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the weights of interaction behaviours according to the features of the learning content. A
multi-objective function composed of three conflicting metrics, interaction intensity, diver-
sity and novelty, is optimized to achieve simultaneous multiple recommendations for a
group of learners. Compared to the state-of-the-art approaches, the proposed LPR frame-
work and algorithms perform favourably.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

With the rapid development of online learning and social networks, online learners not only interact with each other at
any time and from anywhere, but also make full use of learning from their peers’ wisdom [17,29]. Confronted by a large
body of information, sometimes learners can feel lonely and overwhelmed [6]. However, a learner’s needs can be identified
by analyzing a large amount of available information, such as grades, learning content and interactions among learners [35].
Therefore, personalized recommendation is becoming increasingly important to alleviate information overload [46]. Unlike
traditional recommendation systems for commercial products such as movies, different kinds of interactions among learners
will significantly affect the performance of a recommendation system [40].

Traditional approaches for personalized learning recommendation mainly consider the static factors of learners. Static
factors refer to learner profile attributes that remain unchanged over a given period, such as historical tags, scores and
other information on learning content or learners [23]. As an example, we can use a tripartite graph to model such factors.
As we know, interactions among learning peers take place frequently and usually keep changing [43]. From educational
perspectives, it is insufficient to use a tripartite graph to model static factors (tags or scores) [12,32,44]. Therefore, in this
paper, we propose to use a dynamic interaction tripartite graph (DITG) to model peer interactions.
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To extract deep interaction features from the collected data, conventional neural networks such as multilayer percep-
tions (MLPs) with the backpropagation algorithm [10,42] perform poorly for learning peer recommendation. In the context
of big data, advanced learning models, such as CNN [11] and stochastic configuration networks [37], are better alterna-
tives for capturing complex and dynamic relations in learning analysis [11,13]. It has been observed that highly accurate
recommendations can be easily achieved for popular learners [38], but the recommendation diversity is undoubtedly lost.
Thus, it is useful and challenging to design a learning peer recommendation system which is well balanced between mul-
tiple objectives, such as accuracy, diversity and novelty. In this paper, we propose a multi-objective framework for learning
peer recommendation based on DITG and an attention-driven CNN (LPRACNN). Specifically, we first construct a DITG with
manually assigned weights that reflect the complex relationships between learners and content from learning objective per-
spectives. Then, we devise two novel layers of a scaler layer and an attention-driven CNN to tune the initial weights of the
DITG. After obtaining different interaction intensities among learners, we optimize the proposed system in terms of diver-
sity, novelty and interaction intensity. From the experiment results, it can be seen that the proposed LPRACNN achieves
significant improvements in recommendation performance. The following summarizes our contributions:

(1) The development of an attention-driven CNN-based framework for recommending learning peers: multi-objective
learning peer recommendation to balance the interaction intensity, novelty and diversity of recommendation lists.

(2) The use of a dynamic interaction tripartite graph (DITG) for peer interactions: considering the dynamic nature of
the online learning process, we use DITG to integrate dynamic interaction behaviours into a tripartite graph with dynamic
weights in a real-time manner.

(3) Learning the parameters in our model by both manual settings in DITG and automatic adjustment in an attention-
driven network: first, the initial weights in DITG are set manually according to the education design principle. Second, we
design an attention-driven network to adjust these weights through a normal training process. This differs from the common
initial random weights in that it saves training time and takes pedagogies into account.

The remainder of this paper is organized as follows. Section 2 briefly reviews the related work. Section 3 formulates
the problem of learning peer recommendation and briefly introduces our framework. Section 4 describes the proposed
attention-driven CNN model for multi-objective learning peer recommendation. Section 5 reports our experiment results
with comparisons, and Section 6 concludes this paper with suggestions for future studies.

2. Related work

This section briefly reviews some related work, including learning recommendation systems, graph-based recommenda-
tion, and deep learning in recommendation.

2.1. Learning recommendation systems

Learning recommendation systems aim to help learners find relevant and suitable information for their needs [36]. There
has been a notable upsurge in the use of recommendation techniques in online learning [15]. Roughly, recommendation
techniques are classified into the three categories: content-based filtering (CBF), collaborative filtering (CF) and hybrid filter-
ing [33].

In early recommendation systems, CBF was widely used to make recommendations to a target learner based on what
another learner with similar preferences liked in the past [25], including teaching guidance, adaptive learning and manage-
ment decisions. All of these studies need to learn learning preferences for some types of learning content and apply these to
other types of learning content [31]. Despite its efficiency, CBF not only suffers from the cold start problem, it is inefficient
and even infeasible for large-scale online learning systems. CF is the most popular approach for recommending the favorite
things of other learners with similar tastes and preferences to a target user [20]. It relies on the relationship between learn-
ers and learning content. Neighborhood models and matrix factorization have achieved some of best results [22]. However,
with the explosive growth in the amount of learning data, the efficiency of the algorithms significantly declines. Moreover,
these algorithms will be ineffective because of the sparsity of data. Hybrid filtering combines more than one approach, such
as CF, CBF, semantics, and ontology [2]. Hybrid filtering, however, cannot change the structure easily and achieves improved
results [21].

Though these classic recommendation methods have been improved and widely used in different domain applications,
they are still limited when applied to large-scale e-learning systems.

2.2. Graph-based recommendation

Many scholars have proposed different methods based on network structures to enhance the effect of recommendation.
Nowell et al. [14] visualized a network structure as a bipartite graph, where two sets of vertexes correspond to users and
items, respectively, and an edge represents a selection relation between a user and item. With this definition of a bipartite
graph, the recommendation algorithm focuses on resource allocation. In particular, it is assumed that nodes selected by users
are used to recommend other information to their adjacent nodes. In this way, the resource is reallocated [3]. Furthermore,
a CF algorithm is introduced to the resource allocation of a bipartite graph, which alleviates the low accuracy problem of
data sparsity. Other work tries to assign different weights to different items, which forms a weighted bipartite graph [26].
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Despite the huge success of bipartite graph approaches, sparsity is still a major challenge, as it adversely affects the accuracy
of recommendations.

The aforementioned related works made use of bipartite graphs. The expected accuracy and diversity, however, cannot
be achieved merely through information of network structures between users and items [34]. In recent years, other infor-
mation of users or items is drawn into a bipartite graph to form a tripartite graph to improve the accuracy and diversity of
recommendations. Tags of items or users can reflect the personalized characteristics of users or the performance of items, so
the tag was taken as a factor to transfer the ternary relations of user-tag-item [44]. Additionally, a score is also considered
as a rater attitude [32]. So tripartite graph methods are applied to improve the effect of user recommendation by fusing the
score.

However, the majority of the existing works based on tripartite graphs depend on historical scores or tags of users,
without focusing on interactions. For online learning, we should integrate frequent interaction behaviours into a tripartite
graph for recommendations.

2.3. Deep learning in recommendation

A large body of literature focuses on integrating deep learning into recommender systems. As a simple model, MLP can
model the non-linear interactions between users and items to enhance recommendation quality [5]. Alashkar et al. [1] pro-
pose two identical MLPs to model labeled examples and expert rules. The parameters of these two networks are updated
simultaneously by mining the differences between their outputs. Although it is precise, expertise acquisition needs much
human involvement. As an advanced model for feature extraction, Shen et al. [30] build a CNN model for e-learning resource
recommendation, which extracts item features from the text information of learning resources, such as the introduction and
the content of the material. Attention is a mechanism to flexibly select the reference part of context information, which
can facilitate global learning [9]. Chen et al. [8] employ an attention model to tackle the implicit feedback in multimedia
recommendation, which builds an item- and component-level attention model to infer the underlying user preferences.

Deep learning provides an in-depth understanding of learner demands and the characteristics of learning content, as
well as their interactions. Some researchers exploit the attention models to improve recommendation approaches based on
deep learning. Gong et al. [13] adopt CNNs to perform recommendation tasks, which employ an attention layer to produce
a weight for a word with its surrounding context. It can effectively select the attention information. Wang et al. [39] use
CNNs to effectively learn the representation of interactions and incorporate two kinds of factors into their attention model.
It can model varying user preferences and capture the selection interactions to take advantage of from recent knowledge to
the current model. Although these deep learning approaches show the effectiveness in recommendation, they are limited
when handling real-time recommendation based on dynamic interactions, in which each user/item is assumed to remain
unchanged over a period of time. This is inconsistent with real scenarios where user interactions and their learning process
are dynamic. This motivates us to design LPRACNN by exploiting the dynamic interaction scene for recognizing an optimal
learning peer.

Different to existing work, our framework relies on deep learning to capture non-linear and non-trivial relationships
between learners and learning content. In addition, we introduce two additional layers into CNNs from an educational per-
spective. To the best of our knowledge, this is the first work on seamlessly integrating an attention model and CNN by
which to achieve the optimal learning peer recommendation with a trade-off between interaction intensity, diversity and
novelty.

3. DITG and attention-driven CNN-based multi-objective learning peer recommendation model
3.1. Problem formulation

To match the optimal learning peers with target learners L!, we present an LPR approach that utilizes an attention-driven
CNN model based on constructing DITG. Before describing our learner recommendation model, we introduce the notations
used in this paper.

Assumption 1 (Learning objective). In terms of target learners’ learning objectives LO;; running through the whole
learning process, 1! should be tightly objective-centric. Therefore, there is a hypothesis that the learning objectives of 1. are
known.

We take into account interaction behaviours to constitute the ternary relations among learners, interaction behaviours,
and learning content. Accordingly, an interaction tripartite graph is constructed, with its definition as follows:

Definition 1 (Dynamic interaction tripartite graph, DITG). Given sets of learners L = {I{, I, ..., iz}, a set of interaction
behaviours I = {iy,i,...,1;}, and a set of learning content C = {cy, C3, ..., cp}, we denote an undirected DITG as G = (LU
TUC,E), where E is the set of edges, together with three disjoint sets of vertices L, T and C as shown in Fig. 1. Each triple
Tr = {lm, i, cn} derived from G denotes that learner Iy, interacts with learning content c, by the interaction behaviour ij.

Note that interaction behaviours can be partitioned into five types with different weights as depicted in Fig. 1. Therefore
an interaction behaviour I is defined in detail as follows:

Definition 2 (Weighted interaction behaviours). We divide interaction behaviours I into 5 subcategories: i; = {browse},
iy = {concern}, i3 = {comment}, iy = {forward}, is = {post}. Specifically, to clarify each interaction behaviour between learn-
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Fig. 1. Construction of a dynamic interaction tripartite graph DITG.

ers L and learning content C, we have

T = (In> Lis o, thegin: tend)- (1)

weight (i) = k. (2)

where k =1, 2, 3, 4, 5. Specifically in Eq. (1), when k =1, I; denotes that the learners residence time on the screen exceeds
a certain value, expressed as an invalid browse. According to the principles from social network and educational psychol-
ogy [16,28], we set tong — tpegn from 5s to 20s. In other words, if a browse is within [5s, 20s], it is an effective browse or an
invalid browse, otherwise. This setting of t;q — tpegin is also validated by the time distribution from our experimental dataset.
When k = 3, I is also referred to as an effective comment and an invalid comment in terms of the value of te,g — tpegin- If
0 day < teng — tpegin < @ days, i3 is an effective comment or an invalid comment, otherwise.

According to Egs. (1) and (2), m learners are studying n learning content with five different interaction behaviours from
thegin tO teng. In addition, iy and i3 are constrained by time. Further, different weights of interaction behaviours are initially
given as a weight vector W? = (1,2, 3,4, 5), whereas subsequent W¢ are tuned during the learning process. Hence, the
dynamic weight W of interaction behaviours is adjusted in accordance with the following rule:

Definition 3 (Dynamic weight adjustment rule). With respect to the weights of interaction behaviours, a combination
of manual settings and an attention-driven network is employed to adjust them dynamically. Moreover, the weights vary
according to the features of the learning content. On the other hand, the learning content is categorized into two types,
including hot and basic content. Hot learning content is that cause learners greater concern in a certain period time, which
can enable learners to hold the trend of field and guide learners to learn according to their own needs. The basic content
defined in this paper refers that the interaction intensity tends to be stable value for most beginners during a period time.
If learning content c, is hot, we have wd = (1,2,3,5,4), or wd = (1,2,3,4, 5) otherwise if ¢, is basic.

The reason for defining this rule is that i; and i, behaviours remain unchanged by setting i; and i, as 1 and 2, respec-
tively, while other behaviours are different. It is necessary to spread hot learning content among learners by maximizing the
weight of iy as 5. As is is the weight assigned to content which learners regard as either hot, new or original, i5 is thereby
set to 4. The positive comments made by one learner can persuade other learners to browse or participate so that more
peers will search for this content. As such, we assign the weight of i3 as 3.

On the other hand, our attention-driven CNN model integrated with the attention-driven mechanism adjusts the weight
errors caused by the aforementioned manual settings during the training. A given DITG is presented as a no-negative matrix
M ¢ y<I<C_ Each entry of M represents the weight of an interaction behaviour.

In order to formalize the problem of a learning peer recommendation , we introduce the following notations. An in-
teraction intensity matrix IM is the interaction intensities between target learners (denoted as L!) and candidate learners
(denoted as L), evaluated by a rating function f(Lf,1L¢). Unlike learning content recommendation, peer recommendation
has more constraints, such as the maximum recommendation of learners, the diversity of recommendation lists and novelty.
Not only is a rating function of a high accuracy, an efficient multiple metric balancer b is also very significant to the overall
performance of the recommendation system.

With the matrix completion of IM on DITG, the LPR problem within a certain time window At can be formalized as
follows: Given LR, = {]LR]LC, I°, C, Q, f, b}, where L c L, C° c C, a set Q is a collection of constraints or metrics for a
balancer b to refer, and the goal is, Vi € Lf, to recommend a list of learners L; € L¢ through f and b with certain limitations
or constraints Q.
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Fig. 2. Our framework for multi-objective LPR using attention-driven CNN and interaction tripartite graph (LPRACNN).

3.2. A framework of multi-objective optimization LPRACNN based on DITG

The working flow of our framework is illustrated in Fig. 2. The framework consists of three main components: interaction
representation with a dynamic interaction tripartite graph, interaction intensity computation using an attention-driven CNN,
and multi-objective optimization based on learning peer recommendation. We briefly describe these components as follows.

Interaction representation with a dynamic interaction tripartite graph. To capture interaction information, we further
refine this component L, T and C of DITG, namely, learner attributes and learning content attributes. In terms of interaction
intensity, learner attributes can be divided into active learners (L), similar learners (L{) and complementary learners (L9).
Learning content attributes fall into two categories according to the interaction intensity: basic content is denoted as Cj

and hot content is denoted as Cj. Additionally, considering the preferences of learners, features Cg{ of learning content
attributes Cj and C}! are categorized as text, image, audio, video and animation.

(Cg{ = {text, image, audio, video, animation}.

(3)

Also, for a given DITG, the ternary relations that the attributes L.¢ of learner I interacts with feature (anf of learning

content ¢, by interaction behaviour i, can be denoted as

Tr = (I, iy, Wy, cnC%). (4)

Interaction intensity computation using attention-driven CNN. To fill the unobserved entries in interaction intensity
matrix IM between L{ and LL¢, we employ an attention-driven CNN model as a fitting function f to generate them. First,a
DITG G between L! and L€ is constructed and transferred into the ternary relations Tr as input data at the model training
stage. After representing interaction information associated with Lt and L€, let X; = xiLUxiCUx{ be the learner, learning
content and interaction behaviour input vector respectively, and X; € Tr. Considering the initial error of X; from DITG, we
design an extra scaler layer before the traditional CNN neural network through an operation of addfactor(X;), then X; is set to
X!. Moreover, another operation trans(X/) transforms the input vector into a matrix. Furthermore, central to learning content
xl.c/, an attention layer is integrated into the CNN model to adjust the weights W¢ of interaction behaviours I. Through the
above attention-driven layer, the entries of IM are obtained more precisely. The output Y; denotes five levels of interaction
intensity between L! and L°.

Multi-objective optimization based on learning peer recommendation. With a given number of candidate learners L°¢
and matrix LM,,, this component produces a final and best learner recommendation for target learners by simultaneously
optimizing three objectives of interaction intensity, diversity, and novelty with balancer b.
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4. Attention-driven CNN based learning peer recommendation model

In this section, we present a deep learning based learning peer recommendation model with DITG. As shown in Fig. 1,
the proposed DITG can represent the interaction behaviours of learners. Therefore, we employ deep learning to develop a
learner recommendation model using the DITG records as training data. We detail the model in the following section.

4.1. System input and output of LPRACNN

As we know, a fitting rating function f:R? — R™ has a fixed dimension of the input and output. As a result, the
input and output for the LPRACNN model can be denoted as a vector pair (X;, Y;), where X; = {xi,l,xiyz,.‘.,xi,d}, Y, =

{ Vi1 Yi2s - - y,-_m}. Also, the order of X; is important for model training or model prediction. Nevertheless, the DITG involves
thousands of learning content and complex interactions between learners and learning content. To reduce the complexity
of the model, the proposed model accepts only two learners of target learners L! and candidate learners L¢ with their
accompanying DITG as input.

As discussed, the learning content is categorized into a fixed number of groups in terms of types and features (e.g., basic,
hot, text). Moreover, according to the categories of learning content, interaction behaviour weights are adjusted dynamically.

For the output of our model, we begin with a top-down design for the final computation of interaction intensity IM. An
element of IM is a non-negative integer that indicates how likely it is that two learners become a pair of positive learning
peers. Therefore, the input of the LPRACNN model can be denoted as

Xi=(Cl],]],.4.,1,',...,In,Clz,]l,...,]j,...,]n,Cl3,k1,...,kk,...,kn), (5)

where cly, cl, cl3 are the properties of learners, I;, Jj, ki are the attributes of learners, the attributes and features of the learn-
ing content, and the categorized and aggregated weights of different interactions, respectively. The output of the LPRACNN
model is

Yi=f(Xi) = Wit Yigo oo Yia), (6)
where y; ; equals 0 or 1, and Zif] ¥ij = 1. The vector form can be transformed into a scalar form by applying Eq. (7).
j=lilyij=11=<j=d} (7)

where the larger the value of j, the more positive the learning closer to the learning peer pair.

4.2. Scaler layer for feature extraction

We employ a deep learning model to fit the potential rating function f. As discussed in Section 4.1, the fitting function f
accepts a vector as its input [18].

Thus, we design an extra layer named a scaler layer before the traditional CNN neural network, which consists of two
operations. One is to add a factor to the elements of X; (given in Eq. (8)), which compensates for the possible loss cost by
encoding, and it will be set during the training of the model.

X! = addfactor(X;) = {at1X; 1, ..., 0tgX; 4}. (8)

In the scaler layer, another operation is to transform the input vector into a matrix, which can formalized as Eq. (9).
The intuition behind this transformation is to explore different combinations of features, through which we can possibly
eliminate the limitation as a result of the fixed order of elements in X; and so it can be compatible with a traditional CNN
network.

em 612 . e]‘dl
Yi, = trans(Xl/) = (ei/,j/)dzxdl = s (9)
ed2'1 edﬂ S edz‘d

where ey ; are obtained by applying different operations between a/x; y and a;x
to form an new element of the vector.
As we can see, both these two kinds of operations are still a linear transformation between layers, which enables us to

employ neural nodes to perform the transformation. For the operation addfactor to (x,-’,-,) we can use a layer of d nodes
to perform the operation, which is formalized as:

i j/» Or simply put ayx; y and ax; y together

1xd’

d
Xy =y zZ(WXip +b).i=1,2,....d, (10)
i'=1
where wy equals 0 if i’ #i, b; = 0, and z is an identical function.
As for the operation trans, we can use a layer of d x d nodes to perform the operation, which is described:
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where 7' is an activation function, w; ; equals 0 if i’ #i or i’ #].
Therefore, we integrate the scaler layer with traditional CNN layers as a whole network for training.

4.3. Attention-driven dynamic adjustment of interaction weights

Here attention-driven dynamic weights of interaction behaviours are adjusted dynamically. The basic idea is to use the
learning content-centred principle. Central to a learning objective, learners select corresponding learning content to con-
struct their own knowledge. For example, a higher portion of hot learning content is associated with a learning objective
during a certain period of the learning process. As such, the spread of hot learning content is accelerated. Interaction be-
haviours such as forwarding and posting should be given higher weights than those for browsing and commenting. With
this in mind, we propose a novel attention-driven dynamic weight adjustment model of interaction behaviours, as shown in
Fig. 3.

To incorporate these two aspects, an attention-driven solution is taken into account. Specifically, learning content is
composed of complex information. Accordingly, for the same learning content, different learners may prefer different parts.
To represent the various features of each learning content c;, we denote x,+ as a variable-sized set of features. |{x,}| is the
size of the set and x,; the I-th features in the set. Different to conventional models that generally extract a unified feature
representation by using the average pooling [7], learning content-centred attention assigns features with attention weights
that are consistent with the spread characteristics of interaction behaviours, and then uses the weighted sum as the new
weights.
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A learning content-centred attention score for the [-th features x,; of learning content ¢, from learner Iy is calculated by
a two-layer network:

b(m,n, 1) = Wi Wyl + Warxy + b2) + ¢, (12)

where the matrixes W, and bias b, are the first-layer parameters, vector W, and bias ¢, are the second-layer parameters,
and ¢ (x) = max (0, x) is the ReLU function. Then, the final sum of the learning content-centred attention score is normalized
as:

exp(b(m,n, 1))
s exp(b(m. n.1))’
where q is the size of [{x,+}].

Once the learning content-centred attention S(m, n, I) is obtained, the interaction behaviour weights W¢ of learning
content ¢, are calculated by the following weighted sum:

[{xa:}|
fa= 3 B DXy, (14)
=1

B(m,nl)= (13)

4.4. Interaction intensity score computation using attention-driven CNN

For the aforementioned attention-driven dynamical weights of interaction behaviours, different attention values can be
learnt to distribute the significance of five interaction behaviours with respect to the learning content. Simultaneously, the
features generated from the above encoded process,i.e., L (denoted as the learner latent vectors L = [I;, I, I3, ..., [yy] € RP*xM),
C (denoted as the learning content latent vectors C = [c;, C2, C3, . .., cn] € RPN D << min(M, N)), W9, and the parameters of
the attention networks are obtained. Accordingly, we use a set of convolutional layers and pooling layers in an alternate
way with multiple features to produce the outputs.

The layers after the scaler layers are two groups of operations (Convolution2D, ReLU, MaxPooling2D). After the two groups
of layers, we add a Flatten layer before the fully-connected layer. The fully-connected layer is to create fully-connected layers of
mono-dimensional features. The last layer is the SoftMax layer, which is designed to map the activation from the aggregated
previous layers to a class probability distribution.

The scores ﬁ,-j of the interaction intensity for target learners and candidate learners are obtained by the fully-connected
layer:

t

Rj={L+ > Bm.n.Dp,| v (15)

ner (i)

where I?ij is the final score of interaction intensity between target learner i and candidate learner j. R(i) is the set of all
learning content with which learner i and candidate learner j interact. Note that each learning content in R(i) is associated
with two factor vectors. One is denoted by v,, which is the basic vector of learning content c,. The other is the auxiliary
feature vector (e.g., (anf ), denoted by p,, which is used to characterize learners based on the set of learning content with
which they interact. Moreover, training data R(B) is generated by:

R(B) ={(i.j.k)|j e R(i) Ak e C\R(D)}. (16)

where C is the set of all learning content and the semantics of i, j, k € R(B) is what learner i is assumed to prefer when
interacting with j over k. R;; can be further transferred into matrix IM according to the output scores from the fully-
connected layer. So learner recommendation is then reduced to a ranking problem among candidate learners. We can opti-

mize attention-driven recommendation between the positive and non-observable content:

arg min > —mmo{Un+ Y B(m.n.Dp)'v
LeR (i,j.k)eR (B) leR (i) (17)
— i+ Y. B, Dpp v + AL + 1CI + [1P]).

leR (i)

where o is the logistic sigmoid function and A is the regularization parameter.

An attention-driven algorithm for interaction intensity based on the bootstrap sampling of training triples is proposed
for the network. The main procedures of the proposed algorithm for training the model are summarized in Algorithm 1.

For Algorithm 1, we use © to denote the set of parameters in two attention layers, and Rijk to denote l?,-j < Ry Note that
Line 14 is the gradients of the model parameters updated using chain rules. To optimize the objective function (Eq. (17)), we
employ stochastic gradient descent (SGD) — a universal solver for optimizing neural network models. Meanwhile a training
instance is randomly selected. Moreover, during the training, each model parameter is updated towards the direction of its
negative gradient.
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Algorithm 1 Interaction intensity based on the attention-driven deep convolutional neural network model.

Input: Target learner 1! , dynamic interaction tripartite graph G associated with L!, and the difference tolerance ¢g;
Output: Latent feature matrixes L, C, P, parameters in attention model ® and matrix
IM between target learner L! and candidate L¢;
1: Construct learner-interaction behaviour-learning content tripartite graph G with weights W;
2: Convert G into matrix M;
3: Initialize L, C, P and ®;
4: repeat
5. Draw i, j, k from R(B);
6
7
8
9

for each feature I of learning content n in R(i) do
Calculate B(m, n,1) to (Eq. 12) and (13);
Calculate X, via Eq. (14);
: end for
10: L; < Li+ Yjerqpy B(m,n, D pn;
1 Ry < u; < uy;
122 IMpy; = I?,-j //The matrix represents target learner i interacting with candidate learner j;
13:  for each parameter 6 in L,C,P, ® do
14: Update {6, €} < 6 +17 %Sfﬁi" +A9>;
Ttexp ik °7
15:  end for
6: until € < ¢
17: Return L, C, P and ©;
8: Select available learners for target learner L! from IM.

—_

—_

To conclude, given a testing set of relation selection among learners, interaction behaviours and learning content, DITG
descriptions are extracted from the target learners and candidate learners, and particularly mapped into the attention-driven
deep CNN. Then, they are mapped into different scores by the learnt mapping functions. Finally, the interaction intensity
matrix IM between the target learner i and candidate learner j are obtained with all scores R,-j.

4.5. Learning peer recommendation by multi-objective optimization

Personalized recommendation should consider multiple preferences of the targeted users, especially in learning peer
recommendation [4]. So, it is not enough to recommend learners for a learner in online learning only with the output of
the rating function f.

Our work aims to find a trade-off between the proposed three objective functions using a novel multi-objective algo-
rithm, and to return a set of recommendation solutions for the target learners that is optimal in light of three important
metrics, namely, interaction intensity, diversity and novelty. Note that the three metrics are weighted according to different
features of the learning content for a given target learner; that is, W° = (wy, w,, w3), where wy +wy +w3 =1,0 <w; <
1,i=1,2,3.

Matrix of selection. First, a decision possibility matrix of learner recommendation for a target learner L! is obtained,
denoted as LM. It is defined as follows:

ha oo by o hm
IM=[h. b, b L= ] (18)
T A P

where n is the cardinality of set L, and m the cardinality of set L, and ; ; equals 1 (recommended) or 0 (not recom-
mended). Each column should meet with }{'; I; j < n’ (the maximum count of a learner to be recommended to the target
learners), and each row should meet with ZT=1 l; j =m’ (the length of the learner recommendation list).

Interaction intensity. The high-quality interaction behaviours is essential to achieve the learning objective. Through the
aforementioned model of the attention-driven deep convolutional neural network, Rij between L! and L is obtained by
forming matrix IM.

IM = (Rij))nxm. (19)

Diversity. Diversity measures the capacity of recommending return learner to different learners for a target learner. Given
two learners i and j, Div is an important factor of the recommendation algorithm defined by Hamming distance H;

Q;j

Hy=1- 3 (20)
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where L is the length of the prediction list, Q; is the same nodes between the learner i and the learner j in the prediction
list. Therefore, the diversity matrix Div is defined as follows:

Div = (Hij)nxm~ (21)

Novelty. In learner recommendation, learners with few interaction should also be recommended. Novelty quantifies the
ability to discover novel learners, denoted as Nov. Novelty can be measured in terms of the mean and the variance of
interaction behaviours. The novelty value nov; of learner j proposed by Wang et al. [38] is defined as:

1
Mj (O'j + ])2 ’
where the value of a candidate learner j is the reciprocal of mean (u;) and the variance (o;), rated by all learning content

with which learner j interacts. To avoid division by zero, a small value is added to the variance. The more active a candidate
learner, the lower the value. Thus, the Nov of a novelty is formed as a vector

Nov = (divy, divs, . .., divy). (23)

Objective functions F;, F, and F;. The different values of LM, can be regarded as different possibilities of learner
recommendation. The values of IM, Div and Nov for each LM are presented by

F (LM) = e(LM O IM)e”
E(LM) = e(LIM O Div)e” | (24)
F(LM) = e(LM © Nov)e”

where e is a vector of all ones, LM is equivalent to LMy, F; (LM) is the value of IM for LM, », analogously with F, (LM)
and F;(LM). The operator ® is the Hadamard product. It is desirable to select optimal learners when each objective reaches
the maximum with a certain value of LM. But this usually does not happen. Further, different recommendations can set
different preferences for IM, Div or Nov by specifying w;. Thus, the overall objective function for learner recommendation
is obtained as:

F(LM) = F;(w; © LM) + E (w; 0 LM) + (w3 © LM), (25)
where we have W0 = (W?j)nxg, wj= (ij)n x1,(j=1,273).
The max of F(LM) is obtained by finding the best selection matrix LMy, for the objective function. Thus, the solution
to learner recommendation is cast into finding the approximate optimal solution to max F (LM).

We implement a parallel genetic algorithm as a function solve(.) in the system to solve the problem. The whole algorithm
is given in Algorithm 2. The sequence diagram of learner recommendation is shown in Fig. 4.

nov; = (22)

Algorithm 2 Multi-objective Optimization for Learner recommendation.
Input: w;;

Output: LM;,;;

1: Initialize LM;

2: IM < (R;j) //The configuration of IM;

3: Div < (H;;) //The configuration of Div;
4: Nov <« (nov;) [[The configuration of Nov;

5

6

7

: F(M) < (F. B, K © WO (LM));
: LMy, < solve(maxF (LM));
: Return LMp,;.

Additionally, the sequence diagram of learning peer recommendation based on multi-objective optimization is illustrated
in Fig. 4. Different to traditional genetic algorithms, some key steps of the algorithm are summarized.

S1: To quickly produce an acceptable solution from a large problem space, we produce the population p; consisting of
P1i» D2ir P3i Tespectively from the sound results of F (LM), F,(LM) and F;(LM) after computing the DITG information.

S2: If the process does not produce a satisfying solution for target learners after the current loop, and there are still
acceptable solutions for F; (LM), F,(LM), F;(LM) respectively, which are not included in the previous loops, then go back to
Step S1.

S3: The numbers of target learners selected from py;, py;, p3; are equal.

S4: The crossover must be conducted between different p;;(j = 1,2, 3).

Specifically, a hash table is employed to minimize the time of sorting or conditional statements, which costs more space,
but uses less time.

5. Performance evaluation

This section reports the experiment results to demonstrate the performance of our proposed LPRACNN framework. Our
experiments consist of three parts. The first is to validate the proposed multi-objective optimization. The second is for
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Fig. 4. The sequence diagram of learner recommendation based on multi-objective optimization.

Table 1
World University City Dataset.

Learners Learning Content  Interaction Behaviour  Learner-Interaction  Content-Interaction

10570 4035 45083 32580 12503

assessing attention-driven dynamic performance, while the last one is to comprehensively compare our framework with
other relevant ones.

5.1. Baseline methods for comparisons

For comparisons, we select six algorithms that are similar to our algorithm as baselines: (i) BGR [45], a traditional bipar-
tite graph method that only considers the selection relationships between learners and learning content; (ii) LTC [44], using
a tripartite graph to exploit the information of tags; (iii) LSC [32], employing a tripartite graph to represent the relationships
among the learners-learning content-scores; (iv) CNNR [30], deep learning recommendation based on CNN; (v) LIC, without
the dynamic weight adjustment of interaction behaviours; (vi) MOEALTR [38], based on a multi-objective recommendation
in light of interaction intensity, diversity and novelty.

For different problems, most of the existing recommendation methods consider the three metrics of accuracy, diversity
and novelty either separately or simultaneously. This is different from our work. As a result, it is difficult to compare the
performance of our multi-objective optimization with these methods directly. Accordingly, a hybrid recommendation algo-
rithm (MOEALTR) [38] is selected. For a fair comparison, we set the same value of W° used in LPRACNN and MOEALTR in
our experiments. As for the comparison of dynamic performance, we chose LIC (without weighting interaction behaviours)
and DLIC (weighting interaction behaviours using manual settings). Furthermore, we compared LPRACNN with BGR, LTC,
LSC, LIC, CNNR and MOEALTR, in several experiments with respect to the evaluation metrics given in Section 5.3.

5.2. Datasets

In order to verify the effectiveness of the proposed algorithm, we choose the dataset from the World University City
which is a public dataset adopted by many researchers [19,24,46]. The interaction frequencies among the learners, interac-
tion behaviours and learning content in the dataset follow a power-law distribution. In particular, some learning content was
accessed frequently, while other content was accessed infrequently. A considerable number of learners have a low weight
for interaction behaviours, which results in high sparsity. As such, it is difficult to make recommendations for learners from
such a raw dataset. Therefore, we preprocessed the dataset by reducing its sparsity. Specifically, we removed the learners
whose interactions are less than 20 and selected the learning content whose interaction frequency is more than 30. After
preprocessing, the dataset consists of 10,570 learners, 4035 examples of learning content, 45,083 examples of interaction
information, 32,580 edges between learners and interaction behaviour, and 12,503 edges between interaction behaviour and
learning content, as listed in Table 1.

However, the currently available data for education cannot completely meet the requirements of our experiments. So,
we need additional simulation data. To ensure that the simulation data is close to the real-world dataset, we first extracted
some rules from the real dataset. The simulation dataset was then generated by applying these rules. In addition to these
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Table 2
Simulation dataset.

Learners  Learning Content  Interaction Behaviour  Learner-Interaction  Content-Interaction

100300 45050 418006 300952 123500

Table 3
Four possible states of learners to be predicted.

Learner adoption ~ Recommendation of the algorithm  Not recommendation of the algorithm

yes kep kn
no kg kin

rules, we also selected T statistical periods as the time length of the simulation dataset given the periodicity of interaction
and learning.

Table 2 summarizes the statistics of the simulation dataset in accordance with Table 1. To verify the algorithm’s perfor-
mance, 60% of the dataset is the training set, while the rest is the testing set for each dataset. All the experiments were
conducted on an Amax GPU server with 64G memory and Titan X Pascal GPU X 4.

5.3. Evaluation metrics

In our experiments, we use seven metrics to evaluate the performance of LPRACNN. Each is described in detail in the
following.

Precision and Recall: Precision is the percentage of relevant prediction instances among the retrieved instances, while
recall is the percentage of relevant prediction instances that have been retrieved over the total amount of relevant instances.
There are often four possible cases for adopting the recommended or unrecommended learning peers , as listed in Table 3,
where k is the number of learning peers in the testing data.

According to Table 3, two metrics [41], are defined as

Precisiony,,, (L) = %Zktp, (26)
Urest
Recally, (L) = 1 > k#, (27)
Test M Unee k[p + kfn

where Ur,; is the set of test learners, and M is the number of test learners. In addition, as given in Eq. (28), F; is employed
to evaluate the performance of LPRACNN comprehensively.

2Precisiony,,, (L)Recally,,, (L)

hU) = Precisiony,, (L) + Recally,, (L)

(28)

MAP (Mean Average Precision): In real-world learning environments, most learners rarely browse a whole recommen-
dation list. This fact indicates that even if the recommendation accuracy is high, the real effectiveness is widely divergent
due to the location rearward of appropriate peers in the recommendation list. Hence, a widely accepted metric, MAP can se-
lect the optimal learning peers, simultaneously guaranteeing the top rankings of the selected learners in a recommendation
list [27]. MAP is defined by Eq. (29).

Ul Ty

%Z ]TZrelkPrecisionU(k) . >
IOl =\ Tu i

MAP =
where T, is the set of learners with learner u with interactions from the testing data, Precisiony(k) the precision at top k,
and rely, is a binary variable that is 1 if a learner with rank K in the recommended list appears in T, or O otherwise.

Diversity: Generally speaking, a more personalized prediction list has a larger hamming distance than other prediction
lists. Consequently, to avoid repetition with Eq. (20), the mean of the hamming distance measures the diversity of prediction
and recommendation.

1
S=———) H;, (30)
m(m—1) ; Y
where 0<S<1. In a case of S=1, this implies that all the prediction and recommendation lists of the learners are com-
pletely different, and S = 0 for the exact same lists.
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Novelty: Novelty measures how well an approach recommends unknown learners to target learners. To measure the
unexpectedness of candidate learners, novelty is defined as

m
Novelty = ﬁ > Zdi, (31)
u=1 iel,
where L, is the top-k list of a learner u, m is the number of learners and d; is the degree of learning content j.

Hit ratio: By considering a dynamic prediction associated with time, it is necessary to make recommendations for learn-
ers at a certain time. Hence, the hit ratio HitRatio! is employed to measure the dynamic recommendations of LPRACNN.
First, the data set is divided into training set U, and testing set Ussr. By ranking all data instances in order of time, the
instances of learners who interacted with other learners in a recent time period are extracted into U for testing, while
the others are assigned to Uy.;,. For the prediction, each learner [ is regarded as the link prediction node at a given time ¢,
and all its link nodes are denoted as R; ;. If there is just one node in the testing set U, then one shot hit an appropriate
peer. The hit ratio is calculated as:

2T € Ry

test '
where Tje R  is an indicator function, and Tj is the learning content with which the learners interacted in the testing set
Utest

HitRatio" = (32)

5.4. Parameter settings

In this section, we experimentally set different values of parameter « as effective comment behaviours, which is the time
length of an interaction behaviour. In the education field, memory and attentiveness of knowledge cognition are affected by
time. So, it is necessary to evaluate the impact of interaction time on cognitive load. The interaction behaviours of learners
can occur over time. Therefore, the interaction time length should be adjusted to match the optimal interaction intensity to
reach a satisfactory recommendation.

In Experiment 1, the interaction data of learners over a two-week period is extracted. For the five interaction behaviours,
the interaction interval is measured in minutes with its distribution shown in Fig. 5.

As shown in Fig. 5(a), the data follows a power law attenuated at the time interval t<10% min (about 7 days) with
the attenuation exponent of a = —1.12. The attenuation speed accelerates at t> 10* min, which implies that there are no
interaction behaviours among the majority of learners. The results of these experiments show that the number of interaction
behaviours and interaction time follow a power law. As a result, the optimal interaction time length is selected by computing
the interaction intensity of learners at different times. As shown in Fig. 5(b), the probability of interactions is high, with
the interaction intensity reaching its peak on the third day. Based on these results, we set 3 days for the time lengths of
comments and the interaction count, as well as for the decay time in our experiments.

5.5. Results and discussion

Multi-objective optimization effectiveness of LPRACNN: To examine the final solutions of our proposed algorithm by
comparing with MOEALTR, we conducted experiments to balance three objectives simultaneously. Before reporting the com-
parative results with MOEALTR, the performance of the multi-objective algorithm is affected by some parameters in a way
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Table 4
Parameter settings of the multi-objective algorithm.
Parameter  Meaning Value
L The length of the recommendation list 20
NP The size of the population 150
gmax The number of generations 500
@® LPRACNN MOEALTR

novelty

. 0.30
O,

0.30 (\s]
- nSh
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Fig. 6. A final non-dominated solution of LPRACNN and MOEALTR in the interaction intensity-novelty-diversity space.

that causes both a computationally expensive and time-consuming burden. Therefore, the values of the parameters are set
as shown in Table 4. In addition, W° are set as 0.2, 0.3, 0.5, respectively.

The results of LPRACNN and MOEALTR are plotted in Fig. 6. With the interaction intensity ranging from 0.55 to 0.29,
LPRACNN obtains a decreasing novelty from 0.99 to 6.53. This proves that two conflicting objectives exist between interac-
tion intensity and novelty. From the reported results, it can be observed that the solution of LPRACNN in three-dimensional
space forms a curve, while MOEALTR forms a two-dimensional surface. Clearly, the results indicate the effectiveness of
LPRACNN and the optimal trade-off among three objectives, showing that it is able to generate multiple recommendations
with a higher diversity, interaction intensity and similar novelty.

As a result, we further give a detailed explanation of this phenomenon by selecting a target learner randomly in the
dataset as an example. Fig. 7 details the recommendation results given to the learner. LPRACNN proposed in this paper and
MOEALTR both suggest 30 recommendations to the learner. The interaction intensity, diversity and novelty of some repre-
sentative recommendation lists are given. Compared with MOEALTR, LPRACNN is not as efficient in generating novel learners
with a higher interaction intensity, obtaining an increasing interaction intensity from 0.25 to 0.88 with a decreasing novelty
from 0.76 to 0.19. In addition to its tendency to suggest less popular learners, MOEALTR only includes learner (9) and learner
(26) whose diversity is 0.21 and 0.19 respectively. It can be concluded that MOEALTR cannot balance the three objectives
well in comparison with LPRACNN. In addition, one possible explanation is that our approach integrates the attention model
based on learning content, which facilitates the achievement of learning objectives whereas it pays relatively less attention
to learner preferences irrelevant to learning. Compared with MOEALTR, our algorithm reconciles the demands of the three
objectives in the inevitable case of computational cost. This unavoidable drawback coincides with our assumption of the
proposed model complexity. Therefore, the inputs of the proposed model are set to two learners with their DITG.

Dynamic recommendation performance: In order to compare the performance of LIC, DLIC and LPRACNN, Fig. 8 illus-
trates some of the results. At the beginning of learning, LIC, DLIC and LPRACNN achieve the same hit ratio of 0.37. At the
end of the learning process, however, LIC without using weighted interaction behaviours remains almost flat, only obtaining
an increase of 0.02. For a dynamic recommendation, where dynamic weights are used, the hit ratios of DLIC and LPRACNN
improve by 0.14 and 0.25. This verifies the benefits of weighted interaction behaviours.

More importantly, a weight adjustment exerts a significant influence on recommendation performance. As shown in
Fig. 8, LPRACNN achieves a remarkable and sharp improvement of 0.25 in the hit ratio, compared with 0.14 for DLIC. This



Q. Hu, Z. Han and X. Lin et al./Information Sciences 479 (2019) 231-249 245

0 0
Interaction 0.2 (1)[0.25,076,0.12] Interaction 02 “oelsossod
intensity 04 18) (3)[0.35.066,0.22] intensity 04 O( L
06 / 1 o O o (7)[0.65,0.45,0.53] 06 ) [0.19,0.92,0]
/ @ —
08 O . ©071032064] 0.8 [-
i O}' (11)[0.72,0.30,0.68] B ;\ 0.39,0.88,0.01]
1.0 Q 1.0 s Qg) 041.0.85,0.21]
(17)J0.82,0.24,0.74] L 11)[0/58,0.83,0]
0.9 (15)[0.81,025.0.71] 0.9
0.8 (20)[085022.076] | ) ® 08 | o (19)[0610710)
0.7 (22)[0.84,0.24,0.76) 07 -« vln:‘: : | -
0.6 (24)[0.84,023,0.77] 0.6 s |
Novelty S ) J J ~ Novelty . <]
0.5 S S S S T e e o5+ |©
/ , ya S 4 (008602080 & . O o
0.4 ] 7 / y p ) ' ) 060 04 P !
0.3 v S/ Fa P y 4 P 4 A 13M[o.ss,o:}9,6x51 / 03 76)@(2) (710.35,619]
wl )V ST o 7)/{ .
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
Diversity Diversity
(a) LPRACNN (b) MOEALTR

Fig. 7. Interaction Intensity, diversity and novelty of a recommendation to a given learner.

0.65
I Lic @; DLIC . LPRACNN
0.6 | SRR
0.55 |
Increase
05 |
0.45 |
0.02

0.4 | Increase
=) ‘ <
=T & Y OO — e S ..
S 035
‘i—b
o=

03 |

025 |

o2 h

0.15 |

0.1 |

0.05 |

a 2%

begin end begin end  begin end

Learning process

Fig. 8. Comparison of the results of the hit ratios of the two algorithms.

demonstrates that an attention-driven adjustment outperforms the manual settings significantly. The reason for this is that
our proposed method is capable of adapting to the features of learning content by flexibly adjusting weights according to
a current learning state. In contrast, the parameter values using the manual settings remain unchanged with respect to the
different features. To summarize, the proposed LPRACNN is well suited to a dynamic learning process and achieves good
performance.

Synthetic comparison results: Although these experiment results demonstrate the effectiveness of our algorithm, it is
still necessary to consider the synthetic recommendation performance. In this regard, further experiments are conducted.
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Fig. 10. Comparison of the results for F; for the seven algorithms.

We conducted comparative experiments against other baseline methods with respect to accuracy, diversity and novelty.
Four kinds of experiments are conducted. First, the recommendation accuracy of the seven aforementioned algorithms are
compared in terms of precision, recall and F;. Then, the MAP of the seven algorithms is compared to further evaluate the
effect of LPRACNN. Subsequently, the diversity of recommending learners is compared. Finally, the experiment results for
novelty are compared to evaluate the performance of the algorithm.

The proposed LPRACNN in this paper is compared with BGR, LTC LTS, LIC, CNNR and MOEALTR for overall accuracy in
terms of precision, recall and F;. The experiment results of precision and recall are shown in Fig. 9.

Fig. 9 shows that with an increase in the length of the recommendation lists, the precision of these algorithms decreases,
whereas recall increases reversely. Both gradually converge at a certain point. Fig. 9(a) and (b) show that the scores of BGR,
LTC and LSC are lower than those of DLIC and LPRACNN. In terms of precision and recall, MOEALTR is superior to DLIC
and LPRACNN, obtaining a precision and recall result of about 0.79 and 0.4, whereas DLIC and LPRACNN perform better than
MOEALTR gradually. The reason for this is that LPRACNN is likely to add interaction behaviours with dynamic weights rather
than static factors (e.g., tags, scores). Although it is evident that these results indicate that LPRACNN has the advantage of
recommending learners accurately for a target learner, LPRACNN does not embody notable advantages when the length of
the recommendation list is over 80. F; further indicates the performance of LPRACNN.

Fig. 10 depicts the F; score curves. It is clear to see that CNNR and LPRACNN perform better than the other algorithms
when the length of a recommendation list ranges from 20 to 60. In particular, they perform best when the length of the list
is 30. Note that the performance advantage of CNNR and LPRACNN is gradually lost with the increasing length of the list.
These results for accuracy demonstrate that our proposed LPRACNN and CNNR outperform the other algorithms. Specifically,
the experiment results suggest that the length of a recommendation list produced by our algorithms should be set to 30 for
a target learner.

In addition to ensuring recommendation accuracy, there is a requirement to rank the learning peers which are recom-
mended. The results are shown in Fig. 11. We can observe that LPRACNN has the best performance with a MAP of 95.6%, and
ranks the optimal learners in the top ranks of the recommendation list with a better recommendation quality and reduces
the selection time of learners. Thus, it is concluded that MAP can compensate for LPRACNN'’s deficiency in having slightly
lower accuracy than CNNR.

To further evaluate the performance of recommendation diversity, we conduct experiments to compare the S values. As
shown in Fig. 12, it is clear that the S values of the seven algorithms decrease with an increase in the length of the list.
In the end, however, LPRACNN achieves better diversity of 0.48. Initially, it can be clearly observed that the S values of LTC
and LSC exceed those of DLIC and LPRACNN. As the learning progresses, LPRACNN is superior to the other algorithms in
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terms of diversity. This may be because online learning systems have a cold start problem, i.e., lacking the full details of
learners at the beginning of learning. The learners recommended tend to be more diverse and have more various interac-
tion behaviours with dynamic weights adjusted by learning content-centred attention-driven networks. Hence, we conduct
additional experiments to clarify the categories of learners.

In this work, learning peers are recommended according to the attributes of the learning content, including basic and
hot content. Learning content comprise five features: text, image, audio, video and animation. Therefore, learners can be
categorized into similar learners, active learners, and complementary learners, according to the features of the learning
content. For instance, if a target learner is learning from basic learning content, then learning peers who also learn from
basic learning content could be recommended to the target learner by further considering the features of the learning
content.

More specifically, a target learner is selected randomly to investigate the categories of the learners recommended. From
Fig. 13, it can be noted that with an increase in the length of the recommendation list and the number of active learners,
more categories should be taken into consideration. Therefore, for hot content, the categories of learning content increase
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Fig. 14. Comparison of the results for novelty for seven algorithms.

with eventually closing to or equaling five as shown in Fig. 13. If all of learners are similar types, a recommendation will
not focus on the categories of learning content too much, rather, the mastery of basic content is emphasized instead. So the
categories of learning content are not given priority. This will be determined by the preferences of learners. As shown in
Figs. 12 and 13, this is consistent with the recommendation mechanism of diverse learners proposed in this paper, demon-
strating the effectiveness of LPRACNN once again.

Analogously, novelty is an important factor to experimentally validate the performance of LPRACNN. Fig. 14 plots the
detailed results of the seven algorithms. We can observe that at first CNNR is superior to the other algorithms, and soon
DLIC and LPRACNN perform better compared to CNNR, which provides additional evidence to support the integration of
interaction behaviours into learner recommendation with dynamic weights.

From the experiment results on the performance of multi-objective optimization and dynamic recommendation and a
comparison of the overall results, we conclude that our proposed LPRACNN can provide a trade-off solution with more
diverse yet accurate and novel recommendations by integrating interaction behaviours dynamically. As a result, it helps
to provide the learners with more accurate and personalized learning guidance so as to better adapt to online learning
environments.

6. Conclusion

As online learning environments are popular nowadays, learning peer recommendation is becoming important. In this
paper, we presented a novel framework for recommending learning peers using a tripartite graph and CNN. Our frame-
work takes into account dynamic interaction behaviours and an attention mechanism. From the perspective of educational
design, we integrated five interaction behaviours with corresponding weights into ternary relations in a dynamic interac-
tion tripartite graph. A deep CNN model was proposed to infer the underlying interaction intensity among learners so as
to recommend optimal learners. For the dynamic learning process, an attention-driven mechanism was employed to learn
the weights of the interactions, according to the features of the learning content. Finally, we presented a multi-objective
function as the objective function of the recommendation model in order to optimize interaction intensity, diversity, and
novelty simultaneously. The experiment results show that our approach achieved superior performance compared with sev-
eral state-of-the-art approaches.

This work brings new perspectives for future explorations. The performance of multi-dimensional recommendation based
on DITG will be further enhanced by blending interaction behaviours with multi-modal educational information, such as
voice interaction, facial expression and posture movement.
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