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Abstract
For a summable variation potential function on a subshift of finite type, Pollicott
(2000 Trans. Am. Math. Soc. 352 843–53) gave an estimate of the decay of
correlations. It was known that the systems he considered have the bounded
distortion property (BDP), and that is a key condition on the systems. In this
paper, we study weakly expansive Dini dynamical systems that may not have
the BDP. Under some assumptions, our theorem gives an estimate of the decay
of correlations.

Mathematics Subject Classification: 28D05, 58H11

1. Introduction

This paper can be regarded as a continuation of our paper [LY], and the notation is adopted
from there. The decay of correlation [Bal] or, alternatively, the rate of mixing [Po], is
a problem addressed in many fields. It is closely related to the convergence speeds of
iterations of the Ruelle operator. They have been extensively studied in dynamical systems
[Bal, Bow, Boy, FJ, Li, Ru, Yo, Yu]. For a summable variation potential function on a subshift
of finite type, Fan and Pollicott [FP] gave an estimate of the convergence speed of iterations
of the Ruelle operator; later on, Pollicott [Po] gave an estimate of the decay of correlations.

In the following we always assume X to be an nonempty compact subset of Euclidean
space (Rd , | · |) with X◦ = X, and let T be a self-map on X. We call (X, T ) a weakly expansive
dynamical system if it satisfies the following condition: there exists a finite partition {Xj }mj=1
of X such that for each 1 � j � m,

I. Xj is a connected subset of X with piecewise smooth boundary;
II. T |Xj

: Xj → T (Xj ) is a homeomorphism with continuous extension to Xj and
T (Xj ) = X;
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III. T |Xj
is weakly expansive, i.e. for any t > 0,

inf
|x−y|�t

{|T (x) − T (y)| : x, y ∈ Xj } > t.

With such a system (X, T ), we associate a potential function φ : X → R such that each φ|Xj

is Dini continuous [LY]. The triple (X, T , φ) is called a weakly expansive Dini dynamical
system.

We will see that, under some assumptions, the system (X, T , φ) has a unique equilibrium
state υ [W1]. And then the correlation function with respect to continuous function f can be
defined by [Po]

�f (n) := 〈υ, (f ◦ T n)f 〉 − (〈υ, f 〉)2.

In this paper, we will focus on studying the decay of correlations. For this we define the
expansive ratio function r(·) of (X, T ) by

r(y) = inf
x �=y

x,y∈Xj

|T x − Ty|
|x − y| if y ∈ Xj .

For any multi-index J = (j1j2 · · · jn), 1 � ji � m, we let

XJ = Xj1 ∩ (T −1Xj2) ∩ · · · ∩ (T −(n−1)Xjn
).

We use |D| to denote the diameter of subset D(⊆ X). Let γn = max|J |=n |XJ |. By the
weakly expansion of T , we will see that limn→∞ γn = 0. For any function p defined on
X, we define the modulus of continuity of p by αp(t) = sup|x−y|�t |p(x) − p(y)|. Let
α(t) = max1�j�m αφ|Xj

(t), and define

�(t) = α(t) +
∫ t

0

α(x)

x
dx, 0 � t � |X|.

Then � is well defined because of the Dini continuity of φ|Xj
. Our main result is

(corollary 4.3).

Theorem. Suppose that the weakly expansive Dini dynamical system (X, T , φ) satisfies the
condition

max
x∈X

∑
y∈T −1x

exp(φ(y))(r(y))−1 < min
x∈X

∑
y∈T −1x

exp(φ(y)).

Then the system has a unique equilibrium state. Moreover, there exist constants C > 0,
0 < λ < 1 and �0 ∈ N such that for any f ∈ C(X) and n � k� with � � �0, we have

|�f (n)| � αf (γ�)‖f ‖ + C
(
λk + λ� + �(γ�)

)‖f ‖2.

We remark that the key condition in [FP] and [Po] is that the systems have the bounded
distortion property (BDP), which is guaranteed by the summable variation of the potential
function. Since a general weakly expansive Dini dynamical system may not have the BDP
(see example 4.4), it creates more difficulty (see the remark after definition 3.2). We discuss
this in propositions 3.5 and 3.6, that are fundamental propositions of the paper. Our method is
to make use of the known results for the IFS in [LY] to define a ‘normalized’ Ruelle operator
and averaging operators [FP], and then get an estimate of decay of correlations.

We organize the paper as follows. In section 2, we will match the weakly expansive Dini
dynamical systems with some weakly contractive Dini IFS, and then we convert the Perron–
Frobenius properties of the dynamical systems into the IFS. In section 3, we set up the basic
propositions. We give an estimate of decay of correlations in section 4.
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2. Preliminaries

Without loss of generality, we assume that |X| = 1. We let UC(X◦) and C(X) denote the space
of real-valued uniformly continuous functions on X◦ and X, respectively, with supremum norm
‖ · ‖. Let M(X) denote the set of all regular Borel measures on X. We say that p ∈ C(X) is
Dini continuous if

∫ 1
0 αp(t)t−1 dt < ∞. Throughout the paper we always assume (X, T , φ) to

be a weakly expansive Dini dynamical system defined in the previous section. Then we have
the following lemma.

Lemma 2.1. The Ruelle operator Lφ defined on UC(X◦) by

Lφ(f )(x) =
∑

y∈T −1x

exp(φ(y))f (y) (2.1)

is a self-map of UC(X◦), i.e. Lφ(f ) ∈ UC(X◦) if f ∈ UC(X◦).

Proof. By assumptions I and II on the system (X, T ), we have T (X◦
j ) = X◦ ∀1 � j � m.

Then

#{y : T (y) = x} = m ∀x ∈ X◦. (2.2)

By the Dini continuity of φ|Xj
, we see that the φ|Xj

is uniformly continuous. It, together
with (2.2) and assumption II, deduces that Lφ(f ) ∈ UC(X◦) if f ∈ UC(X◦). �

We remark that the system (X, T ) is a special case of Markov [Boy] and satisfies
condition (2.2). It may not be shared by general Markov systems.

Given an IFS (X, {wj }mj=1), we let I n = {J = (j1j2 · · · jn) : 1 � ji � m}. For any multi-
index J ∈ I n, we use |J |(= n) to denote the length of J . Let wJ (x) = wj1 ◦wj2 ◦ · · · ◦wjn

(x),
and let wJ (X) = {wJ (x) : x ∈ X}. We say that the IFS (X, {wj }mj=1) is weakly contractive if
for each 1 � j � m,

αwj
(t) := sup

|x−y|�t

|wj(x) − wj(y)| < t ∀t > 0.

We call the triple (X, {wj }mj=1, {pj }mj=1) a weakly contractive Dini IFS if, moreover, each pj

is Dini continuous on wj(X). For more details on the IFS, we refer readers to [LY].
Now we are ready to match the weakly expansive Dini dynamical systems with some

weakly contractive Dini IFS.

Proposition 2.2. Suppose that (X, T , φ) is a weakly expansive Dini dynamical system with m

branches. Then there exists a weakly contractive Dini IFS (X, {wj }mj=1, {pj }mj=1) such that

(i) T ◦ wj(x) = x ∀x ∈ X◦, 1 � j � m;
(ii) limn→∞ γn = 0;

(iii)
∑m

j=1 pj ◦ wj(x) · f ◦ wj(x) = Lφf (x) ∀f ∈ UC(X◦), x ∈ X◦.

Proof. (i) By assumption II, T |Xj
has a unique continuous extension to Xj , and denote it by

Tj . By assumption III, we have for any 1 � j � m,

|T −1(x) − T −1(y)| � |x − y| ∀x, y ∈ T (Xj ).

Note that T (Xj ) = X. We follow that (T |Xj
)−1 has a unique continuous extension to X.

Denote it by wj . Hence, we set up an IFS (X, {wj }mj=1). It is clear that for any 1 � j � m,

Tj ◦ wj(x) = x ∀x ∈ X. (2.3)

In particular, T ◦ wj(x) = x ∀x ∈ X◦.
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We will show that the IFS (X, {wj }mj=1) is weakly contractive. By assumption II, we
deduce that for any t > 0,

Rj(t) := inf
|x−y|�t

{|Tj (x) − Tj (y)| : x, y ∈ Xj }
= inf

|x−y|�t
{|Tj (x) − Tj (y)| : x, y ∈ Xj }.

Then by assumption III, we have Rj(t) > t, and then Tj is weakly expansive. Let
rj (t) := 2−1(t + Rj(t)). Hence for any t > 0,

r−1
j (t) < t < rj (t) < Rj (t).

We claim that

sup
|x−y|�rj (t)

|wj(x) − wj(y)| � t ∀t > 0.

Otherwise, suppose that there exists some t0 > 0 such that

sup
|x−y|�rj (t0)

|wj(x) − wj(y)| > t0.

Then there exist x0, y0 ∈ X such that

|x0 − y0| � rj (t0) and |wj(x0) − wj(y0)| > t0.

This, together with (2.3) and X◦ = X, deduces that

Rj(t0) � |x0 − y0| � rj (t0) < Rj (t0).

This contradiction implies the claim. Using this claim, it follows that

αwj
(t) = sup

|x−y|�t

|wj(x) − wj(y)| � r−1
j (t) < t.

Thus, the IFS (X, {wj }mj=1) is weakly contractive.
(ii) It is straightforward to check that for any multi-index J ,

wJ (X◦) ⊆ XJ ⊆ wJ (X).

Note that X◦ = X and the continuity of wj . We have wJ (X◦) = wJ (X). So |XJ | = |wJ (X)|.
Thus, γn = max|J |=n |wJ (X)|. Hence by the weak contraction of wj , we have 0 � γn+1 < γn.
It follows that limn→∞ γn = 0.

(iii) For each 1 � j � m, we define qj : Xj → R+ by

qj (x) = exp(φ(x)) if x ∈ Xj .

By the Dini continuity of φ|Xj
, it follows that there exists a unique Dini continuous function

pj defined on Xj such that pj (x) = qj (x) for any x ∈ Xj . Hence, the (X, {wj }mj=1, {pj }mj=1)

is a weakly contractive Dini IFS, and
m∑

j=1

pj ◦ wj(x) · f ◦ wj(x) = Lφ(x) ∀f ∈ UC(X◦), x ∈ X◦. �

Hence, given a weakly expansive Dini dynamical system (X, T , φ), we can match it with a
weakly contractive Dini IFS. We will call this weakly contractive Dini IFS induced from the
system (X, T , φ). Consequently, corresponding to the system (X, T , φ), we can define another
Ruelle operator P on the induced IFS (X, {wj }mj=1, {pj }mj=1) by

P(f )(x) =
m∑

j=1

pj ◦ wj(x) · f ◦ wj(x) ∀f ∈ C(X). (2.4)
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Let 	 = 	(Lφ) be the spectral radius of Lφ , and let L∗
φ be the dual operators of Lφ on the

dual space (UC(X◦))∗. For any integer n, we let Sn(x) = ∑n−1
i=0 φ(T ix). Then

Ln
φf (x) =

∑
y∈T −nx

exp(Sn(y))f (y).

The PF property (PF stands for Perron–Frobenius) for the Ruelle operator on IFS has been
defined in [LY]. We can define a similar property on this dynamical system.

Definition 2.3. The Ruelle operator Lφ on the dynamical system (X, T , φ) is said to have the
PF property if there exists a unique 0 < h ∈ UC(X◦) and a unique probability measure µ

defined on X◦ such that

Lφh = 	h, L∗
φµ = 	µ, 〈µ, h〉 = 1

and for every f ∈ UC(X◦), 	−nLn
φf converges to 〈µ, f 〉h in the supremum norm.

Lemma 2.4. Let Lφ and P be defined as (2.1) and (2.4), respectively. Then

(i) P is a unique continuous extension of Lφ;
(ii) Lφ has the PF property if and only if P has the PF property.

Proof.

(i) Since X◦ = X, then any f ∈ UC(X◦) can be extended uniquely to some f̃ ∈ C(X), and

hence Lφ(f ) has a unique continuous extension L̃φ(f ). By proposition 2.2(iii), it follows

P f̃ (x) = Lφf (x) ∀x ∈ X◦. Note that P(f̃ ) ∈ C(X). It follows that P(f̃ ) = L̃φ(f ).
Hence, P is a unique continuous extension of Lφ.

(ii) Let M(X◦) denote the set of all regular Borel measures on X◦. Define π : UC(X◦) →
C(X) by π(f ) = f̃ . It is easy to see that π is an isometric isomorphism. Then the
adjoint operator π∗ is an isometry between M(X) and M(X◦). This, together with (i) and
X◦ = X, deduces that Lφ has the PF property if and only if P has the PF property. �

Hence we can regard Lφ and P as coincident. In this paper we always consider Lφ as a
continuous linear operator on C(X), i.e. Lφ = P . Consequently, we can regard h ∈ C(X) and
µ ∈ M(X) in definition 2.3.

Our next theorem gives a sufficient condition for the possession of the PF property. Then
discussion on some relevant concepts such as equilibrium state [W1] and mixing [W2] are
involved.

Theorem 2.5. Suppose that the weakly expansive Dini dynamical system (X, T , φ) satisfies
the condition

max
x∈X

∑
y∈T −1x

exp(φ(y))(r(y))−1 < 	. (2.5)

Then Lφ has the PF property. Moreover, if we let υ = hµ, where 0 < h ∈ C(X) and
µ ∈ M(X) are given by definition 2.3. Then

(i) υ is a probability measure and satisfies the measure separation condition, i.e.

υ(XI

⋂
XJ ) = 0 ∀I �= J with |I | = |J |;

(ii) υ is the unique equilibrium state of the system (X, T , φ);
(iii) υ is mixing for T .
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Proof. Let (X, {wj }mj=1, {pj }mj=1) be the weakly contractive Dini IFS induced from the system
(X, T , φ), and let rj = supx �=y |wj(x) − wj(y)|/|x − y|. Note that

r(y) = inf
x �=y

x,y∈Xj

|T x − Ty|
|x − y| , if y ∈ Xj .

From this, together with proposition 2.2(i), it follows that (r|Xj
)−1 ≡ rj for each 1 � j � m.

Hence (2.5) implies that∥∥∥∥
m∑

j=1

pj ◦ wj(·)rj

∥∥∥∥ < 	.

By [LY, theorem 4.4], we see that the operator P defined by (2.4) has the PF property.
Combining with lemma 2.4(ii), it follows that Lφ has the PF property.

(i) By definition 2.3, we have υ(X) = 〈µ, h〉 = 1. Again by definition 2.3, we have
supp(µ) ⊆ X◦. This, together with L∗

φµ = 	µ, deduces that

supp(µ) ⊆
⋃

|J |=n

X◦
J ∀n ∈ N.

Then µ(∂XJ ) = 0 ∀J ∈ I n. Because X◦
J = XJ and XI

⋂
XJ = ∅, we have

XI

⋂
XJ ⊆ ∂XI

⋂
∂XJ . Hence

µ(XI

⋂
XJ ) = µ(∂XI

⋂
∂XJ ) = 0.

Therefore, υ = hµ satisfies the measure separation condition.
(ii) The proof can be modified from [W1] on the symbolic space with summable variation

potential function. We outline the idea here for completeness. Let g(x) =
exp(φ(x))h(x)(	h(T x))−1. Then

∑
y∈T −1x g(y) = 1. Define a ‘normalized’ operator

Llog g : UC(X◦) → UC(X◦) by

Llog gf (x) =
∑

y∈T −1x

g(y)f (y).

Then L∗
log gυ = υ, and for any n ∈ N,

	−nLn
φ(f h) = hLn

log gf.

Hence, by making use of theorems 4.14 and 4.18 of [W2], we can prove, similarly to [W1,
theorem 2.1], that the system has a unique equilibrium state υ = hµ.

(iii) The argument is standard, and can be modified from [Bow] on the Hölder continuous
system. We therefore omit it. �

Definition 2.6. [Po] The correlation function �f of (X, T , φ) with respect to f ∈ C(X) is
defined by

�f (n) = 〈υ, (f ◦ T n)f 〉 − (〈υ, f 〉)2, n ∈ N.

We will consider the correlation function in the following sections.

3. Basic propositions

In the following sections we always assume the dynamical system (X, T , φ) to be as in
theorem 2.5, and let the function g, ‘normalized’ operator Llog g and equilibrium state υ be
as there. Let (X, {wj }mj=1, {pj }mj=1) be the IFS induced from the system (X, T , φ). We know
from the previous section that the unique equilibrium state υ is mixing. To study the decay of
correlation functions, we need consider the convergence speed of iterations Ln

log g(f ). For this
we set up some basic propositions first.
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3.1. The averaging operators

LetB(X, υ)denote the set of all bounded measurable functions onX with essentially supremum
norm, i.e. for any f ∈ B(X, υ),

‖f ‖ = inf
υ(E)=0

sup
x∈X\E

|f (x)|.

We remark that it coincides with the supremum norm if f ∈ C(X). And for any multi-index J ,
we can regard that 1XJ

= 1wJ (X).
For any n � 1, let gn(x) = ∏n−1

i=0 g(T ix). Then, by induction we have

Ln
log gf (x) =

∑
y∈T −nx

gn(y)f (y) ∀f ∈ B(X, υ).

Define the averaging operator Pn : B(X, υ) → B(X, υ) by

Pnf (x) = Ln
log gf (T nx).

It is easy to see that

‖Pnf ‖ = ‖Ln
log gf ‖. (3.1)

For any x ∈ X, we denote by Xn(x) the cylinder XJ containing x and with |J | = n, and
let Bn be the σ -algebra on X generated by the cylinders of {XJ }|J |=n. Let En(·) = E(·|Bn)

be the conditional expectation with respect to Bn on the measure space (X, υ). Then for any
f ∈ B(X, υ),

En(f )(x) =
∫
Xn(x)

f dυ

υ(Xn(x))
.

Hence,

Ln
log gEn(f )(x) =

∑
|J |=n

gn ◦ wJ (x)

υ(XJ )

∫
XJ

f dυ ∀x ∈ X. (3.2)

For any �, n ∈ N we denote

S(�)
n = max

|x−y|�γ�

∑
|J |=n

|gn ◦ wJ (x) − gn ◦ wJ (y)|.

Lemma 3.1. For any n = k� (k, � ∈ N) and f ∈ C(X), we have

‖Pnf ‖ � αf (γ�) +
k−1∑
j=2

S
(�)

(j−1)� ·
∥∥∥∥∥
(

j−2∏
i=1

Pi�Ei�

)
(f )

∥∥∥∥∥ +

∥∥∥∥∥
(

k∏
i=1

Pi�Ei�

)
(f )

∥∥∥∥∥ .

Proof. For any q ∈ B(X, υ), let

varn(q) = max
|J |=n

sup
x,y∈XJ

|q(x) − q(y)|.

Note that ‖Pn(q)‖ � ‖q‖. We have

‖Pn(I − En)q‖ � ‖(I − En)q‖ � varn(q).

By (3.2) and the Bn-measurability of En(q), it follows that

varn+�(PnEn(q)) � var�
(
Ln

log gEn(q)
)

� S(�)
n · ‖q‖.

Then for any j � 2,∥∥∥∥∥Pn(I − Ej�)

(
j−1∏
i=1

Pi�Ei�

)
(f )

∥∥∥∥∥ � S
(�)

(j−1)�

∥∥∥∥∥
(

j−2∏
i=1

Pi�Ei�

)
(f )

∥∥∥∥∥ . (3.3)
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We know from [FP, theorem 2] that for any n = k� (k, � ∈ N),

Pn = Pn


(I − E�) +

k−1∑
j=2

(I − Ej�)

j−1∏
i=1

Pi�Ei� +
k∏

i=1

Pi�Ei�


 .

Note that

‖Pn(I − E�)(f )‖ � var�(f ) � αf (γ�).

This, together with (3.3), deduces the assertion. �
Hence, we are required to estimate the values of ‖PnEn(f )‖ and S

(n)
jn . Before beginning our

estimates, let us recall the following definition.

Definition 3.2. The dynamical system (X, T , φ) is said to have the BDP if there exists C > 0
such that for any n,

|Sn ◦ wJ (x) − Sn ◦ wJ (y)| � C ∀J ∈ I n and x, y ∈ X.

We remark that, under the assumption that the systems have the BDP, Fan and Pollicott
[FP, Po] showed easily that there exists 0 < τ < 1 such that for any f ∈ B(X, υ) with∫
X

f dυ = 0,

‖PnEn(f )‖ � τ‖f ‖. (3.4)

This was the key inequality in their estimates. To our knowledge, (3.4) has not been proved in
the absence of the BDP. However, the weakly expansive systems considered may not have the
BDP (see example 4.4), hence we are required to make adjustment so that it holds. A similar
problem appears when we estimate the value of S

(n)
jn .

3.2. Basic propositions

To check whether the inequality (3.4) holds, we need the following simple inequality.

Lemma 3.3. Let constant a > 0 and J ∈ I n satisfy the condition

gn ◦ wJ (x) � agn ◦ wJ (y) ∀x, y ∈ X.

Then

a−1 � gn ◦ wJ (x)

υ(XJ )
� a ∀x ∈ X.

Proof. By theorem 2.5(i) and proposition 2.2(i), we have

Ln
log g1XJ

(x) =
∑

y∈T −nx

gn(y) · 1XJ
(y) = gn ◦ wJ (x) a.e. (υ).

From the above, together with L∗
log gυ = υ, it follows that

υ(XJ ) = 〈υ, Ln
log g1XJ

〉 = 〈υ, gn ◦ wJ (·)〉. (3.5)

We end the proof by noting that 〈υ, 1〉 = 1. �

Lemma 3.4. Suppose that 0 < a−1 � cJ � a ∀J ∈ I n. Then for any f ∈ B(X, υ) with∫
X

f dυ = 0, we have∣∣∣∣∣∣
∑
|J |=n

cJ

∫
XJ

f dυ

∣∣∣∣∣∣ � (1 − a−2)‖f ‖
∑
|J |=n

cJ · υ(XJ ).
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Proof. Since ∑
|J |=n

∫
XJ

f dυ =
∫

X

f dυ = 0,

then∣∣∣∣∣∣
∑
|J |=n

cJ

∫
XJ

f dυ

∣∣∣∣∣∣ � a − a−1

a + a−1

∑
|J |=n

cJ

∣∣∣∣
∫

XJ

f dυ

∣∣∣∣ by ([FP, lemma 1])

� (1 − a−2)‖f ‖
∑
|J |=n

cJ · υ(XJ ). �

Proposition 3.5. There exists 0 < τ < 1 such that for any f ∈ B(X, υ) with
∫
X

f dυ = 0,
we have

‖PnEn(f )‖ � τ‖f ‖ ∀ n � 1.

Proof. Let (X, {wj }mj=1, {pj }mj=1) be the IFS induced from the system (X, T , φ). Let

0 < h ∈ C(X) and g be as in theorem 2.5. Denote gn(x) = ∏n−1
i=0 g(T ix). Then∑

|J |=n

gn ◦ wJ (x) = 1 ∀n ∈ N. (3.6)

And for any multi-index J ∈ I n and x, y ∈ X,

gn ◦ wJ (x)

gn ◦ wJ (y)
= exp(Sn ◦ wJ (x))

exp(Sn ◦ wJ (y))
· h ◦ wJ (x)

h ◦ wJ (y)
· h(y)

h(x)
. (3.7)

Let rj = supx �=y |wj(x) − wj(y)|/|x − y|. Then (r(y))−1 = rj if y ∈ Xj . Note the fact

	 � max
x∈X

∑
y∈T −1x

exp(φ(y)).

We deduce from (2.5) that min1�j�m rj < 1. Combining with the case n = 1 of (3.6), it
follows that there exists 0 < η < 1 such that

max
x∈X

m∑
j=1

g ◦ wj(x)rj � η.

For J = (j1j2 · · · jn), let rJ = rj1rj2 · · · rjn
. And for 0 � k < � � n, let J |�k =

(jk+1jk+2 · · · j�). Then by induction we have

max
x∈X

∑
|J |=n

gn ◦ wJ (x)rJ � ηn ∀n > 0. (3.8)

Choose θ such that η < θ < 1 and let

�(n, k) = {J : |J | = n, k smallest with rJ |nk � θn−k}, 0 � k < n,

�(n, n) = {J : |J | = n, rJ |nk < θn−k ∀ 0 � k < n}.
Then �(n, k)

⋂
�(n, k′) = ∅ ∀k �= k′, and I n = ⋃n

k=0 �(n, k). Let δ = ηθ−1. Then
0 < δ < 1. By (3.8), we have for any integer k,∑

J∈�(k,0)

gk ◦ wJ (x) � δk.
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By
∑m

j=1 g ◦ wj(x) = 1, we deduce that∑
J∈�(n,k)

gn ◦ wJ (x) � δn−k. (3.9)

Denote

A(n, k) =
n−k⋃
i=0

�(n, n − k − i).

Let c = (1 − δ)−1. Then

∑
J∈A(n,k)

gn ◦ wJ (x) �
n−k∑
i=0

δk+i � cδk. (3.10)

Hence, by (3.5) we have

∑
J∈A(n,k)

υ(XJ ) =
∫

X


 ∑

J∈A(n,k)

gn ◦ wJ (x)


 dυ(x) � cδk. (3.11)

Define

α(t) = max
1�j�m

sup
|x−y|�t

∣∣φ|Xj
(x) − φ|Xj

(y)
∣∣. (3.12)

Let a := ∑∞
k=0 α(θk). Then a is finite because φ|Xj

is Dini continuous.
For any J ∈ �(n, n−k), and any 0 � i < n−k, since rJ |nn−k

� θk and rJ |ni = rJ |n−k
i

rJ |nn−k
<

θn−i , we have

rJ |n−k
i

=
rJ |n−k

i
rJ |nn−k

rJ |nn−k

� θn−k−i .

It deduces that for any x, y ∈ X,

φ(T i ◦ wJ |n−k
0

(x)) � φ(T i ◦ wJ |n−k
0

(y))α(θn−k−i ).

Then

Sn ◦ wJ (x) =
n−1∑
i=0

φ(T i ◦ wJ (x)) � Sn ◦ wJ (y) + a +
k∑

i=1

α(γi). (3.13)

For any J /∈ A(n, k) with |J | = n, there exists some k′ < k such that J ∈ �(n, n − k′).
Then by (3.13), we have

Sn ◦ wJ (x) � Sn ◦ wJ (y) + a +
k∑

i=1

α(γi).

Denote

ak := exp
(
a + 2αlog h(1) +

k∑
i=1

α(γi)
)
.

Hence by (3.7) we have

gn ◦ wJ (x) � akgn ◦ wJ (y), ∀ J /∈ A(n, k). (3.14)

(We use |X| = 1 here.)
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By proposition 2.2(ii), we have limn→∞ α(γn) = 0. This, together with 0 < δ < 1,
deduces that there exists integer k0 > 0 such that a−2

k0
− 3cδk0 > 0. Fixing such a k0, we take

τ1 := 1 − a−2
k0

+ 3cδk0 .

Then 0 < τ1 < 1.

For any f ∈ B(X, υ) with
∫
X

f dυ = 0, we claim first that

|Ln
log gEn(f )(x)| � τ1‖f ‖ ∀n > k0. (3.15)

Indeed, for any x ∈ X and n > k0, we let An = ∑
J∈A(n,k0)

∫
XJ

f dυ, and let

Bn(x) =
∑

J /∈A(n,k0)

gn ◦ wJ (x)

υ(XJ )

∫
XJ

f dυ.

By (3.11) we have

|An| �
∑

J∈A(n,k0)

υ(XJ )‖f ‖ � cδk0‖f ‖.

By (3.10) we follow that

|Ln
log gEn(f )(x) − Bn(x)| � ‖f ‖

∑
J∈A(n,k0)

gn ◦ wJ (x) � cδk0‖f ‖.

Define

cJ (x) =



1, if J ∈ A(n, k0),

gn ◦ wJ (x)

υ(XJ )
, if J /∈ A(n, k0).

By (3.14) and lemma 3.3, we have

a−1
k0

� gn ◦ wJ (x)

υ(XJ )
� ak0 ∀J /∈ A(n, k0).

Then

a−1
k0

� cJ (x) � ak0 ∀J ∈ I n, x ∈ X.

Thus

|An + Bn(x)| =
∣∣∣∣∣∣
∑
|J |=n

cJ (x)

∫
XJ

f dυ

∣∣∣∣∣∣
� (1 − a−2

k0
)‖f ‖


 ∑

J∈A(n,k0)

υ(XJ ) +
∑

J /∈A(n,k0)

gn ◦ wJ (x)


 by lemma 3.4

� (1 − a−2
k0

)‖f ‖(cδk0 + 1) by (3.11) and (3.6)

� (1 − a−2
k0

+ cδk0)‖f ‖.
Hence for any n > k0,

|Ln
log gEn(f )(x)| � |Ln

log gEn(f )(x) − Bn(x)| + |An| + |An + Bn(x)|
� cδk0‖f ‖ + cδk0‖f ‖ + (1 − a−2

k0
+ cδk0)‖f ‖ = τ1‖f ‖.

The claim is thus proved.
For n � k0, we let

b = exp

(
2αlog h(1) +

k0∑
i=1

α(γi)

)
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and let τ2 = 1 − b−2. Then 0 < τ2 < 1. Note that for any n � k0,

Sn ◦ wJ (x) �
k0∑

i=1

α(γi) + Sn ◦ wJ (y) ∀ J ∈ I n and x, y ∈ X.

It follows from (3.7) and lemma 3.3 that

b−1 � gn ◦ wJ (x)

υ(XJ )
� b ∀J ∈ I n and x ∈ X.

Then again by (3.2) and lemma 3.4, we have for any n � k0,

|Ln
log gEn(f )(x)| � τ2‖f ‖.

Take τ = max{τ1, τ2}. Then 0 < τ < 1. From this, together with (3.15), it follows that

‖Ln
log gEn(f )‖ � τ‖f ‖ ∀n � 1.

By (3.1), we have ‖PnEn(f )‖ � τ‖f ‖. �
To estimate the value of S

(n)
jn , we need another function. For this we let α be defined

by (3.12), and define

�(t) = α(t) +
∫ t

0

α(x)

x
dx, 0 � t � 1.

Then � is continuous and limt→0+ �(t) = �(0) = 0 because of the Dini continuity of φ|Xj
.

We remark that for any 0 < θ < 1,
∞∑

n=0

α(θnt) � (1 − θ)−1�(t) ∀ 0 � t � 1. (3.16)

Let δ be as in the proof of proposition 3.5. Then we have the following proposition.

Proposition 3.6. There exist A > 0 and �0 ∈ N such that for any � � �0,

S
(�)
j� � A(δj� + �(γ�)) ∀j ∈ N.

Proof. Let �(n, k) be as in the proof of proposition 3.5. For any multi-index J ∈ I n and
x, y ∈ X, let

αJ (x, y) = 2αlog h(|x − y|) +
n∑

k=0

α(|wJ |nk (x) − wJ |nk (y)|).

Denote t = |x − y|. Note (3.16) and the weak contraction of wj . It follows that for any
J ∈ �(n, k),

n∑
k=0

α(|wJ |nk (x) − wJ |nk (y)|) � (1 − θ)−1�(t) + (n − k)α(t).

We know from theorems 4.2 and 4.4 of [LY] that

sup
t>0

αlog h(t)

�(t)
< ∞.

So there exists c1 > 0 such that for any J ∈ �(n, k),

αJ (x, y) � c1�(t) + (n − k)α(t).

Thus combining with (3.7), we have

gn ◦ wJ (x)

gn ◦ wJ (y)
� exp(αJ (x, y)) � exp(c1�(t))(exp(α(t)))n−k.
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Hence for any 0 � k � n, we have

E(n, k) :=
∑

J∈�(n,k)

|gn ◦ wJ (x) − gn ◦ wJ (y)|

� (exp(c1�(t))(exp(α(t)))n−k − 1)
∑

J∈�(n,k)

gn ◦ wJ (x)

� (exp(c1�(t))(exp(α(t)))n−k − 1)δn−k by (3.9).

Take t0 > 0 such that δ exp(α(t0)) < 1. Then for any 0 � t � t0,∑
|J |=n

|gn ◦ wJ (x) − gn ◦ wJ (y)| =
n∑

k=0

E(n, k)

� exp(c1�(t))

n∑
k=0

(δ exp(α(t)))n−k −
n∑

k=0

δn−k � S +
δn+1

1 − δ

where

S := exp(c1�(t))

1 − δ exp(α(t))
− 1

1 − δ
.

Note that α(0) = �(0) = 0 and α � �. There exists c2 > 0 such that for any 0 � t � t0,

exp(c1�(t)) � 1 + c2�(t) and exp(α(t)) � 1 + c2�(t).

By using this, it follows that

S � 1 + c2�(t)

1 − δ exp(α(t))
− 1

1 − δ
� c3�(t) for some c3 > 0.

Take A = max{c3, δ(1 − δ)−1}. Then for 0 � t � t0, we have

sup
|x−y|�t

∑
|J |=n

|gn ◦ wJ (x) − gn ◦ wJ (y)| � A(δn + �(t)) ∀n ∈ N.

By proposition 2.2(ii), there exists an integer �0 > 0 such that γ� � γ�0 � t0 for any � � �0.
Hence in particular

S
(�)
j� � A(δj� + �(γ�)) ∀j ∈ N. �

4. Decay of correlations

Having proved propositions 3.5 and 3.6, we are ready to estimate convergence speeds of the
iterations Ln

log g(f ).

Theorem 4.1. There exist constants B > 0, 0 < λ < 1 and �0 ∈ N such that for any n � k�

with � � �0 and f ∈ C(X) with
∫

f dυ = 0, we have

‖Ln
log gf ‖ � αf

(
γ�

)
+ λk‖f ‖ + B

(
λ� + �(γ�)

)‖f ‖.

Proof. Let 0 < τ < 1 be given by proposition 3.5. Let A > 0, 0 < δ < 1 and �0 > 0 be as in
proposition 3.6. Take λ := max{τ, δ}. Then 0 < λ < 1. Thus for any j � 1 and � � �0,

S
(�)
j� � A

(
λj� + �(γ�)

)
� A

(
λ� + �(γ�)

)
.

For any f ∈ C(X) with
∫

f dυ = 0, by using repeatedly ‖PnEn(f )‖ � λ‖f ‖, we deduce that∥∥∥∥∥
(

j∏
i=1

Pi�Ei�

)
(f )

∥∥∥∥∥ � λj‖f ‖ ∀ j � 1.
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Let B = A
∑∞

j=0 λj . Hence by lemma 3.1 we have

‖Pk�(f )‖ � αf (γ�) +
k−1∑
j=2

S
(�)

(j−1)� · λj−2‖f ‖ + λk‖f ‖

� αf (γ�) + λk‖f ‖ + B(λ� + �(γ�))‖f ‖.
Note that (3.1) and ‖Ln

log gf ‖ � ‖Lk�
log gf ‖ ∀n � k�. The result follows. �

Let the correlation function �f be given by definition 2.6. We can now estimate the speed
of �f (n) converging to 0.

Theorem 4.2. For any f ∈ C(X) and n � k� with � � �0, we have

|�f (n)| � αf (γ�)‖f ‖ + 2λk‖f ‖2 + 2B(λ� + �(γ�))‖f ‖2.

Proof. For any f ∈ C(X), let f0 = f − 〈υ, f 〉. Then

〈υ, f0〉 = 0, ‖f0‖ � 2‖f ‖ and αf0(·) = αf (·).
Thus, by theorem 4.1, we have for any n � k� with � � �0,

‖Ln
log gf0‖ � αf (γ�) + 2λk‖f ‖ + 2B

(
λ� + �(γ�)

)‖f ‖.
It is easy to check that for any integer n,

Ln
log g(f ◦ T n · f )(x) = f (x) · Ln

log g(f )(x).

Hence

〈υ, (f ◦ T n)f 〉 = 〈υ, Ln
log g(f ◦ T n · f )〉 = 〈υ, f · Ln

log gf 〉.
Therefore,

|�f (n)| = |〈υ, f (Ln
log gf − 〈υ, f 〉)〉| = |〈υ, f · Ln

log gf0〉| � ‖f ‖‖Ln
log gf0‖

� αf (γ�)‖f ‖ + 2λk‖f ‖2 + 2B(λ� + �(γ�))‖f ‖2. �

We remark that the � is Hölder continuous if each φ|Xj
is Hölder continuous. It is obvious

that if T is strictly expansive, then the condition in the theorem is trivially satisfied. However,
the explicit value of 	 is difficult to find. A simple estimation on the lower bound of 	 is

min
x∈X

∑
y∈T −1x

exp(φ(y)) � 	.

By using this we have the following corollary.

Corollary 4.3. Suppose that the weakly expansive Dini dynamical system (X, T , φ) satisfies
the condition

max
x∈X

∑
y∈T −1x

exp(φ(y))(r(y))−1 < min
x∈X

∑
y∈T −1x

exp(φ(y)).

Then there exist constants C > 0, 0 < λ < 1 and �0 ∈ N such that for any f ∈ C(X) and
n � k� with � � �0,

|�f (n)| � αf (γ�)‖f ‖ + C
(
λk + λ� + �(γ�)

)‖f ‖2.
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Example 4.4. Let X = [0, 1] and

T (x) =
{ x

1 − x
, if x ∈ [

0, 1
2

]
,

2x − 1, if x ∈ (
1
2 , 1

]
.

Choose a > 0 such that a + (log 2)−2 < 1. Define φ : X → R by

φ(x) =
{

log(a + (log T (x))−2), if x ∈ [
0, 1

2

]
,

log(1 − a − (log T (x))−2), if x ∈ (
1
2 , 1

]
.

It is clear that φ|[0,1/2] is not Hölder continuous, and the system (X, T , φ) satisfies the condition
of corollary 4.3. The system, however, does not have the BDP. We can check that γn = (1+n)−1,
and �(t) = O(−1/log t) near 0. Hence, for any Hölder continuous function f on X, we have
|�f (n2)| = O(1/log n).
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