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A B S T R A C T

Potassium-ion batteries are considered as one of safe and low-cost alternatives to the traditional lithium-ion
batteries. However, the sluggish potassium ion kinetics, drastic volume variation and inferior cyclic reversibility
hinder the further development for the commercial applications. Herein, a new type of polyimide-inspired
volcanic rock-like carbon is synthesized by pyrolyzing N/O-rich polymer precursor of polymeric 1, 4, 5, 8-
Naphthalenetetracarboxylic dianhydride (PNTCDA). The synergetic effect of the mesoporous construction, the
prominent capacitance and the ameliorated conductivity endows PNTCDA@900 with boosted potassium-ion
electrochemical properties. As anodes for PIBs, the discharge capacity of 185.3 mAh g−1 can be achievable after
100 cycles at a current density of 0.05 A g−1, and the superior reversible capacity of 81 mAh g−1 is obtained
even after 4000 cycles at a high current density of 2 A g−1. The cell can be operated in a reliable environmental
adaptability with 115–205 mAh g−1 from −5 °C~70 °C at 0.1 A g−1. Furthermore, when applied to potassium-
ion hybrid capacitors with active carbon as cathode, PNTCDA@900 delivers a reversible capacity of 53.5 mAh
g−1 after 800 cycles at 2 A g−1. The current work will be significant for the development of potassium-ion
storage.

1. Introduction

Lithium-ion batteries (LIBs) with high energy and power densities
have been commercially popularized in portable electronics and elec-
tric vehicles [1–4]. However, the further development of LIBs will be
restricted in fields of large-scale energy supply equipment and sus-
tainable utilization because of the high cost, scarcity and limited dis-
tribution of lithium source [5]. Right now, much attention is paid to
other alkaline metals with abundant reserves in nature and similar
electrochemical properties to lithium [6–11]. Recently, potassium-ion
batteries (PIBs) as a competitive candidate to LIBs are proposed and
present a fast-growing trend towards the prospective applications.
Unfortunately, the sluggish potassium ion kinetics and irreversible vo-
lume swelling caused by the large K-ion radius (~1.38 Å) usually de-
teriorate the structural stability and decrease an inferior potassium-ion
storage performance. The exploration of a feasible anode with excellent
cycling durability and superior rate capability is a hot topic in PIBs
[12–17]. Carbonaceous materials have the promising virtues like the
low potential, inexpensiveness, high accessibility and eco-friendliness

[18–23], compared with other anodes such as metal phosphide, metal
sulfide, metallic oxide and alloy compound. However, the traditional
graphite materials without modified treatments can hardly accom-
modate the large-sized K-ion due to the limited interlayer spacing
[4,24]. The carbonaceous materials usually are subject to some serious
drawbacks like limited cycles and inferior K-ion storage capability.

Recently, some novel carbon-based anodes are reported with the
proper modification to obtain an appealing performance in K-ion sto-
rage. For instance, Yang et al. presented a hierarchical porous hard
carbon anode with N, O-doping in PIBs [25], which can deliver the
capacity of 230.6 mAh g−1 at 50 mA g−1 after 100 cycles and 118 mAh
g−1 at 3 A g−1. Jian et al. proposed the hard-soft carbon composite as
anodes for PIBs, and a capacity of ~200 mAh g−1 at 0.2 C was de-
monstrated after 400 cycles [26]. Ryan et al synthesized a binder-free
N, O-rich carbon nanofiber anode by the electrospinning of poly-
acrylonitrile polymer and subsequent carbonization, which showed the
capacity of 160 mAh g−1 at 279 mA g−1 after 100 cycles [27].
Therefore, the heteroatom doping may be a suitable route for the en-
hancement of K-ion electrochemical storage.
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In this work, we synthesize the polyimide-inspired volcanic rock-
like carbon material with N/O doping and investigate the applications
for PIBs and potassium-ion hybrid capacitors (PIHCs). The K-ion storage
capability and diffusion kinetics are greatly promoted, and the excellent
electrochemical performance is obtained. In PIBs, the discharge capa-
city of 185.3 mAh g−1 is exhibited after 100 cycles at 0.05 A g−1. Even
under a high current density of 2 A g−1, the reservable specific capacity
of 81 mAh g−1 is obtained over 4000 cycles. Impressively, the current
system can be operated in the wide temperature range from
−5 °C~70 °C, and the efficient charge capacities of 115–205 mAh g−1

can be maintained at a current density of 0.1 A g−1. Moreover, PIHCs
with PNTCDA@900 as anode and active carbon (AC) as cathode are
assembled as the novel high-power energy storage device. At various
current densities of 0.1, 0.2, 0.5, 1.0 A g−1, PIHCs show the discharge
capacities of 128.2 mAh g−1, 118 mAh g−1, 104.5 mAh g−1, 92 mAh
g−1. In a long cycling test, PIHCs also exhibit an excellent performance
with the reversible capacity of 53.5 mAh g−1 at 2 A g−1 after 800
cycles. The current study shows a remarkable potential of doped carbon
materials for applications in PIBs and PIHCs, which may broaden the
prospective road to design more effective carbon-based electrodes.

2. Experimental

2.1. Material synthesis

Ethylenediamine (EDA, AR) and N-methyl pyrrolidone (NMP,
99.5%) are obtained from Aladdin (Shanghai, China). 1, 4, 5, 8-naph-
thalenetetracarboxylic dianhydride (NTCDA, 97%) is purchased from
Energy Chemical (Shanghai, China). The specific surface area of com-
mercial AC (YEC-8, Yihuan Carbon Co., Ltd) is about 2000–2500 m2

g−1.

2.1.1. Preparation of PNTCDA, NTCDA@900 and PNTCDA@900
The synthesis procedure is shown in Fig. 1. The polymeric precursor

PNTCDA was fabricated by the polymerization reaction between
NTCDA and EDA in equimolar amounts (10 mmol), under a reflux in
solvent of NMP (30 ml) with N2 at 200 °C for 8 h. Then the collection
was washed with NMP and ethanol for several times to remove residual
NTCDA, then dried at 120 °C in a vacuum oven overnight. The final
product (PNTCDA@900) was synthesized by pyrolyzing PNTCDA at
900 °C for 5 h in N2 atmosphere. The similar preparation process of
NTCDA@900 is used by pyrolyzing NTCDA.

2.2. Material characterizations

X-ray diffraction (XRD, BRUKER, D8 ADVANCE) instrument was
carried out to analyze the crystal structure with the scan rate of 2°
min−1. The morphology and chemical state were analyzed by field
emission scanning electron microscopy equipped with energy dis-
persive spectrometer (FESEM; ZEISS, ULTRA 55) and X-ray photoelec-
tron spectrometer (XPS; Thermo fisher Scientific, K-Alpha), respec-
tively. Specific surface area and pore diameter distribution of Brunauer-
Emmett-Teller (BET) were obtained by JW-BK200C (JWGB Sci.&Tech.
Co., Ltd, Beijing). Fourier transform infrared spectroscopy (FTIR) and
Raman spectra measurement were conducted by inVia (Renishaw, U.K.)
and Nicolet 6700 (Thermo Nicolet, America), respectively.

2.3. Electrochemical measurements

For PIBs, PNTCDA@900, acetylene black and carboxymethyl cel-
lulose were mixed with deionized water to form the slurry in a weight
ratio of 8:1:1. After vigorously stirring, the slurry was pasted onto
copper foil and transferred to a vacuum oven at 60 °C overnight.
Metallic potassium as counter electrode, the mass of the active material
for anode is 0.35–0.56 mg cm−2. For the cathode fabrication of PIHCs,
AC, acetylene black and polyvinylidene fluoride were mixed in a weight
ratio of 8:1:1 with the solvent of N-methyl-2-pyrrolidone. The prepared
slurry was coated on aluminum foil and dried at 60 °C in vacuum oven.
All tests were obtained by CR2032 coin cells, which were assembled in
the argon-filled glove box (MBRAUNLABstar). The separator is glass
microfibers filters (Whatman) and the electrolyte is 0.8 M KPF6 in
ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1 by volume).

For PNTCDA@900 anode, the galvanostatic discharge/charge pro-
files and rate performances were tested by NEWARE battery testing
system with the voltage of 0.01–2.0 V. A broader voltage window of
0.01–3.0 V was applied to the long cycle measurement. For PIHCs and
AC cathodes, the experimental voltage was set to 0.01–3.5 V and
2.5–4.5 V, respectively. Cyclic voltammetry (CV) measurement and
electrochemical impedance spectroscopy (EIS) analysis were employed
by Solartron 1470E electrochemical workstation. Before assembling
PIHCs, cathode (AC) and anode (PNTCDA@900) were pre-cycled in
half-cell for 5 cycles, and mass ratio of cathode and anode was around
6:1. The specific capacities of PIBs and PIHCs were calculated based on
the mass of anode materials.

Fig. 1. Schematic illustration of the synthesis process for NTCDA@900, PNTCDA and PNTCDA@900.
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3. Result and discussion

Fig. 2a presents the disorganized distribution of rod-like NTCDA at
the scale of 2 μm. After pyrolyzed at 900 °C, rod-like shape is converted
into the stacked flake structure in Fig. 2b-c. The serious agglomeration
is a huge obstacle for the transfer and diffusion kinetics of potassium
ion [28]. PNTCDA polymerized from NTCDA and EDA displays a
squama-like fashion in Fig. 2d. In Figs. S1 and S2 (Supplementary
Materials), energy dispersive spectrum of PNTCDA shows the operable
in-situ introduction of N/O atoms, and element mapping graphs de-
monstrate a uniform distribution of C, N and O elements. As shown in
Figs. 2e-f and S3 (Supplementary Materials), the pyrolyzed PNTCDA@
900 illustrates a volcanic rock-like morphology with rough surface due
to the gas release and exfoliation under a high temperature, which can
cause the plentiful mesopores for fast ion transport. Furthermore,
homogeneous distributions of C, N and O elements are detected in
elemental mapping images of PNTCDA@900 in Fig. 2g, which also
indicates the availability of N/O doping during the pyrolysis process. As
a comparison, the stacked structure of NTCDA@900 can be observed in
Fig. S4a-c (Supplementary Materials). On the contrary, abundant me-
sopores emerge on the surface of PNTCDA@900 in Fig. 2h, which can
effectively ameliorate the issue of sluggish potassium kinetics at a high
current density. Selected area electron diffraction (SAED) spectra of
PNTCDA@900 and NTCDA@900 are shown in Figs. 2i and S5
(Supplementary Materials). The dispersive diffraction rings of (0 0 2)
and (1 0 1) planes display a hybrid state of crystallization and

amorphization. Furthermore, as shown in Fig. 2j, the narrow-selected
HRTEM of PNTCDA@900 shows an irregular carbon array accom-
panied by a partially ordered interlayer structure, which is consistent
with the SAED analysis.

In Fig. 3a-c, PNTCDA@900 with evident type-IV isotherms depicts
the larger BET surface area of 33.1 m2 g−1 and pore volume of
0.082 cm3 g−1 than NTCDA@900 (5.2 m2 g−1 and 0.082 cm3 g−1). The
pore size of PNTCDA@900 is 35.56 nm, which firmly supports the
presence of mesoporous structure [29]. This BET surface area of
33.1 m2 g−1 is closer to the other reported value of 54.3 m2 g−1 of
hierarchically porous N-doped carbon fibers [30], which can be ex-
pected to own more reaction sites and better electrolyte infiltration to a
certain extent. However, it is hard to seek the hysteresis loop in
NTCDA@900 sample. The low specific surface area and specific pore
volume of NTCDA@900 confirm the compacted flake structure with the
absence of pores in SEM and TEM analysis.

As shown in Fig. 3d, XPS survey of PNTCDA@900 indicates the
atomic ratios of C, N and O elements are 93.44%, 3.33% and 3.24%,
respectively. The C 1s spectrum of PNTCDA@900 in Fig. 3e can be split
into three peaks of C-C (284.8 eV), C-N (286.5 eV), and C= O (289 eV).
These results strongly confirm the in-situ N/O doping in PNTCDA@900.
The high-resolution N 1s spectrum can be deconvoluted into two types
of N species in Fig. 3f, which are assigned to 398.2 eV of pyridinic N (N-
6; relative peak area of 15.5%) and 401.0 eV of quaternary N (N-Q;
relative peak area of 84.5%), respectively. Besides, pyridinic N is
usually located in the edges of defective carbon layers. Quaternary N is

Fig. 2. SEM images of (a) NTCDA, (b-c) NTCDA@900, (d) PNTCDA and (e-f) PNTCDA@900. (g) Energy dispersive spectrum and elemental mapping graphs of
PNTCDA@900. (h-j) TEM image, SAED pattern and high-resolution TEM (HRTEM) image of PNTCDA@900.
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located in the carbon planes and combined with carbon atoms by the
sp2 bonds [32]. The dominant N-Q proportion of 84.5% in PNTCDA@
900 is ascribed to the converting of O = C-N-C = O (imide group) to N-
Q. In Fig. 3g, O 1s spectrum is split into two peaks of C = O carbonyl
group at 531.4 eV and C-O-C ether group at 532.4 eV. According to
previous reports [32–34], the introduction of N and O elements in
carbon materials can produce abundant defects, form more K+ active
sites, change the original electron donor properties and boost the
wettability of carbon. These advantageous changes can accelerate the
diffusion of K ions, strengthen the surface-induced capacitance, en-
hance the electronical conductivity and decrease the inert surface area
of carbon, respectively. Hence, the effective N/O-doped modification
will make a tremendous contribution to promote the potassium-ion
storage performance of PNTCDA@900.

FTIR spectrum is shown in Fig. S6 (Supplementary Materials) and
Fig. 3h. O = C-O-C = O bond of NTCDA at 1039 cm−1 will be trans-
formed to the imide group of O = C-N-C = O after a polymerization
process, and the resultant C-N bond observed at 1353.8 cm−1 shows the
successful synthesis of PNTCDA [28,32,35]. Raman spectra in Fig. 3i
are used to clarify the graphitization characteristics and disordered
aromatic structure [36–38]. The higher D/G peak intensity ratio of
PNTCDA@900 (ID/G = 2.07) represents a lower graphitization degree
than NTCDA@900 (ID/G = 1.57), which results from the introduction of
N and O heteroatom. Whereas, N atoms embedded in carbon lattice can
not only optimize the electronic conductivity, but also bring in more
edges/defects for K+ adsorption to promote capacitance behaviors
[32,39].

3.1. Potassium-ion batteries performance

In Fig. 4a, the original NTCDA shows three main diffraction peaks at
12.2°, 23.6° and 24.6°, corresponding to lattice planes of (1 0 0), (1̄ 1 2)
and (2 0 0), respectively [40]. NTCDA@900 and PNTCDA@900 possess

the similar XRD patterns with two broad peaks around 26° and 44°,
indicating a hybrid structure of crystallization and amorphization.

After 50 cycles, ex-situ XRD patterns of PNTCDA@900 are displayed
in Fig. S7 (Supplementary Materials), which are used to investigate the
mechanism of K insertion/extraction inside carbon matrix. In contrast
to pristine state, both potassiation and depotassiation processes show
the SEI layer peaks at 19.8°, 22.9°, and 32.6°, which is mainly caused by
the complex side reaction between electrode and electrolyte. After fully
discharging to 0.01 V, two diffraction peaks located at 16.9° and 33.3°
are well consistent with the KC8 phase [32]. Then KC8 characteristic
peaks disappear after fully charging to 2.0 V, and the complete depo-
tassiation curve keeps a similar shape with pristine state, which in-
dicates the good cyclic reversibility of PNTCDA@900.

Figs. 4b and S8a (Supplementary Materials) demonstrate typical CV
curves of PNTCDA@900 and NTCDA@900 between 0.01 V and 2 V at
the scan rate of 1 mV s−1. During the first cathodic scan of PNTCDA@
900, the irreversible capacity loss appears around 0.5 V, which contains
the complex formation of SEI film and excessive K-insertion [31]. Ac-
cordingly, the anodic peak at the first cycle is located at 0.75 V and then
shifts to 0.55 V in the following cycles, due to the repeatable K-ex-
traction process. PNTCDA@900 keeps the similar CV curves in the
succeeding cycles, presenting a good cyclic durability. There are no
obvious redox peaks of NTCDA@900 in CV curves because of the weak
K-de/intercalation reaction. Figs. S8b and S9 (Supplementary
Materials) display typical galvanostatic charge–discharge profiles of
NTCDA@900 and PNTCDA@900 under a current density of 0.05 A g−1.
The capacity loss of electrodes in first cycle is considered to be the
formation of solid electrolyte interphase (SEI) and irreversible K-in-
sertion among the carbon layers. Compared to the second cycle, capa-
city retention ratios of PNTCDA@900 are 67% (25th), 71.8% (50th),
and 68% (100th), higher than those of NTCDA@900 (64%, 45.7%, and
43.8%). And the anode shows a high durability and large capacity for
long cycling. In addition, these charge/discharge profiles exhibit a

Fig. 3. (a) N2 adsorption–desorption isotherm of NTCDA@900 and PNTCDA@900. (b-c) Pore size distribution. (d) XPS survey spectrum of PNTCDA@900. The high-
resolution XPS spectra of (e) C 1s, (f) N 1s and (g) O 1s. (h) FTIR spectrum of PNTCDA. (i) Raman spectra of NTCDA@900 and PNTCDA@900.
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characteristic slope since the second cycle, which is similar to previous
reports of non-graphitic carbon materials [41,42].

The cyclic contrasts of NTCDA@900 and PNTCDA@900 are shown
in Fig. 4c. PNTCDA@900 supplies a discharge capacity of 185.3 mAh
g−1 after 100 cycles at 0.05 A g−1 with a high coulombic efficiency
(CE) of 98.15%. As for rate performance shown in Fig. 4d, PNTCDA@
900 indicates outstanding specific capacities of 220.7 mAh g−1, 193.9
mAh g−1, 178.3 mAh g−1, 160.6 mAh g−1, 140.5 mAh g−1 and 122.6
mAh g−1 at the current densities of 0.1, 0.2, 0.4, 0.8, 1.5 and 2.5 A g−1,
respectively. Even at the high current density of 4 A g−1, a maintain-
able capacity of 103 mAh g−1 is obtained while NTCDA@900 can
hardly provide any capacity. When the current density comes back to

0.1 A g−1, PNTCDA@900 keeps the stable capacity of 169 mAh g−1

after 150 cycles. The prominent achievements of PNTCDA@900 can
profit from the heteroatom doping and pore-forming preparation. The
N/O doping is beneficial to enhance the conductivity of electrodes and
introduce more defects. Mesoporous structure can shorten the trans-
mission path of K ions to improve rate performance, and enlarge con-
tact area for the electrolyte to obtain a better electrochemical property.
On the other hand, the compacted microstructure without heteroatom
doping is considered as the key cause for NTCDA@900 to block the ion
transport and result in poor performance. Hence, the N/O doping de-
sign and mesoporous structure play a primary role in increasing energy
storage sites and electrical/ionic conductivities, presenting the effective

Fig. 4. (a) XRD patterns of NTCDA, PNTCDA, NTCDA@900 and PNTCDA@900. (b) CV curves of PNTCDA@900 at 1.0 mV s−1. The electrochemical performance of
NTCDA@900 and PNTCDA@900 electrodes in PIBs: (c) Cycle performance at 0.05 A g−1. (d) Rate performance from 0.1 to 4 A g−1. (e) Long cycle property at 2 A
g−1. (f) Cycling at different temperatures from −5 °C to 70 °C.
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Fig. 5. Electrochemical kinetic analysis of PNTCDA@900 in surface-dominated potassium ion storage: (a) CV curves at a scan rate from 0.2 to 1.0 mV s−1. (b) The
fitted b-value plots for anodic and cathodic scan. (c) CV curve and the proportion of capacitive fraction at a scan rate of 1.0 mV s−1. (d) Contribution ratios of the
capacitive and diffusion-controlled charge storage at various scan rates. EIS analysis of NTCDA, NTCDA@900 and PNTCDA@900 in potassium ion storage: (e)
Nyquist plots and the equivalent circuit. (f) Different circuit parameters values of three materials. (g) The calculated result of electron, ion and total conductivities.
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improvements for the higher practical capacity and quicker potassium
kinetics. That is also reflected in the results of long cycling perfor-
mance.

The long-term cycles are performed under a high current density of
2 A g−1 and at a broader voltage of 0.01–3.0 V as shown in Fig. 4e.
After 4000 cycles, PNTCDA@900 shows an outstanding reversible ca-
pacity of 81 mAh g−1 with a CE of 99.3%, but NTCDA@900 only shows
the very low capacity of 1.6 mAh g−1 after 200 cycles. Subsequently,
the high-low temperature performance is measured at a temperature
range from −5 °C to 70 °C in Fig. 4f. PNTCDA@900 keeps the high
charge capacities of 115 mAh g−1, 149.5 mAh g−1, 184.5 mAh g−1,
216.4 mAh g−1, 222.2 mAh g−1 and 205.8 mAh g−1 at different
temperatures of −5 °C, 10 °C, 25 °C, 40 °C, 55 °C and 70 °C, respec-
tively. Hence, PNTCDA@900 delivers an undiminished K-storage cap-
ability in a wide working temperature range.

To explore the in-depth mechanism of PNTCDA@900 in potassium
ion storage, CV analysis has been carried out in Fig. 5a with the in-
cremental sweep rates from 0.2 to 1.0 mV s−1. The capacitive con-
tribution can be calculated based on following equation:

=i avb (1)

where i represents peak current, a and b represent adjustable constants,
and v represents scan rate. Moreover, the slope closing to 1.0 means a
surface capacitance-controlled response, otherwise approaching to 0.5
indicates a diffusion-controlled reaction. The plots applied to the peak
current of PNTCDA@900 are shown in Fig. 5b. The b-values of two
fitted plots are 0.879 and 0.795, corresponding to anodic and cathodic
peaks, respectively. The dominated capacitive behaviors have a sig-
nificant contribution to promote the potassium storage of PNTCDA@
900. Furthermore, the contribution ratio of capacitive behavior to
overall capacity can be calculated by the equation as follows:

= +i k v k v1 2
1
2 (2)

where i represents the current response, v represents scan rate, k1v re-
presents capacitive reactions, and k2v1/2 stands for the part of diffusion-
controlled behavior. As shown in Fig. 5c, the capacitive contribution
(orange region) of PNTCDA@900 for total capacity is 80.19% at the
scan rate of 1 mV s−1 (other scan rates shown in Fig. S10,
Supplementary Materials). The relative ratios of capacitance and dif-
fusion contribution at overall scan rates are obtained in Fig. 5d. Ob-
viously, the ratios of capacitance contribution rise from 63.14% to
80.19%, representing the gradual increase in capacitive effect.

EIS measurement has been performed to study the ion/electron
dynamics. Nyquist plots of three electrodes are shown in Fig. 5e with a
well-fitted equivalent circuit, and all circuit parameters values are re-
corded in Table 1, including the solution resistance (Rs), charge transfer
resistance (Rct), diffusion impedance (Wo) and total resistance
(Rtol = Rs + Rct + Wo). Three significant circuit resistances are dis-
played in Fig. 5f. To evaluate the electrochemical kinetics, equivalent
conductivities are obtained via the equation as below:

=σ l R S/( Â· ) (3)

where σ equals to σe (electronic conductivity), σi (ionic conductivity)
and σt (total conductivity), respectively. l represents the thickness of
electrode. R represents impedance and S represents the cross-sectional
area of the electrode material. The calculated results of conductivities
are also shown in Table 1 and plotted in Fig. 5g.

As shown in Fig. 5g, compared with original NTCDA, NTCDA@900
and PNTCDA@900 show the enhanced electrical conductivity. But the
dissimilarity of structure in two pyrolysis products leads to a quite
different σi. It should be explained that the compacted microstructure of
NTCDA@900 will hamper the ion transport and lead to a poor rate
property. On the contrary, in-situ N/O doped construction and meso-
porous morphology of PNTCDA@900 occupy the predominant con-
tributions to accelerate K-ion diffusion, demonstrating the much higher
ion conductivity than NTCDA@900. Thus, PNTCDA@900 delivers the
optimal electronic and ionic diffusion dynamics.

3.2. Potassium-ion hybrid capacitors performance

Given the discussion above, PNTCDA@900 anode with strong sur-
face capacitance and detectable K-ion de/intercalation shows the
combination of capacitance and battery-type energy storage. On the
other hand, AC is considered as a proper cathode, which possesses the
superb adsorption/desorption reaction of PF6– due to its vast surface
area [43]. Therefore, PIHCs are assembled by employing PNTCDA@900
as anode and AC as the cathode. To achieve a good capacity-matched
balance between cathode and anode, AC and PNTCDA@900 half-cell
are conducted at a same current density of 0.1 A g−1. As shown in
Fig. 6a and S11 (Supplementary Materials), AC and PNTCDA@900
exhibit the stable capacity of 38 mAh g−1 and 200 mAh g−1 after 50
cycles at 0.1 A g−1, respectively. For AC cathode, both the linear slope
in Fig. 6b and rectangle-like shape in Fig. 6c demonstrate an ideal ca-
pacitive behavior. For the PIHCs (Fig. 6d), it displays the discharge
capacities of 128.2 mAh g−1, 118 mAh g−1, 104.5 mAh g−1, 92 mAh
g−1, 104.1 mAh g−1, 117.7 mAh g−1, 127.8 mAh g−1 at various cur-
rent densities of 0.1, 0.2, 0.5, 1.0, 0.5, 0.2, 0.1 A g−1, revealing an
excellent rate recyclability. Based on U-t plot at different current den-
sities (Fig. 6e), the energy density (E, Wh kg−1) and power density (P,
W kg−1) can be calculated by these equations below and shown in
Table 2:

∫= = × ×V I
m

tE IVdt Δ
t1

t2

(4)

=
E
t

P (5)

where I is the charge/discharge current, V is the discharge voltage, m is
the total mass containing cathode and anode, and t corresponds to the
discharge time. PIHCs deliver the promising energy density of 36.4 Wh
kg−1 at a power density of 161.8 W kg−1. It also has 20.2 Wh kg−1

even though at a higher power density of 600.0 W kg−1. With respect to
CV curves of PIHCs (Fig. 6f), the rectangle-like shape at scan rates from
0.2 to 20 mV s−1 proves that it is operated by the non-faradic reaction.
In Fig. 6g, galvanostatic charge–discharge profiles of PIHCs show the
overlapped and typical linear slope, at the same time, the cyclic capa-
city keeps an undiminished trend after 50 cycles. The energy storage
mechanism of PIHCs can be described as Fig. 6h. PNTCDA@900 anode
exhibits a batteries-type reaction with de/intercalation and adsorption/
desorption of K ions. Meanwhile, AC cathode shows a pure capacitive
behavior of adsorption/desorption of PF6–. During the long-term cy-
cling in Fig. 6i, PIHCs deliver the first charge/discharge capacity of
107.7 mAh g−1 / 75.1 mAh g−1 with a good CE of 69.7%. After 800
cycles, it still maintains a predominant reversible capacity of 53.5 mAh
g−1 at 2 A g−1 with a CE of 98%. These properties have exhibited a

Table 1
All parameters values and conductivities of equivalent circuit for three materials.

Sample Rs (Ω) Rct (Ω) бe (×10-3 S·cm−1) Wo (Ω) бi (×10-3 S·cm−1) Rtol (Ω) бt (×10−3 S·cm−1)

NTCDA 2.087 1315 10.56 17,402 0.80 18719.08 0.74
NTCDA@900 1.325 466.1 29.80 3963 3.50 4430.42 3.13
PNTCDA@900 0.729 420.6 33.02 660.2 21.04 1081.52 12.84
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potential application prospect of PNTCDA@900 materials.

4. Conclusion

Volcanic rock-like PNTCDA@900 carbon anode material was syn-
thesized successfully. Due to the N/O doping, increased conductivity,

abundant active sites and strong capacitance effect, the novel anode
material can provide an excellent potassium-ion storage performance.
As anodes for PIBs, PNTCDA@900 demonstrates a decent capacity of
185.3 mAh g−1 after 100 cycles at 0.05 A g−1 and rate capacity of 103
mAh g−1 at 4 A g−1. During the long-periodic satiability test, it also
demonstrates a superior specific capacity of 81 mAh g−1 after 4000
cycles at 2 A g−1. In a high-low temperature test, it can keep a stable
cycle performance of 115–205 mAh g−1 from −5 °C~ 70 °C at 0.1 A
g−1. For PIHCs, PNTCDA@900 shows a promising application with the
stable cyclicity (53.5 mAh g−1 at 2 A g−1 after 800 cycles) and ap-
plicable energy/power density (36.4 Wh kg−1/161.8 W kg−1). This
work may be significant to the development of K-ion storage.
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