nothing

to do with the beam width or the characteristic non-

local length provided that the characteristic nonlocal

length is much larger than the beam width. Since

a, b, c, d ≪ 1, the beam width of ψ2
0(A, a, b, c, d;x) is

approximately equal to µ apparently and the soliton’s

power in the first order approximation reads

P =

∫ +∞

−∞

ψ2
0(A, a, b, c, d;x)dx ≈ A2(1 + a). (10)

From Eq.(6), we obtain the phase constant of the fun-

damental SNS

γ = −(V0 + E), (11)

where

E ≈ 〈ψ0|Ĥ(x, ψ0)|ψ0〉
〈ψ0|ψ0〉

≡ F (α, β; a, b, c, d). (12)

Since a, b, c, d ≪ 1, we have E ∼ 1

2µ2
. As will be

shown for the SNS, we have V0 ≫ E and γ ≈ −V0.

According to Ritz’s variational method,[14] in order to
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make the difference between the approximate solution

ψ0(A, a, b, c, d;x) and the exact solution of the funda-

mental SNS as small as possible, the parameters a, b, c

and d should make F (α, β; a, b, c, d) reach its station-

ary point. So we have

∂aF (α, β; a, b, c, d) = 0, (13a)

∂bF (α, β; a, b, c, d) = 0, (13b)

∂cF (α, β; a, b, c, d) = 0, (13c)

∂dF (α, β; a, b, c, d) = 0, (13d)

where ∂a ≡ ∂

∂a
, etc. For a fixed value of µ, the pa-

rametersA,α, β, a, b, c and d can be numerically calcu-

lated by solving coupling Eqs.(4) and (13) with a nu-

merical method presented in Ref.[7]. Here and above

we have formally presented the main steps to calcu-

late the approximate solution ψ0(A, a, b, c, d;x) of the

fundamental SNS.

Now we consider a type of nonlocal response func-

tion R(x − ξ) that decays in direct proportion to the

mth power of the distance |x−ξ| near the source point

ξ. In general, we have

R(x− ξ) ≈ 1

w

(

1 − |x− ξ|m
wm

)

for |x− ξ| ≪ w,

(14)

where w can be viewed as the characteristic nonlo-

cal length of R(x − ξ). Several types of nonlocal re-

sponse functions can be sorted into this type of non-

local response function, for example, R1m(x − ξ) =
1

w
exp

(

−|x− ξ|m
wm

)

and R2m(x− ξ) =
1

w

1

1 + |x−ξ|m

wm

.

It is worth to note that R11(x− ξ) is the exponential-

decay type of nonlocal response function that has been

successfully applied to the description of the nonlo-

cal nonlinearity of the nematic liquid crystal[2,3,7] and

R12(x − ξ) is the Gaussian-function type of nonlocal

response function.[5−7] By introducing

ψ0(A, a, b, c, d;x) =
A√
µ
φ

(

a, b, c, d;
x

µ

)

, (15)

we obtain

φ

(

a, b, c, d;
x

µ

)

≈ 0 for x≫ µ. (16)

Now we consider the strongly nonlocal case where the

degree of nonlocality w/µ ≫ 1. When |x| ≪ w, by

substituting Eq.(15) into Eq.(2) and keeping in mind

Eqs.(14) and (16), we obtain

Vm(x) = −A
2

µ

∫ +∞

−∞

R(x− ξ)φ2

(

ξ

µ

)

dξ

≈ −
∫ +∞

−∞

A2

µw

(

1 − |x− ξ|m
wm

)

φ2

(

ξ

µ

)

dξ

= −P
w

+
A2µm

wm+1

∫ +∞

−∞

|η|mφ2

(

η +
x

µ

)

dη

= −P
w

+
A2µm

wm+1
Um

(

x

µ

)

, (17)

where

Um

(

x

µ

)

=

∫ +∞

−∞

|η|mφ2

(

η +
x

µ

)

dη. (18)

It is worth noting that Um

(

x

µ

)

is independent of the

characteristic nonlocal length w. As will be shown,

such a feature of Um

(

x

µ

)

leads the parameters a, b, c

and d to be independent of the characteristic nonlo-

cal length w too in the strongly nonlocal case. From

Eqs.(4), (10), and (17), we have

A =

√

wm+1

U
(2)
m (0)µm+2

, (19)

P =
wm+1(1 + a)

U
(2)
m (0)µm+2

, (20)

Vm(0) = − wm(1 + a)

U
(2)
m (0)µm+2

, (21)

α =
U

(4)
m (0)

4!µ6U
(2)
m (0)

, (22)

β =
U

(6)
m (0)

6!µ8U
(2)
m (0)

, (23)

where U
(2)
m (0), U

(4)
m (0) and U

(6)
m (0) are all indepen-

dent of w and µ. By substituting Eqs.(22) and (23)

into Eq.(7) and employing transformations y = x/µ

and ε = µ2E, we obtain

[

−1

2

d2

dy2
+
y2

2
+

U
(4)
m (0)

4!U
(2)
m (0)

y4 +
U

(6)
m (0)

6!U
(2)
m (0)

y6

]

ψ = εψ.

(24)

Owing to Eq.(24) being independent of w and µ, the

parameters a, b, c and d calculated by solving Eqs.(13)

are also independent of w and µ. In the strongly non-

local case, except for an amplitude factor A in Eq.(19),

the fundamental soliton solutions ψ0(A, a, b, c, d;x)

with the same beam width µ but different degrees of

nonlocality w/µ are identical.
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In view of Eq.(21), since w ≫ µ, we have

|Vm(0)| ≫ E. In respect that a, b, c, d ≪ 1, from

Eq. (18), in the first order approximation, we have

U (2)
m (0) ≈

2mΓ

(

1 +m

2

)

[1 + a(m− 1)]

√
π

, (25)

where Γ (1+x) = xΓ (x) is the Euler gamma function.

By substituting Eq.(25) into Eqs.(19), (20) and (21)

we have

A ≈
√

√

√

√

√

wm+1
√
π

µm+22mΓ

(

1 +m

2

)

[1 + a(m− 1)]

, (26)

P ≈ wm+1
√
π(1 + a)

µm+22mΓ

(

1 +m

2

)

[1 + a(m− 1)]

, (27)

γ ≈ −Vm(0)

≈ wm
√
π(1 + a)

µm+22mΓ

(

1 +m

2

)

[1 + a(m− 1)]

. (28)

For a fixed value of the characteristic nonlocal length

w, the power P and the phase constant γ of the

SNS are both in inverse proportion to the (m + 2)th

power of its beam width µ. The cases of m =

1, 2 have been previously studied by the perturba-

tion method,[7] and the functional dependences of the

power P and phase constant γ of the SNS on the

beam width agree well with Eqs.(27) and (28) respec-

tively. In the present paper we consider the cases of

m = 3, 4 as another two examples to validate our re-

sults. Using ψ2
0(A, a, b, c, d;x) as an input intensity

profile, R1m(x − ξ) or R2m(x − ξ) as a nonlocal re-

sponse function, and the NNLSE(1) as an evolution

equation, we numerically investigate the evolutions

of light beams in different nonlocal cases with differ-

ent degrees of nonlocality by the numerical simulation

method. The values of a, b, c and d calculated by Ritz’s

variational method in the strongly nonlocal case are

listed in Table 1.

Table 1. The values of a, b, c and d calculated by Ritz’s

variational method in the strongly nonlocal case. The val-

ues with the superscript ‘1’ are for the fundamental soli-

tons, and those with the superscript ‘2’ are for second

order solitons.

m a b c d

3 −0.0501 −0.0161 0.00221 −0.0000841

4 −0.121 −0.0301 0.00571 −0.000241

3 0.00212 0.000912 −0.00102 0.0000472

4 −0.0652 −0.0122 0.00152 −0.0000442

As shown in Fig.1, when the degree of nonlocality

w0/µ > 7, soliton solution ψ0(A, a, b, c, d;x) with the

values of a, b, c and d listed in Table 1 can describe the

fundamental soliton state of the NNLSE (1) exactly

but cannot describe it exactly when w/µ = 3 that is

beyond the strongly nonlocal case but is classified into

the generally nonlocal case.

Fig.1. The intensity profiles |u(x, z)|2 of light beams with input intensity profiles described by |u(x, 0)|2 = ψ2

0
(A, a, b, c, d; x).

The upper three figures are for the case of m = 3 and the lower three are for the case of m = 4. From left to right, the degrees

of nonlocality w/µ are 3, 7 and 15 respectively. The employed nonlocal response function for numerical simulations can be

R1m(x− ξ) or R2m(x− ξ), it makes no difference in the simulation results in the strongly nonlocal case.
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3. The second order strongly nonlocal soliton

In the strongly nonlocal case, besides the fundamental soliton state, the NNLSE (1) allows other higher

order soliton states. As another example, we present the approximate solution of the second order SNS

ψ1(A, a, b, c, d;x) ≈ A

(

1

πµ2

)1/4

e
−
x2

2µ2 √
2
x

µ

(

1 + a
x2

µ2
+ b

x4

µ4
+ c

x6

µ6
+ d

x8

µ8

)

, (29)

where

A ≈
√

√

√

√

√

wm+1
√
π

µm+22m(m− 1)Γ

(

1 +m

2

)

[1 + a(m+ 1)]

. (30)

It is worth to note that ψ1(A, 0, 0, 0, 0;x) is the sec-

ond order eigenfunction of the stationary Schrödinger

equation for a harmonic oscillator. The values of a, b, c

and d calculated in the strongly nonlocal case are

listed in Table 1 and the intensity profiles |u(x, z)|2
with |u(x, 0)|2 = ψ2

1(A, a, b, c, d;x) are shown in Fig.2.

It is indicated that when the degree of nonlocal-

ity w/µ > 10, the soliton solution ψ1(A, a, b, c, d;x)

can describe the second order soliton state of the

NNLSE (1) exactly but cannot describe it exactly

when w/µ = 5.

Fig.2. The intensity profiles |u(x, z)|2 with |u(x, 0)|2 = ψ2

1
(A, a, b, c, d; x). The upper three figures are for the case of m = 3

and the lower three are for the case of m = 4. From left to right, the degrees of nonlocality w/µ are 5, 10 and 15 respectively.

4. Summary

By Ritz’s variational method, we present the ap-

proximate solutions of the fundamental and second

order SNS of the NNLSE for several types of nonlo-

cal responses. It is indicated that for a specific type

of nonlocal response, except for an amplitude factor,

the solutions of the strongly nonlocal solitons with the

same beam width but different degrees of nonlocality

are identical. For a nonlocal case where the nonlocal

response function decays in direct proportion to the

mth power of the distance near the source point, the

power and the phase constant of the SNS are in in-

verse proportion to the (m + 2)th power of its beam

width.
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