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Abstract With the rapid development of future network, there has been an explosive growth in multimedia

data such as web images. Hence, an efficient image retrieval engine is necessary. Previous studies concentrate

on the single concept image retrieval, which has limited practical usability. In practice, users always employ

an Internet image retrieval system with multi-concept queries, but, the related existing approaches are often

ineffective because the only combination of single-concept query techniques is adopted. At present semantic

concept based multi-concept image retrieval is becoming an urgent issue to be solved. In this paper, a novel

Multi-Concept image Retrieval Model (MCRM) based on the multi-concept detector is proposed, which takes

a multi-concept as a whole and directly learns each multi-concept from the rearranged multi-concept training

set. After the corresponding retrieval algorithm is presented, and the log-likelihood function of predictions is

maximized by the gradient descent approach. Besides, semantic correlations among single-concepts and multi-

concepts are employed to improve the retrieval performance, in which the semantic correlation probability is

estimated with three correlation measures, and the visual evidence is expressed by Bayes theorem, estimated

by Support Vector Machine (SVM). Experimental results on Corel and IAPR data sets show that the approach

outperforms the state-of-the-arts. Furthermore, the model is beneficial for multi-concept retrieval and difficult

retrieval with few relevant images.
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evidence

Citation Xu H J, Huang C Q, Pan P, et al. Image retrieval based on multi-concept detector and semantic

correlation. Sci China Inf Sci, 2015, 58: 122104(15), doi: 10.1007/s11432-015-5486-4

1 Introduction

With the rapid development of the society and scientific technologies, it can be foreseen that network

technologies and network contents will play a more important and involved role in human life, and based
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Figure 1 (Color online) Training examples for conventional single-concept detectors and the proposed multi-concept

detector. (a) Concept 〈water〉; (b) concept 〈boat〉; (c) concept 〈harbor〉; (d) multi-concept 〈water, boat, harbor〉.

on the profoundly developed network in the future, multimedia data will continue to grow explosively.

There is no doubt that people need to learn more about big data and much more related research will be

conducted. Big data is an enormous dataset that may contain rich media data, most of which belong to

non-structured data (such as images). Current information collection techniques are no longer restricted

to only using text or attribute keywords to characterize the target object. Moreover, multimedia data

such as images are used to give a visual representation of the object, in order to minimize the loss of

information. Therefore, an efficient image retrieval engine is much needed to help users search and browse

interesting images from a large image dataset, and semantic retrieval should be further considered.

During multi-concept image retrieval, the paradigm allows users to provide multiple desired concepts

and retrieve relevant images1) containing all the target concepts. Some solutions use concept detectors

to automatically detect and recognize image concepts in the un-annotated image set [1]. The concepts

may be about a scene (such as 〈harbor〉) or the nature (such as 〈sunset〉). The essential idea of concept

detection is to model the associations between images and concepts.

In practice, users always use the image retrieval system with multi-concept queries (such as a scene

query 〈water, boat, harbor〉). To deal with this kind of retrieval, the existing approaches [2,3] perform

multi-concept retrieval by combining single-concept detectors. These approaches may be ineffective in

some cases. In Figure 1, three single-concepts 〈water〉, 〈boat〉 and 〈harbor〉 in the visual feature space are

considered, denoted in blue, red and yellow, respectively. The overlapping orange area denotes a multi-

concept 〈water, boat, harbor〉 in the visual feature space and it is considered that it has a special visual

appearance which may be difficult to distinguish solely by conventional single-concept detectors. The

conventional single-concept detectors and multi-concept detectors can complement each other and their

combination may lead to better performance of multi-concept retrieval, which is our research motivation.

Besides, many concept-based retrieval approaches [1,3,4] do not explicitly consider the semantic cor-

relations among concepts to simplify the complexity of the proposed models. In other words, these

approaches are based on the assumption that concepts are independent of each other. However, this

assumption cannot be satisfied in some cases. For example, the single-concept 〈sunset〉 usually appears

with 〈cloud〉 or 〈horizon〉 in the images, and a multi-concept 〈water, boat〉 is likely to co-occur with

a single-concept 〈harbor〉 or a multi-concept 〈city, harbor〉 in an image. To solve the above-mentioned

problems, a probabilistic model is proposed and the semantic correlations between single-concepts and

multi-concepts are incorporated into the probabilistic model.

The remainder of the paper is organized as follows. Section 2 briefly reviews the related work. Sec-

tion 3 presents our probabilistic model and the retrieval algorithm, and then in Section 4, the image

relevance estimation is described. Experimental results and analyses are reported in Section 5. Finally,

the conclusion is given in Section 6.

2 Related work

Two major conventional image retrieval paradigms are content-based image retrieval (CBIR) [5] and

text-based image retrieval. CBIR is neither intuitive nor user-friendly. Hence, the concept-based image

retrieval [6,7] is proposed and has received increasing attention. These approaches employ concept detec-

tors to automatically distinguish semantic concepts in the un-annotated images. In general, the existing

concept detection can be classified into three categories: the generative model, the discriminative model

and the nearest neighbor model.

1) Images are considered relevant for a query Q when they contain all single-concepts wi ∈ Q.
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The generative model usually learns the joint probability p(wi, I) and calculates the prediction p(wi|I)
by using Bayes rules, given the retrieval concept wi and the un-annotated image I. A pioneer work was

Cross Media Relevance Model (CMRM) [8], which utilizes the co-occurrences of wi and all visual blobs

bi of I to generate the joint probability p(wi, b1, . . . , bm). CMRM considers multi-concept image retrieval

including single-concept, 2-concept2), 3-concept and 4-concept, which is performed through the combi-

nation of single-concept detectors. Inspired by the discrete CMRM model, Continuous-space Relevance

Model (CRM) [9] was proposed and the efficiency of the CRM detector for multi-concept retrieval has

been greatly improved by about 51% compared with CMRM. In [10], a probabilistic generative approach

called Multiple Bernoulli Relevance Model (MBRM) was proposed, which is based on CRM. Benefiting

from the assumption of the multiple Bernoulli distribution, MBRM improves about 15% over CRM for

single-concept retrieval. Similar to CMRM, Cross Media Translation Table (CMTT) [11] also assumes

that an image region can be represented by using a discrete vocabulary of bi. It employs the G-means al-

gorithm [12] to automatically determine the optimal number m of bi. Its single-concept detectors achieve

a 45% relative improvement in the accuracy of concept detection, compared with previous methods. The

previous approaches mainly focus on image representation and the link p(wi, I) learning. A few studies

(such as CMRM) consider the multi-concept retrieval through the single-concept detector techniques.

Topic models which originate from text mining are also generative models, and have been widely applied

in the image-related problems [13]. In the data generation process, these approaches do not use training

images but use hidden topics (aspects) zk as latent variables which link concepts wi and images I. Latent

Dirichlet Allocation (LDA) [14] and Probabilistic Latent Semantic Analysis (PLSA) [15] are two classical

examples of the topic model approaches. Correspondence Latent Dirichlet Allocation (Corr-LDA) [16]

extends the basic LDA model to learn the joint correlations. Topic model detectors utilize hidden topics

zk to link wi and I, which may improve the accuracy. However, the correlations between concepts and

multi-concept detectors are not considered.

Discriminative models directly estimate the posterior probability p(wi|I) or learn a map from I to

wi, such as Support Vector Machine (SVM) [17] and Passive-Aggressive Model for Image Retrieval

(PAMIR) [2]. PAMIR introduces a learning procedure, where a criterion related to the multi-concept

retrieval performance is optimized, and achieves better multi-concept retrieval performance. Different

from the existing methods, Group Sparsity approach (GS) [1] investigates the properties of visual fea-

tures. Ref. [18] proposed a joint convex optimization formulation which minimizes ranking errors while

simultaneously conducting feature selection. Owing to the continuous efforts in concept detection, these

discriminative model detectors show competitive retrieval performance in single-concept retrieval. How-

ever, multi-concept retrieval is performed through the combination of single-concept retrieval techniques

and the associations between concepts are not used for concept detection.

Compared with many parametric models mentioned above, the nearest neighbor models are more

attractive as a simple yet powerful alternative, such as ranking-oriented nearest-neighbor method [19]

and the utilization of the annotation propagations over a similarity graph of the annotated and un-

annotated images [20]. In [21], a greedy label transfer algorithm was presented to transfer annotations

from visual neighbors. Ref. [3] proposed a new nearest neighbor approach, named TagProp. TagProp

detectors produce the relevance estimates of a concept for the images by adopting a weighted combination

of a concept presence among visual neighbors. This single-concept detector shows the state-of-the-art

retrieval performance because weight learning is integrated in the prediction model.

Many concept-based retrieval methods neglect the semantic links among concepts. To address this

problem, WordNet-based approaches [22] were proposed to refine the concept detection results. However,

WordNet ontology is too small and cannot deal with the concepts that do not exist in their lexicons (such

as 〈balcony〉 and 〈frozen〉), which may limit its application in the cases of large vocabularies, such as

Corel and IAPR containing hundreds of concepts. Besides, it calculates word similarities instead of the

correlations between visual concepts. Ref. [23] applied the Google semantic distance to yield better data

results. In [24], Google distances are used to find out the most relevant information in the top retrieval

results, which can achieve higher retrieval accuracy.

2) The multi-concept with length n is called the n-concept.
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Generally, given a single-concept query Q, the conventional approaches employ single-concept detectors

to calculate whether an image I is relevant for Q. For a multi-concept query Q, the prevailing approaches

are still based on the single-concept detector techniques. Conventional single-concept detectors can

effectively detect single-concepts in images while multi-concept detectors can effectively detect multi-

concept scenes. Their combination may lead to the improved performance of multi-concept retrieval.

3 Multi-Concept image Retrieval Model (MCRM)

The proposed probabilistic model focuses on the multi-concept image retrieval task, so it is called Multi-

Concept Retrieval Model (MCRM for brevity). Let T = {I1, . . . , IT } be a set of training images and

Y = {w1, . . . , wV } be a vocabulary of V semantic single-concepts. The training set {(I1, Y1), . . . , (IT , YT )}
consists of pairs of images and their corresponding concept annotation sets, with each Yi ⊆ Y. Each

semantic multi-concept W
(n)
i = {w1, . . . , wi, . . . , wn} is an element of the power set of Y, i.e., W (n)

i ∈ 2Y

or W
(n)
i ⊆ Y, where n � 1 is the length |W (n)

i | of W (n)
i . If n = 1, W

(n)
i becomes exactly a conventional

single-concept wi. Given a test set S of un-annotated images and a retrieval multi-concept Q ⊆ Y, the
goal of multi-concept image retrieval is to search for the most relevant images I ∈ S that contain all

target single-concepts wi ∈ Q.

For consistence, the additional mathematical notations in the proposed model are defined as follows:

• N denotes the total size of the test set, namely N = |S|;
• q denotes the length of the retrieval concept Q, namely q = |Q| (Q ⊆ Y);
• K denotes the number of the returned images for the query Q (K � N);

• W(n) denotes an n-concept set. The multi-concept W
(n)
i with length n is called an n-concept, i.e.,

W(n) = {W (n)
i | |W (n)

i | = n};
• Yq denotes the multi-concept vocabulary for the retrieval concept Q and it is a subset of

⋃q
n=1 W(n) ⊆

2Y (1 � n � q);

• R(Q) = {W (n)
i | W (n)

i ∈ Yq, p(W
(n)
i |Q) > 0} is a subset of Yq, which includes all semantic neighbors

of the retrieval concept Q ∈ Yq in the semantic space;

• RRC(Q) ⊆ R(Q) denotes the retrieval context which is a subset of R(Q);

• KRC denotes the number of elements in the set RRC(Q), namely KRC = |RRC(Q)|;
• Nr(W

(n)
i ) denotes the total number of occurrences of the multi-concept W

(n)
i ∈ Yq in the training

set T , namely the multi-concept frequency;

• Nr(W
(n)
i ,W

(m)
i ) denotes the total co-occurrences of both the multi-concepts W

(n)
i ,W

(m)
i ∈ Yq in the

training set T .

3.1 The framework of MCRM

Given a retrieval multi-concept Q = {w1, . . . , wi, . . . , wq}, previous approaches are mainly based on fusion

techniques of the single-concept detectors, such as the product fusion [3] or the addition fusion [2].

A general framework of the proposed MCRM is shown in Figure 2. In the solid box, q single-concepts

wi ∈ Q are denoted as solid circles. The corresponding conventional single-concept detectors SDi are

denoted as solid octagons, which produce the visual evidence p(I|wi) of wi in I ∈ S. In the dashed box,

Q and its KRC related multi-concepts W
(n)
i ∈ Yq are denoted as dashed circles, and they form a retrieval

context RRC(Q). Q and ∀W (n)
i ∈ RRC(Q) are linked by edges (dashed arrow) weighted according to

semantic correlations �i = p(W
(n)
i |Q). Its corresponding weighted multi-concept detectors MDi are

denoted as dashed octagons, which model the maps from W
(n)
i to I and produce the visual evidence

νi = p(I|W (n)
i ) of W

(n)
i in I. The semantic correlation �i can be seen as the weight of MDi. I and the

ranked result set O = {I(1), . . . , I(K)} are represented as ellipses. As can be seen from Figure 2, three

technical points are considered and shown as follows.
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Figure 2 The framework of the MCRM model.

3.1.1 Multi-concept vocabulary production

Given a Q and the original Y, MCRM produces a fixed multi-concept vocabulary Yq for all q-concept

queries with length q in an off-line process. To avoid the meaningless concept permutation (such as 〈tree,
tail, terrace〉), MCRM selects meaningful n-concepts W

(n)
i ∈ 2Y to generate the vocabulary Yq by the

following co-occurrence rule over the training set T :

Nr(W
(n)
i ) � c (1 � n � q). (1)

If q = 1 (i.e., a single-concept query Q), Yq becomes exactly a single-concept vocabulary Y (i.e., Y1 =

Y). If the size of the set Yq is very large, the co-occurrence count c in (1) is adjusted to reduce the

computational cost. In this way, the multi-concept vocabulary Yq is generated. The corresponding

generation algorithm is summarized in Algorithm 1.

Algorithm 1 The multi-concept vocabulary generation algorithm

Require: Training set T with single-concept vocabulary Y and multi-concept query Q;

Ensure: The multi-concept vocabulary Yq;

Initialize the vocabulary, i.e., Yq(1) ⇐ Y ;

for n = 2 to q do

Calculate the n-concept set W(n) according to (1);

Yq(n) ⇐ Yq(n− 1) ∪W(n);

end for

Yq ⇐ Yq ∪Q;

return Yq;

3.1.2 Retrieval context production

A retrieval concept Q is augmented into two parts: retrieval components Com(Q) and correlative scene

concepts Csc(Q), which are closely associated with Q and can be seen as the retrieval context. First,

the semantic neighbor set R(Q) = {W (n)
i | W (n)

i ∈ Yq, p(W
(n)
i |Q) > 0} is produced as the candidate

concept pool where p(W
(n)
i |Q) is the semantic correlation probability between two concepts W

(n)
i and Q.

Second, all the retrieval components cj ∈ Com(Q) = {W (m)
j | W (m)

j ∈ R(Q),W
(m)
j ⊆ Q} can be taken as
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the elements of the retrieval context RRC(Q). Clearly, Q ∈ Com(Q). Last, top t , the most correlative

concepts from the set {W (l)
t | W (l)

t ∈ R(Q),W
(l)
t /∈ Com(Q)} are chosen into the set Csc(Q). It is worth

noting that each multi-concept ∀x ∈ RRC(Q) is regarded as its own semantic neighbor and p(x|x) = 1.

In this way, with the two sets Com(Q) and Csc(Q), the retrieval context RRC(Q) = Com(Q)∪Csc(Q) is

produced, which consists of KRC elements.

3.1.3 Multi-concept map

The multi-concept map models the link between Q and I, and outputs the image relevance estimate

p(I|Q):

eM (I,Q) =

KRC∑

i=1

νi�i =

KRC∑

i=1

p
(
I|W (n)

i

)
p
(
W

(n)
i |Q

) (
W

(n)
i ∈ RRC(Q)

)
, (2)

eS(I,Q) =

q∏

i=1

p(I|wi), (3)

p(I|Q) = λ1eM (I,Q) + λ2eS(I,Q) (0 � λ1, λ2 � 1), (4)

where the quantity eM (I,Q) and eS(I,Q) denote the relevance estimates produced by the multi-concept

detectors and the single-concept detectors respectively, λ1 and λ2 are the parameters of MCRM to be

estimated and s.t. λ1 + λ2 = 1. They determine the trade-off between multi-concept detectors and

single-concept detectors. The probability p(I|W (n)
i ) can be seen as visual evidence νi of W

(n)
i in I.

The semantic correlation probability p(W
(n)
i |Q) can be regarded as the weight �i of visual evidence

νi = p(I|W (n)
i ). If q = 1, namely, the case of single-concept retrieval, Eq. (4) can tackle it as well. The

estimations of semantic correlation p(W
(n)
i |Q) and visual evidence p(I|W (n)

i ) or p(I|wi) will be presented

in Subsections 4.1 and 4.2.

Given Q, if there is strong visual evidence for Q and other highly correlative concepts W
(n)
i ∈ RRC(Q),

the terms p(I|W (n)
i )p(W

(n)
i |Q) become large and the relevance eM (I,Q) also gets large. Conversely, if

the detectors cannot find strong visual evidence for Q and other correlative concepts W
(n)
i , eM (I,Q) gets

small.

Compared with previous methods, there are three major differences: (1) given a complex scene query,

multi-concept detectors as well as single-concept detectors are concerned with concept detection instead

of sole single-concept detectors; (2) the semantic links among the concepts are considered; (3) MCRM

makes an assumption that the link between Q and I can be modeled as a map probability p(I|Q) from

Q to I.

3.1.4 The algorithm of multi-concept retrieval

To effectively perform multi-concept retrieval, the algorithm of multi-concept retrieval is proposed in

Algorithm 2. First, a multi-concept vocabulary Yq is generated in this algorithm. Second, the retrieval

component set Com(Q) and the correlative scene concept set Csc(Q) are generated, which constitute

the retrieval context RRC(Q). Third, for each test image I ∈ S, the relevance probability p(I|Q) is

obtained by fusing multi-concept and single-concept detector estimates. It is easy to discern that the

time complexity and the space complexity are O(N) and O(1) respectively. Last, the heap sort over all

probabilities p(I|Q) is performed and the retrieved image rank {I(1), I(2), . . . , I(K)} is returned. The

time complexity and the space complexity of the heap sort are O(N logN) and O(1) respectively and

hence the time complexity and the space complexity of the retrieval algorithm are also O(N logN) and

O(1) respectively.

3.2 Parameter estimation

To find the optimal parameters Λ = (λ1, λ2), the log-likelihood function of the predictions over the

training set T is maximized. yQi ∈ {0, 1} is used to denote the absence/presence of the retrieval multi-
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Algorithm 2 The multi-concept retrieval algorithm

Require: Training set T with single-concept vocabulary Y , Test set S and multi-concept query Q;

Ensure: The ranked list of images {I(1), . . . , I(K)};
Generate multi-concept vocabulary Yq using Algorithm 1;

Calculate semantic neighbor set R(Q) = {W (n)
i | W (n)

i ∈ Yq, p(W
(n)
i |Q) > 0}

Calculate retrieval component set Com(Q) = {W (m)
j | W (m)

j ∈ R(Q),W
(m)
j ⊆ Q}

Select top t, the most correlative concepts from the set {W (l)
t | W (l)

t ∈ R(Q),W
(l)
t /∈ Com(Q)} as the set Csc(Q) and

obtain the retrieval context: RRC(Q) ⇐ Com(Q) ∪ Csc(Q)

for each I ∈ S do

Calculate relevance estimate eM (I, Q) of I and Q produced by multi-concept detector according to (2);

Calculate relevance estimate eS(I, Q) of I and Q produced by single-concept detector according to (3);

Fuse multi-concept and single-concept detector estimate and obtain final relevance probability p(I|Q) of I and Q

according to (4);

end for

Perform the heap sort in a descending order over all probabilities p(I|Q) for obtaining top K images I ∈ S;
return the path {I(1), I(2), . . . , I(K)} which stands for the retrieved image rank;

concept Q for the training image Ii ∈ T and the prediction p(yQi) is given by

p(yQi = 1) = p(Ii|Q), (5)

p(yQi = 0) = 1− p(Ii|Q), (6)

p(yQi) = p(Ii|Q)yQi(1− p(Ii|Q))1−yQi . (7)

The log-likelihood function of the retrieval concept Q can be written as

LQ =

T∑

i=1

nQi log p(yQi), (8)

where T denotes the total size of the training set, and nQi is a cost which considers the imbalance of the

number N+ of the positive examples and the number N− of negative examples for the retrieval concept

Q. nQi = 1/N+ if yQi = 1 and nQi = 1/N− otherwise. Substitute (4) and (7) into (8), and then the

following log-likelihood function is obtained:

LQ =
T∑

i=1

nQi log{(Λ[eM (I,Q), eS(I,Q)]T )yQi(1− Λ[eM (I,Q), eS(I,Q)]T )1−yQi}. (9)

The log-likelihood function LQ is maximized by the gradient descent approach [25]. The gradient of (9) is

∂LQ

∂λk
=

T∑

i=1

nQi(
∂Λ
∂λk

[eM (I,Q), eS(I,Q)]T )yQi(− ∂Λ
∂λk

[eM (I,Q), eS(I,Q)]T )1−yQi

(Λ[eM (I,Q), eS(I,Q)]T )yQi(1− Λ[eM (I,Q), eS(I,Q)]T )1−yQi
, (10)

where k ∈ {1, 2}.

4 The estimation of semantic correlation and visual evidence

4.1 The estimation of semantic correlation probability

The semantic correlation probability p(W
(n)
i |Q) is calculated with three correlation measures between the

multi-concept x = W
(n)
i ∈ RRC(Q) and the retrieval concept y = Q, denoted by NGD, CO1 and CO2,

respectively. According to these three measures, the probability p(W
(n)
i |Q) is called as pNGD(W

(n)
i |Q),

pCO1(W
(n)
i |Q) and pCO2(W

(n)
i |Q) respectively. Our correlation measures can calculate the conventional

correlations between single-concepts and among single-concepts and multi-concepts.
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4.1.1 Google correlation

The local image corpus is used to calculate the normalized Google distance in order to reflect the properties

of the local image dataset. Given two concepts x and y, the Google distance Dist(x, y) is defined as

follows [24]:

Dist(x, y) =
max{log f(x), log f(y)} − log f(x, y)

logNG −min{log f(x), log f(y)} , (11)

where f(x) and f(y) denote the number of images containing x and y respectively, f(x, y) denotes the

number of images containing x and y simultaneously, and NG denotes the total number of all images.

The semantic correlation between two concepts x = W
(n)
i and y = Q is then calculated as the negative

exponentiation of Dist(x, y):

pNGD

(
W

(n)
i |Q

)
= exp

(

− Dist(W
(n)
i , Q)

δ

)

, (12)

where δ is a distance smoothing parameter.

4.1.2 Co-occurrence correlation

Co-occurrence in a linguistic sense can be interpreted as an indicator of semantic correlation, and it

assumes the interdependency of two concepts in a document. Two co-occurrence correlation measures

(such as CO1 and CO2) between the concepts x = W
(n)
i and y = Q over the training data are defined as

follows:

pCO1

(
W

(n)
i |Q

)
=

Nr(W
(n)
i , Q)

Nr(W
(n)
i )

, (13)

pCO2

(
W

(n)
i |Q

)
=

2×Nr(W
(n)
i , Q)

Nr(W
(n)
i ) + Nr(Q)

. (14)

The correlation probability between the concept Q and itself is one, e.g., p(Q|Q) = 1. In order to keep

the probabilistic attribute of the semantic correlation, p(W
(n)
i |Q) are normalized as follows:

p
(
W

(n)
i |Q

)
=

⎧
⎨

⎩

p(W
(n)
i |Q)

∑KRC
j=1 p(W

(n)
j |Q)

, if W
(n)
i ,W

(n)
j ∈ RRC(Q),

0, elsewhere.
(15)

The multi-concepts W
(n)
i with a high correlation have high weights �i = p(W

(n)
i |Q) of the corresponding

multi-concept detectors. Of all the multi-concepts W
(n)
i ∈ RRC(Q), Q has the highest correlation, which

ensures that its corresponding detector p(I|Q) plays a key role in the detection of Q.

4.2 The estimation of visual evidence

The probability p(I|W (n)
i ) can be seen as visual evidence of the multi-concept W

(n)
i in the image I, and

by Bayes’ theorem, it can be expressed in the form:

p
(
I|W (n)

i

)
=

⎧
⎨

⎩

p(W
(n)
i |I)p(I)

p(W
(n)
i )

, if Nr(W
(n)
i ) > 0,

0, elsewhere,
(16)

where the value of p(I|W (n)
i ) is set to zero if the multi-concept W

(n)
i has no occurrence in the training set.

The denominator p(W
(n)
i ) in (16) can be interpreted as the prior probability for the multi-concept W

(n)
i

following the Bernoulli distribution, like the previous MBRM model [10]. Through Bayesian treatment

with the beta conjugate prior probability distribution, it can be estimated as follows [25]:

p
(
W

(n)
i

)
=

Nr(W
(n)
i ) + b

T + a
, (17)
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where a and b act as the smoothing parameters and T is the total size of the training set.

The probability p(I|W (n)
i ) in (16) can be estimated by a concept detector, such as SVM, Naive Bayesian,

Random Forest, etc. In this work, SVM is adopted because it is an effective detector and can deal with

high-dimensional visual features. However, SVM is a decision machine and provides the decision score

f(W
(n)
i , I) rather than the posterior probability. Therefore, the decision score is mapped to the probability

by the logistic sigmoid function σ(η) [25], and Eq. (16) can be rewritten as follows:

p
(
I|W (n)

i

)
=

⎧
⎨

⎩

σ

(
f(W

(n)
i ,I)p(I)

p(W
(n)
i )

)

, if Nr(W
(n)
i ) > 0,

0, elsewhere.

(18)

The quantity p(I) in (18) can be interpreted as the prior probability for the image I following the

uniform distribution, i.e., p(I) is a constant. The estimation of the probability p(I|wi) of the single-

concept wi in the image I is the same as that of p(I|W (n)
i ).

For each concept, a two-class SVM detector is trained based on a one-versus-the-rest approach. Given

a wi ∈ Q, the conventional single-concept detector is used which considers images I ∈ T annotated with

wi as positive samples and the rest as negative samples.

For a scene multi-concept W
(n)
i ∈ RRC(Q), the original single-concept training data are rearranged.

The positive sample set Po(W
(n)
i ) and the negative sample set Ne(W

(n)
i ) are constructed as follows:

Po
(
W

(n)
i

)
=

{
I|W (n)

i ⊆ A(I)
}
,

Ne
(
W

(n)
i

)
=

{
I|I /∈ Po(W

(n)
i )

}
,

(19)

where A(I) is the annotation concept set for the training images I ∈ T . In addition, considering the

imbalance between the size N+ of the positive sample set Po(W
(n)
i ) and the size N− of the negative

sample set Ne(W
(n)
i ), the weights 1/N+ and 1/N− are given for positive samples and negative samples

for W
(n)
i training, respectively. In this way, with these two sets Po(W

(n)
i ) and Ne(W

(n)
i ), each two-class

SVM is trained as the multi-concept detector and the learned detector can output p(W
(n)
i |I).

5 Experiments and analysis

5.1 Datasets

The proposed MCRM is evaluated on two public image datasets, namely Corel [26] and IAPR TC-12 [27].

The Corel dataset contains about 5000 images. Each image is manually annotated with 1–5 concepts

from a vocabulary Y consisting of 260 semantic concepts. The IAPR dataset consists of about 20000 still

images and Y contains 291 concepts.

Note that all test images have no semantic annotations. Y contains a few hundred semantic concepts,

and about 75% of the semantic concepts have frequencies less than the average concept frequency.

5.2 Experimental setup

5.2.1 Visual features

In the experiments, eleven visual features are used, including four SIFT features for dense SIFT and

Harris SIFT, a Gist feature, and six color features for RGB, LAB and HSV. They are the same as the

work of [3] and are publicly available for download3).

LIBSVM software [17] is used for all of our SVM experiments. To compute the distance between two

visual features, the HI measure [28] is employed for the SIFT features and the RBF measure [29] for the

rest {Gist, RGB, LAB, HSV}. Following the previous work [3], the mean of all distances is employed for

the SVM.

3) http://lear.inrialpes.fr/people/guillaumin/data.php.
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Figure 3 Unbalanced concept distribution on Corel 5K [26].

5.2.2 Baseline methods

Two conventional baseline methods are considered: a random method4) and an SVM method. The

baselines use product fusion and addition fusion to obtain p(Q|I). It is found that product fusion gives

better results and hence product fusion is adopted for the baselines.

5.2.3 Test query set

Following [3], on the Corel dataset, the same subset is used, which consists of 179 wi ∈ Y that appear at

least twice in the test set. Besides, 2062 multi-concept queries with at least one relevant image in the test

set [3] are considered, i.e., 967 2-concepts, 873 3-concepts and 222 4-concepts. In this way, the test query

set QT is constructed. The corresponding vocabularies Y1 = Y, Y2, Y3 and Y4 contain a total of 4105

concepts. The parameters c, δ, a and b are set to 2, 0.1, 300 and 200, respectively. In order to set the

size KRC of the retrieval context RRC(Q), 10-fold cross-validation is performed. By observing a range of

KRC([1, 30]) during validation, KRC = 15 is used as a default choice as it shows good performance.

For experiments on the IAPR set, besides all 291 wi ∈ Y, 3900 multi-concept queries are randomly

selected, which consist of 1300 2-concepts, 1300 3-concepts and 1300 4-concepts. The vocabularies Y1 =

Y, Y2, Y3 and Y4 contain 6565 multi-concepts in all. The parameters are set to be c = 30, δ = 0.1,

a = 400 and b = 200.

For full comparability, the recall curves, the precision-recall (PR) curves and the mean average preci-

sions (MAP) over concepts [30] are taken as performance measures. The higher the MAP score is, the

better the retrieval performance will be.

5.3 Experimental results and analysis

5.3.1 Frequent and rare concept experiment

Most concepts from Y have frequencies less than the average concept frequency. For clearness, all concept

frequencies on the training images are shown in Figure 3. This highly unbalanced concept distribution

is often found in engineering applications and may impact the retrieval performance. Concept detectors

always have good accuracy on the frequent concepts5) but very poor accuracy on the rare concepts6) [31].

First, the proposed MCRM7) is compared with two baseline methods for the frequent and rare concepts

4) A random method means randomly retrieving the images.
5) The frequent concepts mean the concepts with high frequency appearing in the training set.
6) The rare concepts mean the concepts with low frequency appearing in the training set.
7) Our MCRM is denoted with three correlation measures as NGD+MCRM, CO1+MCRM and CO2+MCRM, respec-

tively.
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Table 1 Retrieval performance comparison (MAP Scores %) for frequent and rare concepts on Corel

Experiment Frequent 1-concept Rare 1-concept Frequent 2-concept Rare 2-concept

Random Baseline 8.8 1.2 8.7 1.1

SVM Baseline 59.0 32.7 36.0 15.7

NGD+MCRM 59.0 32.7 41.1 36.0

CO1+MCRM 60.8 38.2 41.3 36.6

CO2+MCRM 61.0 39.6 41.5 34.7

Table 2 Multi-concept retrieval performance (MAP Scores %) with different semantic measures on Corel

Experiment 1-concept 2-concept 3-concept 4-concept

Random Baseline 3.7 1.6 1.6 1.8

SVM Baseline 44.5 32.0 31.8 33.7

NGD+MCRM 47.0 40.1 39.2 40.9

CO1+MCRM 47.9 40.8 39.2 40.7

CO2+MCRM 48.6 40.8 39.2 40.6

on the Corel dataset. The 50 most frequent and 50 most rare single-concepts wi ∈ QT are respectively

taken as the frequent and rare 1-concept query sets, and each frequent and each rare 2-conceptW
(2)
i ∈ QT

contains such frequent and rare concepts wi separately. Table 1 shows the MAP scores and bold number

means the highest MAP score (%). From Table 1, it can be observed that all approaches achieve high

MAP scores of about 60% for the frequent single-concept retrieval, while the MAP scores of the rare

single-concept are much lower. For example, the conventional SVM get the MAP score of 59.0% for the

frequent single-concepts, while for the rare single-concepts the score sharply declines by 45%. Similar

results have also been found on multi-concept retrieval. For example, for the rare 2-concept retrieval, the

SVM baseline score sharply declines by 56% compared with frequent 2-concept. It can be observed that

better scores tend to occur on the frequent concepts.

Another interesting thing is that MCRM achieves remarkable improvements of about average 128%

on 2-concept and about average 13% on single-concept for the rare concept queries, respectively. A rare

concept Q may be difficult to be detected, but it may have correlative frequent concepts W
(n)
i ∈ RRC(Q),

which can be detected efficiently. Thus, this concept Q can be efficiently detected through its correlative

frequent concepts. This is one of the reasons why our approach can achieve the improved performance.

From Column 2 and 4 in Table 1, it can be seen that our method also obtains high retrieval performance

on frequent concepts. The MCRM improvements are observed, about 2.2% on single-concept, 14.7% on

2-concept.

5.3.2 Multi-concept retrieval experiment

Next the retrieval performance is compared for all 2241 queries QT containing 2062 multi-concepts and

179 single-concepts over the Corel set. The MAP scores are presented in Table 2. As can be seen from

Table 2, the retrieval performances of the proposed MCRM are superior to the baselines. From Column 2

in Table 2, it can be seen that our MCRM averagely improves about 7.5% than the SVM baseline in the

conventional single-concept retrieval.

Since our approach utilizes semantic correlations between concepts and does not use multi-concept

detectors in single-concept retrieval, this performance improvement may be caused by using semantic

correlation. For n-concept queries (n � 2), the SVM baseline yields inferior retrieval ranking, while

our approach achieves marked improvements of about 27% on 2-concept queries, 23% on 3-concept ones

and 21% on 4-concept ones on average. It can be easily noted that the MAP scores of multi-concept

retrieval are much lower than those of single-concept retrieval. It is not surprising to consider the difficulty

of recognizing multiple concepts in an image. The conventional SVM method only uses single-concept

detectors for multi-concept scene retrieval, while our approach, besides concept correlations, combines

multi-concept detectors and conventional single-concept detectors. Hence, significant improvements for

multi-concept retrieval have been obtained.
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Table 3 Comparison of the proposed MCRM and the previous approaches in terms of MAP on dataset Corel

Experiment All Query Difficult Easy Multi-concept Single-concept

Random Baseline 1.8 1.2 4.2 1.6 3.7

CMRM [8] 19.2 15.8 34.0 18.6 25.8

CMTT [11] 19.8 17.2 31.3 19.3 26.4

PLSA [15] 20.7 16.7 38.0 19.7 31.7

PAMIR [2] 26.3 22.4 43.3 25.7 34.0

GS [1] 27 22.3 47.4 25.5 44.0

SVM Baseline 29.5 23.7 54.6 28.2 44.5

TagProp [3] 36 32 55 35 46

NGD+MCRM 40.2 36.3 57.2 39.8 47.0

CO1+MCRM 40.7 36.7 58.3 40.1 47.9

CO2+MCRM 40.8 36.8 57.9 40.1 48.6

5.3.3 Difficult/easy and multi-concept/single-concept retrieval experiment

Table 3 presents the performances of the proposed MCRM and the previous retrieval approaches. The

set QT of all 2241 test queries is divided into two groups: (1) a “difficult” set consisting of 1820 queries

with only one or two relevant images in the test set S and an “easy” set consisting of 421 queries with 3

or more relevant images in the set S; (2) a multi-concept set consisting of 2062 n-concept queries (n � 2)

and a single-concept set consisting of 179 single-concept queries. This division follows [2,3]. According

to the split, the corresponding MAP scores (%) are reported separately. It can be observed from Table 3

that our proposed approach outperforms the previous methods and its advantage shows more obvious

for the multi-concept queries as well as the “difficult” queries. Compared with SVM and TagProp, the

two best alternative methods, our mean improvements are 41.8% or 14.3% on multi-concept queries and

54.4% or 14.4% on “difficult” queries, respectively.

The Group Sparsity approach (GS) gains a competitive MAP score of 44% on single-concept queries

and outperforms CMRM, CMTT, PLSA and PAMIR. However, on multi-concept queries as well as

the “difficult” queries, this new approach is close to PAMIR and inferior to our model. These two

aforementioned queries (i.e., multi-concept queries and “difficult” queries) are harder queries since the

relevant test images account for 1.76 and 1.19 per query on average respectively, which should be compared

with 9.36 and 7.48 per query on average for the single-concept queries and the “easy” queries, respectively.

Clearly, the advantage of our multi-concept retrieval model is confirmed on these two queries, getting the

average scores of 40.0% and 36.6%. A conventional single-concept detector can effectively detect a single-

concept in an image, while a multi-concept detector can effectively detect a multi-concept scene with

characteristic visual appearance. A combination of them can improve the performance of multi-concept

retrieval. Besides, MCRM improves the performance on rare concepts by taking the relationships among

concepts into consideration. There are two reasons behind the improvements. For all 2241 queries QT ,

CO2+MCRM, CO1+MCRM and NGD+MCRM get the average MAP scores of 40.8%, 40.7% and 40.2%

respectively. They improve about 38.3%, 38.0%, 36.3% over the SVM baseline respectively, and about

13.3%, 13.1%, 11.7% over TagProp respectively.

5.3.4 The recall curves and precision recall curves

In Figure 4, the recall curves are shown in 4(a) and the precision recall curves are given in 4(b) for the SVM

baseline, TagProp, which are the two best alternative approaches, and our NGD+MCRM, CO1+MCRM

and CO2+MCRM. As can be seen from Figure 4(a), when the number of the returned image examples

gets large, the number of retrieved relevant images becomes larger. When the returned images increase

to about 20% of the size of the test set, the 90% relevant images are retrieved by MCRM while SVM

and TagProp respectively retrieve 64% and 82% relevant images. For all 2241 queries containing 90%+

multi-concepts queries, MCRM shows higher recall at each level (see Figure 4(a)).

As can be seen from Figure 4(b), MCRM has higher precision than SVM and TagProp at every level

of recall. The two best previous methods do not explicitly consider the correlations between concepts, or
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Figure 4 Plots of the recall curves (a) and the precision recall curves (b) over all 2241 queries.

Figure 5 An example: a multi-concept retrieval 〈sky, water, ship〉 with two relevant images in the test set.

combine the multi-concept detectors to effectively detect a multi-concept scene for multi-concept retrieval.

5.3.5 An illustration of multi-concept retrieval on Corel

The advantages of our multi-concept approaches are illustrated in Figure 5. The images retrieved by

SVM, TagProp, NGD+MCRM, CO1+MCRM and CO2+MCRM are shown in the first to the fifth rows,

respectively. As can be seen from Figure 5, the SVM and TagProp detectors find no and one relevant

image simultaneously containing three concepts 〈sky〉, 〈water〉 and 〈ship〉, respectively, while MCRM

succeeds in retrieving both the two relevant images in the top four positions.

For a Q = 〈sky, water, ship〉 which represents a meaningful scene, the SVM detector distinguishes

the concept 〈sky〉, yet it does not effectively distinguish the scene concept 〈sky, water, ship〉. It cannot

find relevant images for Q. Maybe the SVM detector is confused by the similar visual content such as

snow scenes and water scenes. The TagProp single-concept detectors favor the frequent concept 〈sky〉 and
〈water〉 (respectively with concept frequency 1004 and 883) at the expense of the rare concept 〈ship〉 (only
with concept frequency 21). In this example, only MCRM multi-concept detectors succeed in retrieving

both the two relevant images in the top four positions. The reason may be that our detectors improve

the performance on the rare single-concept 〈ship〉 using semantic correlations. On the concept 〈ship〉,
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Table 4 Comparison of MCRM and the previous approaches in terms of MAP on IAPR 20K

Experiment All Query Difficult Easy Multi-concept Single-concept

Random Baseline 0.9 0.7 1.2 0.8 2.6

SVM Baseline 31.6 22.8 44.4 31.2 36.6

TagProp [3] 30.5 25.6 37.7 30.1 39.9

NGD+MCRM 37.6 32.4 45.2 37.6 37.0

CO1+MCRM 37.2 32.5 44.1 37.2 37.4

CO2+MCRM 37.2 32.6 44.0 37.2 37.2

the average score of 83% is achieved by MCRM while the scores of 76% and 71% are respectively got by

SVM and TagProp. Furthermore, the multi-concept scene 〈sky, water, ship〉 is effectively distinguished

by a combination of multi-concept detectors and single-concept detectors (the score 100% is obtained).

5.3.6 Difficult/easy and multi-concept/single-concept retrieval experiment on IAPR

Last, the experimental results performed on the dataset IAPR are reported. This dataset contains more

images with varying appearances and assorted aspects of the contemporary life, and the concepts are

extracted from free-flowing text captions. Hence, this dataset is closer to real world cases. The average

number of concepts of each test image is 5.6 which should be compared with 3.5 for the dataset Corel.

Recognizing a multi-concept on these complex images is a challenging task.

Similarly to [3], all 4191 queries are divided into: (1) 2492 difficult ones and 1699 easy ones; (2) 3900

multi-concept and 291 single-concept ones. According to the split, the corresponding MAP scores (%) are

listed separately. Our multi-concept image retrieval method is compared with the above two best previous

methods (i.e., SVM and TagProp) and the performances are shown in Table 4. As can be observed from

Table 4, for almost all queries our model outperforms SVM and TagProp and gains about 18% and

22% improvements over all 4191 queries respectively. Especially for multi-concept queries (Column 5)

and “difficult” queries (Column 3), MCRM yields average MAP scores of 37.3% and 32.5% and obtains

significant improvements of about 20% or 24% on multi-concept queries and 43% or 27% on “difficult”

queries respectively, compared with SVM and TagProp. For single-concept queries, TagProp uses the

weights based on the single-concept distance and uses the metric learning method to learn the weights,

showing the best performance in single-concept retrieval. However, for multi-concept retrieval, TagProp

performs a scene retrieval solely by single-concept detectors, which does not work well and is close to the

SVM baseline.

6 Conclusion

In this paper, a novel probabilistic model has been proposed for multi-concept retrieval. The proposed

multi-concept detectors in the model can effectively identify a multi-concept in the image. In contrary to

previous single-concept models, both single-concept detectors and multi-concept detectors are incorpo-

rated in the multi-concept recognizing procedure. A group of correlative weighted detectors are involved

in such a multi-concept recognition through retrieval context. Both of them are important and their

combination can yield better retrieval performances for the multi-concept retrieval, as shown by our

experiments. To better capture the correlations among concepts, further research will be conducted

to explore the connections among the concepts such as semantic hierarchy or high-order correlations.

Besides, more effective training methods will be exploited in our future work.
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