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Abstract: Lithium niobate (LN), as a nonlinear material
with a large nonlinear susceptibility, has been widely
employed in second harmonic generation (SHG) up to
ultraviolet (UV) frequency range due to its broad low-
absorption window. In nanophotonics, it is possible to
harness the Mie resonances associated with the single
dielectric particles to boost the nonlinear light—matter
interactions. Here, we fabricate single Mie-resonant LN
nanospheres on a SiO, substrate via the femtosecond (fs)
laser ablation technique. By exploiting the magnetic dipole
(MD) Mie resonance, UV SHG from the LN nanosphere is
significantly enhanced with a measured conversion effi-
ciency of 4.45x 108 under the excitation of an fs laser
at 750 nm. The single LN nanospheres achieved in this
work could serve as Mie resonators for building nonlinear
nanophotonic devices such as frequency converters and
quantum light sources, etc.
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1 Introduction

As a fundamental optical nonlinear effect, second har-
monic generation (SHG) is a process that two identical
photons convert into a double-frequency photon, which
has been widely applied in signal processing, optical
spectroscopy, and laser systems [1-3]. Conventional SHG
devices are based on bulk materials such as nonlinear crys-
tals of potassium dihydrogen phosphate, potassium titanyl
phosphate, and beta barium borate [4-9], where high-
efficiency SHG requires phase-matching conditions and
long interaction length with light. With the rapid devel-
opments of nanophotonics and integrated optics, building
nanoscale nonlinear optical devices becomes feasible via
the greatly enhanced light matter interactions provided
by photonic nanostructures [10, 11]. Specifically, photonic
microresonators that strongly enhance the local electro-
magnetic field can greatly boost the nonlinear optical
processes [12, 13]. In addition, the tight confinement of
light within sizes smaller than the coherent length of light
eliminates the restriction of the phase-matching condition.
One of the representative photonic nanostructures is sin-
gle dielectric resonators such as nanospheres, nanocubes,
and nanodisks that support Mie resonances [14—17]. With
strong field confinement and great wavelength tunability
by the size, geometry, and material composition, Mie res-
onators recently enable a wide range of applications in
nonlinear nanophotonics such as Raman scattering [18,
19] and harmonic generations [19-21], as well as photon-
pair generations [22, 23]. For most of these works, high
refractive index dielectric materials with large nonlinear
susceptibility such as silicon [24], gallium arsenide [25,
26], or germanium [27, 28] are employed, benefiting from
their mature fabrication techniques and low loss in the
near-infrared region. However, these materials are lossy in
the ultraviolet (UV) range due to strong inter-band absorp-
tion, and therefore achieving strong UV SHG enhanced
by Mie-resonant nanostructures remains an open chal-
lenge. Ferroelectric metal oxide lithium niobate (LN) with
alarge energy bandgap of 4 eV and a wide low-loss spectral
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range from 0.33 to 5.5 pm [29-32] is a promising dielectric
material for efficient SHG up to the UV region. Neverthe-
less, limited by the nanofabrication techniques, using LN
single nanoparticles for nonlinear nanophotonics is not
yet common. Recently, a high-efficiency SHG at 360 nm
was demonstrated from Mie-resonant LN nanocubes fab-
ricated by a solvothermal synthesis method [33]. However,
bottom-up chemical synthesis is relatively complicated
and the geometry of the Mie-resonators is limited to cubes.
Alternatively, the femtosecond (fs) laser ablation technique
has been successfully employed to fabricate Mie-resonant
nanospheres with controllable size from a variety of non-
linear materials including Si, GaAs, Ge, and perovskite
[34-37].

In this paper, we demonstrate a strong UV SHG from
single LN nanospheres fabricated by the fs laser ablation
technique. Supporting MD Mie resonance, LN nanospheres
exhibit a significant field enhancement of 5.5, resulting in
a high SHG conversion efficiency measured as 4.45 X 1078,
We examine the wavelength and power dependence of
the SHG signals, confirming the SHG enhancement con-
tribution from the Mie resonance. Our work shows the
feasibility of fabricating nanospheres from a bulk LN wafer
and extends the Mie-resonance enhanced nanoscale SHG
up to the UV frequency range.
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2 Device design and fabrication

The schematic of SHG from a 160 nm-radius LN nanosphere
placed on SiO, substrate is presented in Figure 1(a). A fs
laser with wavelength of 750 nm is in resonance with the
MD mode and the UV SH signal is expected to be at 375 nm.
The scattering spectrum of the LN nanosphere is simu-
lated via finite-difference time-domain (FDTD) method,
which reveals the multipole contributions of the Mie reso-
nances, as shown in Figure 1(b). We further calculate the
Cartesian multipoles up to the third order based on the
electric field E inside the structure. By using the multipo-
lar expansion of the polarization current density [38], the
multipole terms (electric dipole ED, magnetic dipole MD,
electric quadrupole EQ, and magnetic quadrupole MQ) are
calculated according to the following equations:
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Figure 1: The design of LN nanosphere. (a) Schematic of ultraviolet SHG from an individual LN nanosphere on SiO, substrate. Inset: the SEM
image of a fabricated nanosphere with a radius of 160 nm. (b) Simulated scattering spectra of an LN nanosphere. The calculated multipole
contributions are depicted respectively with different colors (ED: electric dipole, EQ: electric quadrupole, MD: magnetic dipole, MQ:
magnetic quadrupole.). (c) Electric field distribution of the Mie-resonant mode from an LN nanosphere at x-y plane, the white arrows

indicate the in-plane electric field vectors.
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where w is the angular frequency. The total scattered power
P, is calculated as the sum of each multipole contribu-
tions:
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with k being the wave number and g, is the vacuum
permittivity, and g is the relative permittivity of LN.

It can be observed that the two dominant peaks
around 550 and 750 nm in the scattering spectrum are
mostly attributed to the MQ and MD, respectively. In addi-
tion, the summation of individual multipole components
strictly follows the simulated scattering spectrum via the
FDTD method, which proves the reliability of the multi-
pole decomposition. The simulated electric field distribu-
tion of the MD and MQ modes in the x-y plane of the
LN nanosphere is shown in Figure 1(c). Inside the LN
nanosphere, electric field enhancements are observed in
both the MD and MQ modes. In this work, we choose to
generate the SHG by pumping at the MD resonance simply
because the SHG of the MQ mode is out of the detection
range of our spectrometer.

We employ the fs laser ablation technique to fabricate
LN nanospheres with radii ranging from 50 to 200 nm. In
our experiments, 800 nm laser pulse with a temporal dura-
tion of 90 fs and repetition rate of 1 kHz are delivered by an
fs amplifier (Legend Elite, Coherent) and then focused on
the surface of an LN wafer immersed in deionized water. We
use a lens with a focusing length of 15 cm to focus the laser
beam on the LN wafer with a spot diameter of ~ 70.0pm.
Once the ablation process is completed, the aqueous solu-
tion containing LN nanospheres is centrifuged with a speed
of 6000 rpm to separate LN nanospheres with radii of
140-200 nm from small LN nanoparticles. Subsequently,
the as-prepared LN nanospheres are randomly dispersed
onaSiO, substrate with alow refractive index for effectively
localizing the electromagnetic field. The scanning electron
microscope (SEM) image of a fabricated LN nanosphere
with a radius of 160 nm is shown in the inset of Figure 1(a).
One of the advantages of our method is that the fabricated
nanospheres can be flexibly transferred to any substrates
due to their aqueous environment.
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3 Results

A dark field spectroscopy setup has been implemented for
measuring the scattering spectra of single LN nanospheres.
The white light is focused onto individual nanospheres by a
100x darkfield objective, and the scattered light is collected
by the same objective and delivered to an imaging spec-
trometer. To verify the Mie resonances associated with the
LN nanospheres, the scattering spectra of LN nanospheres
with different radii are simulated, as shown in Figure 2(a).
With the increase of nanosphere radius, the MD-resonance
wavelength redshifts significantly, following the relation
2R ~ A/n, where is the refractive index of the material,
is the nanosphere radius, and is the Mie-resonant wave-
length. Such a trend is in very good agreement with the
measured spectra, as presented in Figure 2(b). The addi-
tional peak near 650 nm in the experiment possibly origi-
nates from the contribution of ED due to the deviation of
the fabricated nanosphere from the ideal geometry.

The SHG signals are characterized by using an inverted
microscope (Axio Observer Al, Zeiss) equipped with a spec-
trometer (SR-500i-B1, Andor) and a charge-coupled device
(DU970N, Andor), as schematically shown in Figure 2(c).
Anfslaser oscillator with a pulse duration of 130 fs and rep-
etition rate of 76 MHz (Mira 900S, Coherent) is used as the
excitation source and a 100X objective lens (ZEISS Plan-
Neofluar) is employed for signals collection. The backscat-
tered incident laser beam is filtered by a short-pass filter
(SPF, Thorlabs FES0450) so that the UV SHG signal can be
collected by the spectrometer for analysis.

To investigate the nonlinear optical response of the
LN nanospheres, SHG is measured from a 160 nm-radius
nanosphere. With a pump power of 0.4 mW, SHG signals
at different wavelengths are collected when scanning the
pump laser across MD resonance (Figure 3(a)). The inten-
sity of the SHG signal reaches the maximum at the MD
resonance (750 nm) and significantly reduces at other
pump wavelengths, implying the resonant enhancement
from the MD mode. To further confirm the critical role
played by the Mie resonance, the scattering spectrum of
Mie-resonant mode and wavelength-dependent SHG inten-
sities are plotted in Figure 3(b). It can be observed that
the intensities of the SHG signals follow the profile of
the scattering spectrum, clearly demonstrating that the
enhancement of the nonlinear interactions is provided by
the MD Mie resonance.

We examine the power dependence of the UV SHG
from the LN nanosphere pumped at the MD Mie reso-
nance. The measured SHG spectra under different pump
powers are displayed in Figure 4(a). The SHG intensity as
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Figure 2: The characterization of the scattering spectra for LN nanosphere. (a) Simulated and (b) experimental scattering spectra of LN
nanospheres with different radii. (c) Detection set up for collection of SHG signals from LN nanospheres. The fs incident laser beam is
focused on the sample by an objective lens. The reflected incident laser is filtered by a short-pass filter (SPF) and then the backscattered

SHG signal is collected by the spectrometer.
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Figure 3: The characterization of the SHG enhancement for LN nanosphere. (a) Measured spectra of SHG when scanning the pump
wavelength across MD mode under the pump power of 0.4 mW. (b) Wavelength dependence of SHG signals in (a). The scattering spectrum of

the corresponding LN nanosphere is plotted for comparison.

a function of the pump power is plotted in Figure 4(b)
in a double logarithmic scale, exhibiting an exponent
value of 2.0 by fitting with Pgye =mPy, . The strict
quadratic dependence of the signal intensity on the pump
power unequivocally verifies the nature of the second-
order nonlinear optical process. Finally, with an incident
peak irradiance of 2.0 GW/cm?, the maximal measured
efficiency of visible-to-UV conversion is extracted as high

as 4.45x 1078 from the equation # = P,,/P,, which is

comparable to the previous works on LN metasurfaces [39,
40]. We note that the SiO, substrate used in this work
results in low-Q factors and weaker field enhancements for
the MD Mie-resonances compared to the situation without
a substrate. The SHG conversion efficiency can be further
improved by engineering the substrate. E.g., replacing the
Si0, substrate with hyperbolic metamaterials has been
suggested to generate high-efficiency SHG from single LN
particles [41].
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Figure 4: Power dependence of the SHG for LN nanosphere. (a) Measured spectra of SHG under different pump powers at MD resonance. The
inset shows the spectral position of the pumping laser with respective of the MD mode. (b) Power dependence of SHG signals in (a), fitted by

Py = mP;

oump* The exponent value obtained from the fitting is 2.0.

4 Conclusion

In summary, we fabricate the LN nanosphere supporting
Mie resonances in visible via the laser ablation technique.
Due to the MD Mie resonance, the LN nanosphere pro-
vides a considerable field enhancement for the generation
of SHG in the UV range. The SHG reaches the maxi-
mum when pumping at the MD Mie resonance, resulting
in a high SHG conversion efficiency of 4.45 X 1078, Our
work provides a promising tool for enhancing nanoscale
light—matter interactions in the UV regime. The Mie-
resonant LN nanospheres could be further utilized to
explore nonlinear nanophotonic devices such as frequency
converters and quantum light sources via the nonlinear
optical process, e.g., the parametric down-conversion pro-
cess and four-wave mixing.
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