
1
A
l
d
i
o
s
a
a
c
o
b
[
l
t
G
s
s
a
m
l
a
n
r
t
a
r

c
i
e
p
p
s
M
o
o
H

Deng et al. Vol. 24, No. 9 /September 2007 /J. Opt. Soc. Am. B 2537
Hermite–Gaussian breathers and solitons in
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Based on the Snyder–Mitchell model in the Cartesian coordinate system, exact analytical Hermite–Gaussian
(HG) solutions are obtained in strongly nonlocal nonlinear media. The comparisons of analytical solutions with
numerical simulations of the nonlocal nonlinear Schrödinger equation show that the analytical HG solutions
are in good agreement with the numerical simulations in the case of strong nonlocality. Furthermore, we dem-
onstrate that HG functions can be expressed as a linear superposition of individual Gaussian functions with a
� phase difference under the appropriate conditions. © 2007 Optical Society of America
OCIS codes: 190.5530, 190.4360, 060.1810.

h
T
l
a
m
t
d
k
G
S
c
t
p

S
n
=
S
o
N
t
v
d
t
F

2
A
S
T
�
d

w
c

. INTRODUCTION
s is well known, optical spatial solitons in nonlocal non-

inear media have received much attention lately [1–30]
ue to their rich potential applications to photonic switch-
ng [1], all-optical switching and logic gating [2], and all-
ptical signal processing [3]. Optical spatial solitons are
elf-trapped optical beams that exist by virtue of the bal-
nce between diffraction and nonlinearity. When the bal-
nce between diffraction and nonlinearity is broken, opti-
al beams become breathers. The propagation of the
ptical beams in the nonlocal nonlinear media is modeled
y the nonlocal nonlinear Schrödinger equation (NNLSE)
1,4,5]. Snyder and Mitchell [1] simplified the NNLSE to a
inear model named the Snyder–Mitchell model [31] in
he strongly nonlocal case, and they found an exact
aussian-shaped stationary solution called an accessible

oliton. Subsequently, Assanto’s team observed accessible
olitons in nematic liquid crystal (NLC) [6,7], called nem-
ticons [3], and they proved theoretically [6] and experi-
entally [7] that NLC is one of the strongly nonlocal non-

inear materials. Recently, Guo’s group found a new
pproximate model for the NNLSE in strongly nonlocal
onlinear media (SNNM) with a symmetrical real spatial
esponse function by using the Taylor expansion method;
hey obtained the exact solution of Gaussian breathers
nd a large phase shift of the Gaussian soliton compa-
able with its local counterpart [8–10].

In local nonlinear media, the complex-form solitons
annot be self-guided because of the natural repulsion ex-
sting between lobes of opposite phase. In nonlocal nonlin-
ar media, nonlocality makes it possible to overcome re-
ulsion between out-of-phase bright [11–16,32] or in-
hase dark solitons [17] that can form bound complex
tates observed in one-dimensional settings [13,18].
cLaughlin et al. predicted that NLC can sustain higher-

rder mode solitons, and they obtained several higher-
rder mode solutions by numerical simulation [19]. Then,
utsebaut et al. demonstrated experimentally that the
0740-3224/07/092537-8/$15.00 © 2
igher-order mode solitons traveled stably in NLC [13].
he stability of multipole-mode solitons in nonlocal non-

inear media was addressed by Xu et al. [14]. Rotschild et
l. [20] presented the experimental observation of scalar
ultipole solitons in SNNM. Laguerre and Hermite soli-

on clusters in nonlocal nonlinear media have been intro-
uced by Buccoliero et al. [21]. However, to the best of our
nowledge, exact analytical solutions with the Hermite–
aussian (HG) form have remained unexplored in
NNM. Hence it is necessary to derive the exact analyti-
al solutions with the HG form in SNNM. Our purpose in
his paper is to introduce HG solutions and to study their
ropagation properties in SNNM.
The paper is organized as follows. First, based on the

nyder–Mitchell linear model in the rectangular coordi-
ate system, we obtain the exact �1+D�-dimensional �D
1,2� analytical solutions with the HG form in the
NNM. Second, we discuss the solutions, the comparisons
f analytical solutions with numerical simulations of the
NLSE are given, and we find that any order HG func-

ion can be expressed as a linear superposition of indi-
idual Gaussian functions with a � phase difference un-
er the appropriate conditions. HG solitons can be
hought as a bound state of individual Gaussian solitons.
inally, a conclusion is presented.

. „1+1…-DIMENSIONAL HG BREATHERS
ND SOLITONS OF THE
NYDER–MITCHELL MODEL
he propagation of the optical beams in the

1+D�-dimensional �D=1,2� nonlocal cubic nonlinear me-
ia is governed by the NNLSE [1,4,5]:

i
��

�z
+ ���� + k��� R�x − x�����x�,z��2dDx� = 0, �1�

here �=��x ,z� is a paraxial beam, z is the longitudinal
oordinate, �=1/2k, k=�n /c is the wave number in the
0
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edia without nonlinearity, � is a material constant (�
0 or ��0 corresponds to a focusing or defocusing mate-

ial), x and x� are the D-dimensional transverse coordi-
ate vectors, �� is the D-dimensional transverse Laplac-

an operator, and R is the normalized symmetrical real
patial response function of the media.

For the strongly nonlocal case, the NNLSE can be de-
uced as the Snyder–Mitchell linear model [1,9,10]:

i
��

�z
+ ���� −

1

2
k�	P0r2� = 0, �2�

here 	��0� is the material parameter associated with
he response function R, r= �x� is the transverse distance
rom the beam center in the coordinate system, and P0
�−



 ���x ,0��2dDx is the input power of the beam at z=0.
For the �1+1�-dimensional case, Eq. (2) can be reduced

o

i
��

�z
+ �

�2�

�x2 −
1

2
k�	P0x2� = 0. �3�

e search for a solution to Eq. (3) by writing it as a mul-
iplication of the two functions F�x ,z� and �G�x ,z�,

� = F�x,z��G�x,z�. �4�

ubstituting Eq. (4) into Eq. (3), we obtain

i
�F

�z
�G + �

�2F

�x2 �G + 2�
�F

�x

��G

�x

+ F�i
��G

�z
+ �

�2�G

�x2 −
1

2
k�	P0x2�G� = 0. �5�

f we suppose

i
��G

�z
+ �

�2�G

�x2 −
1

2
k�	P0x2�G = 0, �6�

hen we can obtain from Eq. (5) simultaneously that

i
�F

�z
�G + �

�2F

�x2 �G + 2�
�F

�x

��G

�x
= 0. �7�

It is known [1,9] that the solution of Eq. (6) is the
aussian function

�G =
�P0 exp	i��z�


	��w�z�
1/2
exp�−

x2

2w�z�2 + ic�z�x2� , �8�

here w�z� is the beam width of the Gaussian beam, c�z�
epresents the phase-front curvature of the beam, and
�z� is the phase of the complex amplitude. They are given
y [9], respectively,

w�z�2 = w0
2�Pc

P0
sin2 �0z + cos2 �0z� , �9�

c�z� =

k�0�Pc

P0
− 1�sin 2�0z

4�cos2 �0z +
Pc

P0
sin2 �0z� , �10�
��z� = −
1

2
arctan��Pc

P0
tan �0z� , �11�

Pc =
1

k2	�w0
4 , �12�

here w0 is the initial beam width of the Gaussian beam
t z=0, �0=��	P0, and Pc is the critical power for soliton
ropagation. Equation (9) shows that the z-dependent
unction w�z�, which is the beam width of the Gaussian
unction obtained by Snyder and Mitchell [1], oscillates
eriodically along the propagation z if P0�Pc. If we divide

0
2 into both sides of Eq. (9), Eq. (9) becomes Eq. (4) ob-

ained by Snyder and Mitchell [1].
Substituting Eq. (8) into Eq. (7) yields

i
�F

�z
+ �

�2F

�x2 + �4i�c −
2�

w�z�2�x
�F

�x
= 0. �13�

aking the variable transform

 =
x

w�z�
, � = z �14�

nd using Eqs. (9) and (10), we can reduce Eq. (13) to

�2F

�2 − 2
�F

�
+ 2ikw���2

�F

��
= 0. �15�

By use of the method of separation of variables, letting
=X������, Eq. (15) is separated into the following two
ifferential equations:

d2X

d2 − 2
dX

d
+ 2nX = 0, �16�

d�

d�
+

in

kw���2� = 0, �17�

here n is an integer; Eq. (16) is the well-known Hermite
ifferential equation [33]. From Eqs. (16) and (17), we can
erive

= Hn�� = Hn� x

w�z�� , �18�

� = exp�− in arctan��Pc

P0
tan �0z�� . �19�

hen by substitution of Eqs. (8), (18), and (19) into Eq. (4),
he exact solutions of Eq. (3) can be obtained,

�n =
Cn

�w�z�
Hn� x

w�z��exp�−
x2

2w�z�2�expi	c�z�x2

+ �2n + 1���z�
�, �20�

here Cn= 	P0 / ���2nn!�
1/2 is the normalized coefficient,
�z�, c�z�, ��z�, and Pc are given by Eqs. (9)–(12). When
=0, Eq. (20) is simplified to the zeroth-order HG solu-

ion, i.e., the Gaussian solution,
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�0 =
�P0

	��w�z�
1/2
exp�−

x2

2w�z�2�expi	c�z�x2 + ��z�
�.

�21�

quation (21) is the Gaussian solution obtained by Sny-
er and Mitchell for the �1+1�-dimensional case [1].

. DISCUSSION OF SOLUTIONS
he HG-shaped solutions are the exact solutions to Eq.

2), but the approximate ones to Eq. (1). Comparing Eq.
21) with Eq. (20), we find that the phase-front curvature
f the HG beam c�z� is exactly the same as that of the
aussian beam. The phase ��z� is the same as that of the
aussian solution, except for an additional phase 2n��z�.

. Comparison with Numerical Simulation of the
NLSE
igures 1–3 show the comparison of the exact analytical
olutions for the Snyder–Mitchell model in the Cartesian
0 c
oordinate system with the exact results of a numerical
imulation of Eq. (1). It can be found from Figs. 1–3 that
he analytical solutions are in good agreement with the
umerical simulations.
To simulate the propagation, we use the input HG

eam parameters, i.e., �n�x ,0�= �Cn /�w0�Hn�x /w0�
exp�−x2 /2w0

2�, and assume that the material response is
he Gaussian function [4,5,8], i.e., R�x�= �1/�2�wm�
exp�−x2 /2wm

2 �, where wm is the characteristic length of
he material response function, �=w0n /wm denotes the
egree of the material nonlocality; for numerical simula-
ions, w0n=�2n+1w0, which is the initial HG beam width,
an be obtained by using the definition of the second-
rder moment for beam width. The less � is, the stronger
he nonlocality is. Obviously, for a fixed characteristic
ength of the material response function, � increases with
he increased mode number n of the HG beam, and the
egree of the nonlocality becomes weak. The normalized
ariables are given by Z=z /w0

2k, X=x /w0, and �

kw0�1/2�. In this paper, the material response function
ig. 1. Evolution of the normalized intensity profiles for �1+1�-dimensional (a) first-, (b) second-, and (c) third-order-mode HG breathers
n the Gaussian-shaped response material. Solid curves, numerical simulation; open circles, analytical solution. Solid curves and open
ircles in (d), (e), and (f) are the normalized intensity distributions at Z=4 corresponding to (a), (b), and (c), respectively. The parameters
re chosen as P /P =0.7, �=0.1.



a
a

B
W
i
w
t
H
t

H

p

t
b
t
m
e
s
w
n

C
W
i
a
P
t

F
i
c
a

2540 J. Opt. Soc. Am. B/Vol. 24, No. 9 /September 2007 Deng et al.
nd the normalized variables are the same, and �=0.1 for
ll figures.

. HG Breathers
hen P0�Pc, beam diffraction initially overcomes beam-

nduced refraction, and the beam initially expands,
hereas the reverse happens and the beam initially con-

racts when P0�Pc, as shown in Figs. 1 and 2. These are
G breathers whose widths vibrate periodically as they

ravel in the straight path along the z axis.
When m=0, Eq. (20) is simplified to the zeroth-order

G (Gaussian) breather expression, Eq. (21).
The first-, second- and third-order HG breathers are ex-

ressed as, respectively,

�1 =
�P0

	2��w�z�
1/2

2x

w�z�
exp�−

x2

2w�z�2�expi	c�z�x2

+ 3��z�
�, �22�

�2 =
�P0

	8��w�z�
1/2�4� x

w�z��2

− 2�exp�−
x2

2w�z�2�
�expi	c�z�x2 + 5��z�
�, �23�

ig. 2. Evolution of the normalized intensity profiles for �1+1�-d
n the Gaussian-shaped response material. Solid curves, numeri
ircles in (d), (e), and (f) are the normalized intensity distribution
re chosen as P0 /Pc=1.3, �=0.1.
�3 =
�P0

	48��w�z�
1/2�8� x

w�z��3

− 12� x

w�z���
�exp�−

x2

2w�z�2�expi	c�z�x2 + 7��z�
�. �24�

Comparing Eqs. (22)–(24) with Eq. (21), it is easy to see
hat the phase-front curvature of the higher-order HG
reathers c�z� is the same as that of Gaussian breather;
he phase of HG breathers increases with increasing
ode number n. Figures 1 and 2 show that the differ-

nces between the analytical solutions and the numerical
imulations increase with increased mode number n
hen the input power P0 and the degree of the material
onlocality � are the same.

. HG Solitons
hen P0=Pc, diffraction is exactly balanced by nonlinear-

ty, and these are HG solitons that preserve their widths
s they travel in the straight path along the z axis. As
0=Pc, Eq. (20) is simplified to an expression of HG soli-

ons,

onal (a) first-, (b) second-, and (c) third-order-mode HG breathers
ulation; open circles, analytical solution. Solid curves and open
4 corresponding to (a), (b), and (c), respectively. The parameters
imensi
cal sim
s at Z=
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�n = Cn

1

�w0

Hn� x

w0
�exp�−

x2

2w0
2�exp�− i�nz�, �25�

here the propagation constant �n is given by

�n = �n +
1

2��0 = �n +
1

2���	P0. �26�

q. (25) is identical to Eq. (16) of [28], which is written in
hinese. Equation (27) shows that the propagation con-
tant �n increases as the mode number n increases.

When n=0, Eq. (25) is reduced to the zeroth-order HG
Gaussian) soliton expression

�0 =
�P0

���w0�1/2
exp�−

x2

2w0
2�exp�− i�0z�. �27�

t is evident from Fig. 3 that these different-order-mode
G beams remain invariant as a function of distance z.
s expected, our numerical simulations are in excellent
greement with our analytical solutions. If we normalized
he intensity by the maximum value of the initial inten-
ity, Figs. 3(d) and 3(e) are consistent with Fig. 7(b) of

ig. 3. Stationary propagation of �1+1�-dimensional (a) first-, (b
esponse material up to a distance of Z=10. Solid curves, numer
ircles in (d), (e), and (f) are the normalized intensity distribution
re chosen as P0 /Pc=1, �=0.1.
19], and Fig. 7(a) in [19] is the well-known Gaussian (the
eroth-order HG) soliton, which demonstrates that wave-
uide modes shown in [19] are exactly the several low-
rder-mode HG solitons obtained in our paper. It is indi-
ectly proved that NLC is one of the strong nonlocal
onlinear media.

. Expression of Higher-Order HG Function by Linear
uperposition of Individual Gaussian Functions
ith �-Phase Difference
he linear superposition of two out-of-phase Gaussian

unctions can be expressed as

�01�x� = A1�exp�−
�x − a1�2

2 � − exp�−
�x + a1�2

2 ��
= A1 exp�−

x2 + a1
2

2 �	exp�a1x� − exp�− a1x�
.

�28�

he first-order HG function can be written as

� �x� = 2x exp�− x2/2�. �29�

d-, and (c) third-order-mode HG solitons in the Gaussian-shaped
ulation; open circles, analytical solution. Solid curves and open
4 corresponding to (a), (b), and (c), respectively. The parameters
) secon
ical sim
s at Z=
1
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Taylor expanding 	exp�a1x�−exp�−a1x�
 with respect to
� at x�=0 in Eq. (28), one can obtain

�01�x� = A1 exp�−
x2 + a1

2

2 ��2a1x +
1

3
a1

3x3 + ¯ � .

�30�

f the conditions �a1x��1 and A1a1 exp�−a1
2 /2�=1 are sat-

sfied, Eq. (30) approaches to Eq. (29) step by step with
he decrease of the parameter �a1x�.

The linear superposition of two in-phase functions and
ne out-of-phase Gaussian function can be expressed as

�02�x� = A2�exp�−
�x − a2�2

2 � + exp�−
�x + a2�2

2 ��
− B2 exp�−

x2

2 � = A2 exp�−
x2 + a2

2

2 �	exp�a2x�

+ exp�− a2x�
 − B2 exp�−
x2

2 � . �31�

he second-order HG function can be written as

�2�x� = �4x2 − 2�exp�− x2/2�. �32�

Taylor expanding 	exp�a2x�+exp�−a2x�
 with respect to
� at x�=0 in Eq. (31) yields

�02�x� = exp�−
x2

2 ��2A2 exp�−
a2

2

2 � − B2 + A2a2
2x2

�exp�−
a2

2

2 � +
1

12
A2a2

4x4 exp�−
a2

2

2 � + ¯ � .

�33�

f the conditions �a2x��1, 2A2 exp�−a2
2 /2�−B2=−2, and

2a2
2 exp�−a2

2 /2�=4 are satisfied, Eq. (33) approaches Eq.
32) step by step with the decrease of the parameter �a2x�.

The linear superposition of two in-phase and two out-
f-phase Gaussian functions is

�03�x� = A3�exp�−
�x − 2a3�2

2 � − exp�−
�x + 2a3�2

2 ��
+ B3�exp�−

�x + a3�2

2 � − exp�−
�x − a3�2

2 ��
= A3 exp�−

x2 + 4a3
2

2 �	exp�2a3x� − exp�− 2a3x�


− B3 exp�−
x2 + a3

2

2 �	exp�a3x� − exp�− a3x�
.

�34�

he third-order HG function can be written as

�3�x� = �8x3 − 12x�exp�− x2/2�. �35�

Taylor expanding 	exp�2a3x�−exp�−2a3x�
 and
exp�a3x�−exp�−a3x�
 with respect to x� at x�=0 in Eq.
34), one can obtain
�03�x� = exp�−
x2

2 ���4a3A3 exp�− 2a3
2� − 2a3B3

�exp�−
a3

2

2 ��x + �8

3
a3

3A3 exp�− 2a3
2�

−
B3

3
a3

3 exp�−
a3

2

2 ��x3 + ¯� . �36�

f the conditions �a3x��1, 4a3A3 exp�−2a3
2�−2a3B3

exp�−a3
2 /2�=−12, and �8/3�a3

3A3 exp�−2a3
2�− �B3 /3�a3

3

exp�−a3
2 /2�=8 are satisfied, Eq. (36) approaches Eq. (35)

tep by step with the decrease of the parameter �a3x�.
According to the same procedure introduced above, any

igher-order HG function can be expressed by a linear su-
erposition of Gaussian functions, out-of-phase between
djacent functions, under appropriate conditions. The po-
ential application of the linear superposition method of
he functions is to provide a new means to obtain the
igher-order HG solitons experimentally.
The physical origin of the formation of such bound

tates follows naturally from the strongly nonlocal char-
cter of the nonlinear interaction. In SNNM, the nonlin-
ar polarization of the medium with a small volume of ra-
ius x0 (x0 much less than any wavelength involved) is
etermined by the electric field distribution both inside
he volume and outside the volume under consideration,
he refractive index depends on the whole intensity distri-
ution in the transverse plane, and the strongly nonlocal-
ty can lead to an increase of refractive index in the over-
ap region between out-of-phase solitons under the
ppropriate conditions. This creates an attractive force
nd leads to the formation of stable bound states consist-
ng of a number of individual Gaussian solitons with a �
hase difference between adjacent solitons if the initial
mplitude of the individual solitons and the initial center
istance between the individual solitons are chosen prop-
rly.

Figure 4 shows the comparisons of the first-, the
econd-, and the third-order-mode HG solitons and the
table bound states consisting of two out-of-phase Gauss-
an solitons, two in-phase and one out-of-phase Gaussian
olitons, and two in-phase and two out-of-phase Gaussian
olitons. It is easy from Fig. 4 to see that the HG solitons
re in good agreement with the stable bound states con-
isting of several Gaussian solitons.

. EXTENSION OF THE „1+1…-DIMENSIONAL
ASE TO THE „1+2…-DIMENSIONAL
ASE

n this section, the solutions from the �1+1�-dimensional
ase are extended to the �1+2�-dimensional case.

For the �1+2�-dimensional case, Eq. (2) in the Carte-
ian coordinate system can be rewritten as

i
���2�

�z
+ �� �2��2�

�x2 +
�2��2�

�y2 � −
1

2
k�	P0�x2 + y2���2� = 0.

�37�



e

w
c
�

E

o

E
d
E
b
f
c

5
S
s
d
v
c
m

F
t
s
s
n
=

Deng et al. Vol. 24, No. 9 /September 2007 /J. Opt. Soc. Am. B 2543
Following the same procedure as in Subsection 2.A, the
xact solution of Eq. (37) can be obtained:

��2��x,y,z� = Cmn

1

w�z�
Hm� x

w�z��Hn� y

w�z��exp�
−

�x2 + y2�

2w�z�2 �
�exp	ic�z��x2 + y2�
 � exp	i2�m + n + 1���z�
,

�38�

here Cmn= 	P0 / �2m+n�m!n!�
1/2 is the normalized coeffi-
ient, which can be obtained from �−



 �−


 ���2�

�x ,y ,0��2dxdy=P0; w�z�, c�z�, ��z�, and Pc are given by
qs. (9)–(12).
When m=0 and n=0, Eq. (38) is reduced to the zeroth-

rder HG (Gaussian) solution

ig. 4. Stationary propagation of the HG solitons (solid curves)
he first-order-mode HG soliton and two out-of-phase Gaussian s
olitons, and one out-of-phase Gaussian soliton; (c) the third-ord
olitons in the Gaussian-shaped response material up to a dista
ormalized intensity distributions at Z=4 corresponding to (a),
0.1, A1=2.65, a1=0.41; A2=77.64, a2=0.23, B2=153.23; A3=409
�00 =
�P0

��w�z�
exp�−

�x2 + y2�

2w�z�2 �exp	ic�z��x2

+ y2�
exp	i2��z�
. �39�

quation (39) is the Gaussian solution obtained by Sny-
er and Mitchell [1] for the �1+2�-dimensional case.
quations (21) and (39) show that the solutions obtained
y Snyder and Mitchell [1] are our lowest-order solutions
or the �1+1�-dimensional and the �1+2�-dimensional
ases, respectively.

. CONCLUSION
tarting from the Snyder–Mitchell model in the Carte-
ian coordinate system, exact analytical HG solutions are
erived in SNNM by using the method of separation of
ariables. The evolution of the HG beams in SNNM is dis-
ussed. The comparisons of analytical solutions with nu-
erical simulations of the NNLSE show that the analyti-

propopagation of several Gaussian solitons (open circles) for (a)
s; (b) the second-order-mode HG soliton, two in-phase Gaussian
e HG solitons and two in-phase and two out-of-phase Gaussian
Z=10. Solid curves and open circles in (d), (e), and (f) are the

nd (c), respectively. The parameters are chosen as P0 /Pc=1, �

3=0.1, B3=8120.5.
and co
oliton
er-mod
nce of
(b), a

1.01, a
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al HG solutions are in good agreement with the
umerical results in the case of strong nonlocality. Our re-
ults show that the propagation constant increases as the
ode number increases. We find that any higher-order
G function can be expressed in terms of the linear su-
erposition of Gaussian functions with a � phase differ-
nce under the appropriate conditions. The Gaussian
reather and the Gaussian soliton obtained by Snyder
nd Mitchell can be treated as special cases of the HG
reathers and the HG solitons.
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