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Formation of Optical Solitons in Nonlinear Photonic Crystal Waveguides
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Relying on the huge group velocity dispersion available in photonic crystal (PC) waveguides, we observe the forma-

tion of both Bragg grating solitons and gap solitons in nonlinear PC waveguides in numerical experiments. Also,

we indicate the potential applications of optical solitons in optical limiting, optical delay, and pulse compression

and the feasibility of observing optical solitons in practical experiments.

PACS: 42.70.Qs, 42.65. Tg, 42. 65. Wi

Solitons in optical fibres were first suggested by
Hasegawa and Tappert in 1973.[11 Physically, they
originate from the balance between the dispersion
and nonlinearity of the materials (or structures).[Q]
To date, solitons have been studied in various non-
linear bulk®! and periodic structures, including Bragg
gratings,[* % Bragg stacks,”) waveguide arrays,!®!
and photonic crystals (PCs).®~11 At present, two-
dimensional (2D) PC slabs instead of real three-
dimensional (3D) PCs are widely used as a platform
to manipulate the flow of light because they are easy
to be fabricated and integrated with other devices.
The most popular PC structure is generally formed
by patterning a triangular lattice of air holes in a
high-index dielectric material (e.g., a semiconductor
such as GaAs or Si).[lz} As compared with the Bragg
gratings and stacks, due to the strong periodic mod-
ulation in refractive index, 2D PC slabs are expected
to exhibit much wider gaps and particularly much
larger group velocity dispersion (GVD). Similarly, we
can anticipate very large GVD at the edge of the
impurity band corresponding to a line-defect waveg-
uide formed in 2D PC slabs. The linear properties of
line-defect waveguides have been investigated in detail
both theoretically and experimentally because of their
importance in building PC-based devices and PC inte-
grated circuits.['3] However, their nonlinear properties
and corresponding applications remain unexplored. In
principle, it is possible to generate optical solitons in
nonlinear PC waveguides. The huge GVD of the non-
linear PC waveguides has two implications. To ob-
serve optical solitons, firstly much higher power den-
sity will be needed, and secondly the total length of
the nonlinear PC waveguide needed will be dramat-
ically reduced.? The latter feature offers us an op-
portunity to observe the formation of optical solitons
and to investigate their properties and applications by
numerical simulation. Otherwise, it would be very dif-
ficult to simulate the generation of optical solitons in

nonlinear PC waveguides based on the current com-
putational resource. In addition, although the demon-
stration of an enhancement in nonlinearity accompa-
nied with the huge GVD is still lacking, it is expected
to partly relax the requirement for increased power
density, making it possible to observe optical solitons
in practical experiments.

In this Letter, we demonstrate the formation of
optical solitons in nonlinear PC waveguides by nu-
merical simulation. Based on this, we indicate that
optical solitons can be experimentally observed under
very reasonable excitation conditions.

A schematic of the nonlinear PC waveguide, a line-
defect waveguide in a 2D PC (a triangular lattice of
air holes in GaAs), is shown in Fig. 1(a). The radius of
the air holes is chosen to be 0.3a, where a = 0.4 ym is
the lattice constant. Considering a reasonable simula-
tion speed with the available computation resource, we
have chosen to simulate a pure 2D PC structure with
an effective refractive index of ~ 2.87 using nonlin-
ear finite-difference time-domain (FDTD) method.
This approximation has been confirmed to be effec-
tive for 2D PC slabs.'®! The effective refractive index
for PC slabs depends mainly on the thickness of slabs
and the radius of air holes. However, the change in
effective refractive index leads only to a shift of the
frequency spectra and does not affect the main con-
clusions drawn in this study. A perfectly matched
layer boundary condition is employed for the FDTD
simulation.'®] The grid sizes used in the simulation
are a/10 and +/3a/10, respectively, for the directions
parallel and perpendicular to the waveguide. A fur-
ther reduction in the grid size barely influences the
simulation results. Two slab waveguides of width V3a
are used to couple light into and out of the PC waveg-
uide. Also, the coupling efficiency is found to be maxi-
mum for a direct coupling [i.e. d = 0 in Fig. 1(a)]. For
comparison, a slab waveguide of width v/3a is used as
a reference, as shown in Fig. 1(b).
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Fig. 1. Schematic of the nonlinear PC waveguide consid-
ered in this paper (a) and the slab waveguide used as a
reference (b). The actual total length of the PC waveguide
is 42a.

The dispersion curves for the line-defect waveg-
uide can be obtained by either plane wave expan-
sion or FDTD methods. The calculated dispersion
curves for transverse magnetic (TM, electric field lies
in the 2D plane) mode are shown in Fig. 2(a). In gen-
eral, the odd mode will not be excited in the case of
normal incidence. Here we focus on the low-energy
band edge of the even mode where very large GVD
The transmission spectrum obtained by nu-
merical simulation using a continuous wave source is
given in Fig. 2(b).
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Fig. 2. (a) Calculated dispersion curves for the TM mode
of the PC waveguide. (b) Simulated transmission spec-
trum for the PC waveguide by using a continuous wave
source. The low transmission detected in the dielectric
band is due to the leakage of light from the line-defect
waveguide into the surrounding PC.

With the dispersive curve, the group velocity v,
and the GVD ((33) near the band edge can be read-
ily derived. It is remarkable that (5 is extremely
large (in the order of 107 ps?/m) at the band edge
(w = 0.2721 (27¢/a) or A = 1.47 um, where w and
A represent the normalized frequency and wavelength
respectively). This value is three orders of magnitude
larger than that in Bragg gratings.””! Even at 1.46 ym
(or w = 0.2740(27c/a)), which is 10 nm from the band
edge, (- is still six orders of magnitude larger than
that in conventional optical fibres.?!

Assuming that the PC waveguide is made of a Kerr
nonlinear material, then the nonlinear refractive index
change An is proportional to the local electric field in-
tensity (|E|?), i.e.

An = ny| BJ, (1)

where ny is the nonlinear coefficient of the material.
For GaAs and Al,Gaj_,As, their nonlinear proper-
ties near the half-gap energies are well described by
Eq.(1). Also, it should be pointed out that their nq
is about 500 times larger than silica used for making
optical fibres.1”]

Very similar to that in optical fibres, we can de-
scribe the effects of GVD and SPM (self-phase modu-
lation) in the nonlinear PC waveguide with two length
scales which are generally referred to as dispersion
length Lp and nonlinear length Lyy,.2! They are de-
fined as follows:

T2
Lp =2, 2
P = 5 @
(2T g -1
Ly = (A—OM Peff) . (3)

In Eq. (2), To is the half width of the input pulse at
1/e-intensity point. In Eq.(3), A¢ is the wavelength
of the input pulse in vacuum, n$T = an, represents
the effective nonlinear coefficient and « is the so-called
enhancement factor; P.g = nP, denotes the effective
power density at the peak of the input pulse, Py is the
peak power density of the input pulse, and n is the
coupling efficiency.

In general, the interplay of GVD and SPM effects
gives rise to optical solitons of order N, with N deter-

mined by
. Lp \1/2
N=(72)" +e (4)

where N is an integer and |e| < 0.5. With respect to
the initial pulse, the width of the generated solitons is
narrowed for a positive € and broadened for a negative
€.

Let us consider a subpicosecond pulse at 1.46 ym
where |32] ~ 10*ps?/m. If Tpwam = 1.665T5 =
0.3 ps, then Lp ~ 8.4 pm. In order to satisfy the ba-
sic condition for the formation of solitons (L > Lp >
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Lyny), the total length of the nonlinear PC waveg-
uide L is chosen to be 2Lp =~ 16.8 um = 42a. Then
we fix ny at 1 x 1075 yum? /W (or 1 x 10713 cm? /W)
and adjust Py, and correspondingly Lyy, to see the
formation of Bragg grating solitons in the numerical
simulation.

The simulation results are shown in Fig.3. For a
very weak Py (Py = 1W/um?), we can clearly see
the continuous broadening of the pulse width which
is recorded by two monitors placed in the middle of
the waveguide and in the output slab waveguide. The
recorded pulse intensities are denoted as T; and T3
respectively. Also, it is noted that the broadening is
asymmetric because 3 is a highly nonlinear function
of wavelength near the band edge. A broadening fac-
tor of ~ 1.5 observed in the middle of the waveguide
indicates that Lp is about 8.4 um.[! This value is in
good agreement with that estimated by Eq.(2). By
increasing Py to 3 x 102> W/um?, however, no pulse
broadening is observed. Instead, a symmetric pulse
shape with a slightly narrower width is achieved and
it propagates along the waveguide without any change.
This feature clearly indicates the formation of optical
solitons.!?l The fact that the generated soliton is of
identical width to the input pulse suggests that ¢ is
close to 0 under this excitation condition. A further
increase of Py to 6 x 102 W/um? leads to a significant
narrowing of pulse width and an obvious change in
the pulse shape, confirming again the generation of
solitons.[?l A careful inspection reveals that the inte-
grated intensity of the soliton is enhanced while its
group velocity is increased with increasing P.
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Fig. 3. Evolution of the transmitted pulses through the
nonlinear PC waveguide with increasing power density Py
for the input pulse. The pulse intensities recorded in the
middle of the waveguide and in the output waveguide are
denoted as 17 and T» respectively. The pulse shape in the
reference waveguide is also provided for comparison.

With the knowledge of Py (~ 3 x 10?°W/um?) em-

ployed to generate the fundamental solitons, it is pos-
sible to extract the nonlinearity enhancement factor
a. In our case, it is actually the ratio of the non-
linear phase shift achieved in the PC waveguide to
that obtained in the reference waveguide. For funda-
mental solitons whose width is similar to that of the
input pulse, we have ¢ ~ 0 and Ly; ~ Lp. Thus,
the enhancement factor can be easily derived from
the definition of Lyr [Eq.(3)]. For Ao = 1.46 um,
ny = 1x107° W/um?, n =~ 0.87, Py ~ 3 x 10°W/um?,
we obtain a ~ 10.6 indicating that we do achieve an
enhancement of nonlinearity in the PC waveguide.

Now let us see the formation and characteristics of
gap solitons in the nonlinear PC waveguide. We set
the input pulse at 1.48 um (or w = 0.2703(27c/a)) and
for a fixed ny of 1 x 107> um? /W increased the input
power to see the formation of gap solitons. The simu-
lation results for a 0.3-ps pulse are presented in Fig. 4.
For power densities weaker than 10 W /um?, the pulse
is totally blocked by the band gap. Raising the power
density to 2 x 10° W/um?, we can see a transmitted
pulse with markedly narrowed pulse width. Further
increase of the power density results in narrower pulse
width, larger group velocity and enhanced transmit-
tance. These phenomena imply that nonlinear PC
waveguides with large GVD can be employed as nice
optical limiters, efficient pulse compressors and con-
trollable optical delay lines. These applications will
be discussed in detail elsewhere.
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Fig. 4. Formation of gap solitons with increasing power
density for the input pulse.

Let us check the feasibility of optical solitons
in practical nonlinear PC waveguides.
linear coefficient we used in the simulation is very
close to the practical values for GaAs and AlGaAs
(~ 2 x 10713 cm?/W).['"] The power densities neces-
sary to observe the formation of optical solitons are
3 x 102 W/um? (or 30 GW/cm?) and 2 x 103 W/pum?
(or 200 GW/cm?) for Bragg grating solitons and gap
solitons respectively. Previously, similar power den-
sity (10 GW/cm?) has been used to observe spatial
solitons in waveguide arrays.[8! A further reduction of

The non-
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the required power density can be achieved by increas-
ing the pulse width as well as the waveguide length.
For instance, the required power density can be re-
duced by two orders of magnitude if we use 1-ps pulse
and increase the waveguide length to 168 ym. There-
fore, optical solitons can be observed in practical PC
waveguides under very reasonable excitation condi-
tions.

In summary, we have investigated the formation
and characteristics of optical solitons in nonlinear PC
waveguides. It is shown that both Bragg grating soli-
tons and gap solitons can be generated in nonlinear
PC waveguides under very reasonable excitation con-
ditions. They exhibit potential applications such as
optical limiting, pulse compression and optical delay.
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