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Abstract

This paper provides a derivative-based optimal investment strategy for an ambiguity-

averse pension investor who faces not only risks from time-varying income and market re-

turn volatility but also an uncertain economic condition over a long time horizon. We derive

a robust dynamic derivative strategy and show that the optimal strategy under ambigui-

ty aversion reduces the exposures to the market return risk and the volatility risk, and the

investor holds opposite positions in stock and derivative in her optimal portfolio. In the pres-

ence of derivative, there are distinct effects of ambiguity on the optimal investment strategy.

More importantly, we demonstrate the utility improvement when considering ambiguity and

exploiting derivatives and show that ambiguity aversion and derivative trading improve the

utility significantly when return volatility increases and that the improvement becomes more

significant under ambiguity aversion over a long investment horizon.
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1. Introduction

Pension funds hold a significant share of the global market portfolio. Global institutional

pension fund assets in 22 major markets are about $36.4 trillion and increased 4.3% in 2016,

and the total pension assets in these countries amount to 62% of their GDP1. Therefore,
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watson.com/en/insights/2017/01/global-pensions-asset-study-2017.
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pension investment has become increasingly important. Derivatives enjoy increasing pop-

ularity in pension investment and investors are often ambiguity averse. In this paper, we

combine these two features and provide a derivative-based optimal investment strategy for an

ambiguity-averse pension investor. The investor considers a market with stochastic volatil-

ity and faces uncertainties concerning both salary income and economic conditions over a

long time horizon. We show that ambiguity-aversion reduces the exposure to market return

and volatility risk. In the presence of a derivative, the investor holds opposite positions in

stock and derivative. There are distinct effect of the ambiguity over market return risk and

stochastic volatility risk on the optimal investment strategy: ambiguity concerning market

return risk always reduces both the investment into the stock and the derivative; ambiguity

concerning volatility risk reduces the investment into the derivative while increases the in-

vestment into the stock. Our analysis further shows that ambiguity aversion and derivative

trading improve investors’ utility significantly, especially when the return volatility is high

or the time horizon is long.

Motivated by recent studies on pension investment, this paper provides an integrated

framework for studying an optimal derivative-based pension investment problem. We address

various market risks and uncertainties, including market return and stochastic volatility

risks and income and economic uncertainties. There are two types of pension funds that

are differentiated by their benefit and contribution characteristics: defined benefit (DB) and

defined contribution (DC) pension plans. Due to demographic change and development of

financial markets, there is an ongoing shift from DB to DC pension plans. Many countries

have shifted their pension schemes toward DC plans to ease the pressure on social security

programs and transfer investment risk to investors (Poterba et al., 2007). DC pension plans

are playing an increasingly important role. As a result, individuals who build their own DC

pension funds have been exposed to these risks and uncertainties.

This paper explores various aspects of intertemporal portfolio choices under risk and

uncertainty in DC pension plans. In particular, in long pension investment horizon, wealth

accumulation depends on investors’ contribution which in turn depends on their salary in-

come, and financial market returns. Investors face model instability (structural change of

the model economy) and asset return variability. The experimental studies (Bossaerts et

al., 2010) demonstrate that investors are averse not only to risk (the known probability

distribution) but also to ambiguity (the unknown probability distribution). Also, it is well

recognized (Anderson et al., 1999; Merton, 1980) that expected returns are extremely diffi-
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cult to estimate, thus investors are skeptical of the reliability of standard historical estimates.

Therefore, it becomes increasingly important to take ambiguity aversion into account. More-

over, long-term pension investments need to incorporate the risks of salary and the stochastic

volatility of stock returns, which are well documented in the empirical literature. On the

one hand, salary has significant effects on the optimal long-term portfolio choice of investors.

Munk and Sørensen (2010) show that the relation between salary growth and interest rate

remains a significant factor determining the optimal investment strategy. On the other hand,

as an important improvement of the Black-Scholes model, stochastic volatility has been de-

veloped in the literature of option pricing, portfolio selection and related statistics (e.g.,

Heston, 1993; Kim et al., 1998; Fernndez-Villaverde et al., 2015; Campbell et al., 2016). In

this paper, we also take stochastic salary and stochastic volatility into account and shows

their effects on the optimal investment decisions.

This paper is also related to the use of derivatives for optimal investment. Theoretically,

Liu and Pan (2003) develop an optimal investment strategy using derivatives with stochastic

volatility and price jumps. They find that derivatives help to improve investors’ utility. In

practice, the derivative market is well developed and provides abundant opportunities for

pension funds by offering efficient ways to cope with volatility risk. Derivatives are becoming

more popular for pension funds in some countries. For example, for the second and third

pillars of the UK pension funds, they are invested not only in capital markets such as stocks

and bonds, but also in foreign option markets. In this paper, we follow this trend and

consider the optimal investment strategy for a DC pension investor who is ambiguity averse

and is able to invest in bond, stock, and derivative markets.

This paper is the first, to our knowledge, to explore the joint effect of ambiguity aversion

and derivative trading on optimal pension investment and to examine their roles in improving

utility. The main contributions of this paper are as follows. First, we derive an optimal

investment strategy for the underlying asset and its derivative in a DC pension plan. As

noted by Liu and Pan (2003), derivative trading is essential for improving investors’ utility.

Generally, we investigate two models with and without the derivative. By comparing the

two results, we find that trading in derivatives leads to utility improvement by offering

additional investment opportunities. Second, after solving the model explicitly, we show that

ambiguity aversion affects investor’s risk sharing in both the myopic and hedging components.

Moreover, the exposures of investor to both market return risk and volatility risk reduce

with respect to ambiguity. But for the explicit investment strategies, ambiguity concerning

3



market return risk always reduces both the investment into the stock and the derivative;

ambiguity concerning volatility risk reduces the investment into the derivative while increases

the investment into the stock. Third, in the DC pension investment, we find that the optimal

investment strategy has an additional hedging component that addresses salary risk. In

our model, salary risk generates different effects on investor’s exposures to market return

risk and volatility risk. Finally, we provide an original theoretical proof to show that the

optimization problem is well posed, which is ignored in the existing literature. We also

present the verification theorems to guarantee the validity of the results.

This paper is related to three strands of the literature. The first strand is on the asset

allocation of DC pension funds. Given the widespread use of DC pension plans in practice,

there is extensive literature addressing the asset allocation problems of DC pension funds.

The existing literature adopts a variety of objectives, such as maximizing the expected utility

of terminal wealth (see Blake et al., 2013, 2014; Chen et al., 2017; Deelstra et al., 2004;

Emms, 2012; Giacinto et al., 2011) and the mean-variance criterion (see He and Liang, 2013;

Sun et al., 2016; Wu and Zeng, 2015).2 In the DC pension plan, human capital constitutes

an indispensable part of investors’ wealth. Therefore, the uncertainty against future salary

is considered as a typical background risk. Several scholars have conducted research on

portfolio choices with salary risk (e.g., Bodie et al., 1992; Bodie et al., 2004). To explore

the effect of stochastic salary on investor’s investment behavior, we assume that the salary

process follows a general stochastic process and derive an optimal strategy explicitly. We find

that, the correlation between the salary and market return/volatility risks results in distinct

effects; as salary risk increases, the investor reduces stock investment while short-sells more

derivatives.

The second strand of the literature explores certain potentials and roles of derivative trad-

2These papers explore different aspects of factors in the investment of DC pension plans. In the framework

of maximizing utility, Deelstra et al. (2004) study an optimal design of guarantees in DC plans. Giacinto et

al. (2011) investigate a model of optimal allocation for a DC pension plan with a minimum guarantee. Blake

et al. (2013, 2014) use numerical algorithms to solve optimal investment problems under S-shaped utility

and Epstein-Zin utility, respectively. Chen et al. (2017) adopt an S-shaped utility to describe the investor’s

preferences and obtain the optimal investment strategy in closed-form. Under the mean-variance criterion,

He and Liang (2013) study a portfolio model for the DC pension plan during the accumulation phase and

derive a time-consistent investment strategy within the game theoretic framework. Wu and Zeng (2015)

consider the effects of mortality risk on equilibrium strategies. Sun et al. (2016) investigate an optimal

investment problem for DC pensions with a jump-diffusion model.
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ing in managing stochastic volatility in DC pension plans. There is considerable empirical

evidence on time-varying stock return volatility (see Taylor, 1994, for a survey). Following

Ílhan et al. (2005) and Liu and Pan (2003)3, Hsuku (2007) studies a dynamic consumption

and asset allocation problem with derivative securities under a recursive utility function.

Jalal (2013) derives dynamic option-based investment strategies for an investor exhibiting

downside loss aversion and provides illustrative results when downside risk is measured by the

expected shortfall. Recently, Escobar et al. (2015) consider an optimal investment strategy

for an ambiguity-averse investor who can invest in stock and derivative markets. However,

there are very limited results on dynamic asset allocation with derivatives in pension in-

vestment, despite the increasing popularity of using derivatives in the pension investment

market. According to a report by the Singapore Exchange (SGX) from January 6, 2015, the

value of securities trading fell 25%, while derivative trading volume rose to a record high in

2014. In the pension market, pension funds have increased their use of derivatives over the

past decade. The 2012 NAPF Annual Survey shows that 57% of member schemes include

derivatives. Moreover, the Global Pension Assets Study 2016 reports that at the end of 2015,

the average global asset allocation of the seven largest markets (Australia, Canada, Japan,

the Netherlands, Switzerland, the UK and the US) is 44% equities, 29% bonds, 3% cash and

24% other assets, mainly in derivatives. In this paper, we allow the DC pension investor to

invest in a derivative market. By examining cases with and without the derivatives in the

portfolios, we show that the use of derivatives always improves investor’s utility.

The third strand is on ambiguity in portfolio selection. Ellsberg (1961) first states that

most people are ambiguity averse. Then there are numerous theoretical and empirical s-

tudies that explore the significance of ambiguity in affecting investor behavior (Bossaerts et

al., 2010; Cao et al., 2005; Dimmock et al., 2016, etc). Recent studies consider investment

problems with ambiguity and robust decisions. Anderson et al. (2003) develop a constrained

worst-case model and derive a robust decision. The model helps the decision maker to as-

sess the fragility of any given decision rule. Maenhout (2004, 2006) also derive the optimal

3Specifically, Liu and Pan (2003) study the optimal investment strategies when an investor has access

not only to bond and stock markets but also to a derivative market and provide an example of the role of

derivatives in the presence of volatility risk. They find that derivative trading helps to improve investors’

utility. Ílhan et al. (2005) investigate an optimal investment problem for an investor who maximizes the

expected exponential utility from terminal wealth, combining a static position in derivatives with a traditional

dynamic trading strategy in stocks.
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investment strategy for an investor who is ambiguity averse with respect to expected market

returns. Following Maenhout (2004), some studies address the implications of ambiguity

for portfolio choice. For example, Liu (2010) examines an optimal consumption and invest-

ment problem for an ambiguity-averse investor with time-varying investment opportunities.

Branger and Larsen (2013) consider the optimal portfolio choice under different degrees of

ambiguity aversion concerning jump and diffusion risks. Flor and Larsen (2014) obtain an

optimal investment strategy for an ambiguity-averse investor in the context of a stochas-

tic interest rate. Munk and Rubtsov (2014) consider a portfolio management problem for

an ambiguity-averse investor under stochastic interest risk and inflation risk. Zheng et al.

(2016) consider a robust optimal investment-reinsurance problem using a constant elasticity

of variance (CEV) model and explicitly solve the case of an exponential utility function. Luo

(2016) studies the strategic consumption-portfolio rules with information frictions and salary

risk. Our work is related to their works and makes several extensions about ambiguity and

portfolio choice.

By considering ambiguity aversion, this paper provides a theoretical explanation of the

portfolio choice puzzle of “low portfolio fractions allocated to equity” in the empirical liter-

ature (Dimmock et al., 2016). We further explore the distinct effects of different ambiguity

attitudes toward market return risk and volatility risk on the risk exposures and investment

proportions, respectively. In the presence of a derivative, we show that ambiguity always

reduce the derivative investment (in absolute terms), while their effect on stock investment

is uncertain. As ambiguity can be regarded as the decrease in the volatility risk premium,

derivative investment becomes less attractive. By considering salary risk, our model for DC

pension investment is much richer than the classical type of deterministic contribution. A

stochastic salary stipulates an exogenous income stream. This makes it difficult to solve

the optimization problem. In this paper, we derive a closed-form of the robust investment

strategy for DC pension plans (with a stochastic salary). As in Anderson et al. (2003) and

Maenhout (2004), the discrepancy between the reference model and the alternative models

is defined in terms of relative entropy, which serves as a penalty and quantifies the investor’s

degree of ambiguity aversion about the reference model. The investor aims to maximize the

expected utility from the terminal wealth at retirement. Using the robust control approach,

the robust optimal investment strategy is derived in closed-form. In conclusion, our results

complement the existing literature.

This paper provides some insights into the efficient investment of DC pension plans.
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First, to improve pension funds’ investment performance, derivatives can provide an efficient

means of diversifying various risk factors. Because the DC pension investment horizon is

long, volatility risk has a significant effect on portfolio selection, and derivatives can be

very useful to manage such risk. We show that irrespective of ambiguity aversion, utility is

always improved by using derivatives. Second, it is desirable to improve the cognitive ability

of investors to reduce uncertainty. Recommendations from professional research reports or

financial experts would be helpful for investors’ investment decisions, especially when facing

economic uncertainties. Third, the heterogeneous salary process faced by investors in reality

results in different behaviors and has a significant effect on investment strategy. Paying

attention to the salary process is necessary for the design of the DC pension plan.

The paper is organized as follows. Section 2 describes the model. Section 3 derives

the explicit expressions of the robust optimal risk exposures, investment strategies and the

corresponding optimal value function when the derivative is available. Section 4 provides

the solutions without derivatives trading. Section 5 presents several numerical examples to

illustrate the effects of the model parameters on the robust optimal investment strategy and

utility improvements by considering ambiguity aversion and derivative trading. Section 6

concludes the paper.

2. Investment under ambiguity

We study the optimal investment strategy of a DC pension investor who can invest in

a financial market consisting of a bond, a stock and a derivative of the stock. The stock

price follows a stochastic volatility process. We assume that there are no transaction costs or

taxes in the financial market and that trading occurs continuously. In addition to undertaking

financial risk, the investor also receives a stochastic salary stream and faces salary risk during

her working period. Moreover, she is ambiguity averse regarding both the dynamics of the

stock and its stochastic volatility.

2.1. Financial market

The financial market consists of a risk-free bond, a stock and a derivative. The risk-free

bond evolves according to

dS0(t) = rS0(t)dt, S0(0) = 1, (1)

where r > 0 represents the risk-free interest rate. The stock price follows

dS(t) = S(t)
[
(r + λ1V (t)) dt+

√
V (t)dWS(t)

]
, S(0) = s0, (2)
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while the stock return variance V (t) is governed by

dV (t) = κ(δ − V (t))dt+ σV
√
V (t)

(
ρV dWS(t) +

√
1− ρ2V dWV (t)

)
, V (0) = v0, (3)

whereWS(t) andWV (t) are independent Brownian motions on a filtered complete probability

space (Ω,F , {Ft}t∈[0,T ],P) satisfying the usual conditions; T > 0 is a finite constant repre-

senting the investment time horizon (retirement date); Ft denotes the information available

until time t; and P is a reference measure. All stochastic processes throughout this paper

are assumed to be well defined and adapted to this probability space. In this model, the

instantaneous variance process V (t) is a stochastic process with long-run mean δ > 0, mean-

reversion rate κ > 0, and volatility coefficient σV > 0. The price and volatility are correlated,

which is captured by the coefficient ρV ∈ (−1, 1) and represents an important feature of the

real data. λ1 is a constant capturing the market price of the risk factor WS(t).

In addition to investing in the risk-free bond and the stock, the pension investor also

has the opportunity to invest in the derivative with the risky asset as the underlying asset.

Following Liu and Pan (2003), we consider the derivative with price O(t, S(t), V (t)), (O(t)

for short) at time t that depends on the underlying price of the stock S(t) and its volatility

V (t), and its payoff structure at the expiration time τ is defined by O(τ) = f(S(τ), V (τ))

for some function f . As in the literature, such as Liu and Pan (2003), the derivative includes

most traded option types.4 To obtain the price of the derivative, we introduce a specific

pricing kernel {k(t)}t∈[0,T ] to price all of the risk factors in the financial market,5

O(t) =
1

k(t)
Et[k(τ)f(S(τ), V (τ))] (4)

for any t ≤ τ . This is consistent with the following parametric pricing kernel and specification

of the price dynamics for the derivative (Liu and Pan, 2003)

dk(t) = −k(t)
[
rdt+ λ1

√
V (t)dWS(t) + λ2

√
V (t)dWV (t)

]
, k(0) = 1, (5)

4As shown in Liu and Pan (2003), the expiration date τ of the derivative does not need to match the

investment horizon T . They present some examples of derivative types. For instance, a derivative with a

linear payoff structure f(S(τ), V (τ)) = S(τ) becomes the stock itself. However, for some strike price K > 0,

a derivative with the non-linear payoff structure f(S(τ), V (τ)) = (S(τ)−K)+ corresponds to European-style

call option, while that with f(S(τ), V (τ)) = (K − S(τ))+ corresponds to European-style put option.
5The price of the derivative is defined under measure P, which is deduced from a risk-neutral measure.

Details can be found in Zhang et al. (2012).
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and 
dO(t) = rO(t)dt+ (OsS(t) + σV ρVOv)

(
λ1V (t)dt+

√
V (t)dWS(t)

)
+ σV

√
1− ρ2VOv

(
λ2V (t)dt+

√
V (t)dWV (t)

)
, t ≤ τ,

O(τ) = f(S(τ), V (τ)),

(6)

where λ2 is a constant capturing the market price of stochastic volatility risk WV (t), Os and

Ov are the partial derivatives of O with respect to (w.r.t.) S(t) and V (t), respectively.

In a DC pension plan, the investor contributes part of her salary to the pension fund

before retirement. The salary process is essential when considering a DC pension plan. In

this paper, we assume that the dynamics of the investor’s salary are described by
dL(t) = L(t)

[
µLdt+ σLρL

(
λ1V (t)dt+

√
V (t)dWS(t)

)
+σL

√
1− ρ2L

(
λ2V (t)dt+

√
V (t)dWV (t)

)]
,

L(0) = l0,

(7)

where µL ≥ 0 is the appreciation rate, σL ≥ 0 is the volatility and ρL ∈ [−1, 1] is the

coefficient parameter.

Remark 2.1. The salary process plays an important role in pension plans and is analyzed

in several studies (Bodie et al., 2004; Chen et al., 2017; Deelstra et al., 2004; Dybvig and

Liu, 2010; Guan and Liang, 2014, 2015). Among these contributions, Bodie et al. (2004)

and Dybvig and Liu (2010) assume that the salary process is spanned by the stocks in the

financial market, which reflects the fact that salary is related to the profitability of the

company. Guan and Liang (2014) furthermore assume that the salary process is correlated

with the volatility of the stock. In those cases, salary risk is insurable in the stock market.

Because the stochastic volatility contains some other risks faced by the investor in our model,

we assume the salary to be related to stochastic volatility. It would be interesting and more

realistic if the stochastic salary is introduced extra randomness independent of the Brownian

motions driving the stock and volatility. However, if does, the part related to l2 can not be

separated in HJB equation, and it becomes difficult for us to derive closed-form solutions

to our optimization problems, significantly complicating the analysis of the problems. In

this paper, our main focus is to analyze the impacts of ambiguity aversion and derivation

trading on the optimal investment strategies and value functions of a DC pension investor.

The closed-form solutions is our theoretical results, and with them, we are able to analyze

the impacts explicitly.
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2.2. Ambiguity

The above-mentioned framework is a traditional portfolio choice model in the DC pension

plan, where the investor is assumed to be ambiguity neutral. However, in reality, the investor

is usually ambiguity averse and wants to guard herself against worst-case scenarios. To

incorporate ambiguity aversion into the investor’s investment problem, we assume that the

reference model capturing the knowledge of the investor’s ambiguity is described by the

probability measure P, but she is skeptical of this reference model and is willing to consider

some alternative models, defined by a class of probability measures equivalent to P as follows

(cf. Anderson et al., 2003; Maenhout, 2004):

Q := {Q|Q ∼ P}.

For each Φ := {ϕ(t) := (ϕS(t), ϕV (t))}t∈[0,T ],
6 define a real-valued process {ΛΦ(t)|t ∈

[0, T ]} as

ΛΦ(t) = exp

{
−
∫ t

0

ϕS(s)dWS(s)−
1

2

∫ t

0

(ϕS(s))
2ds−

∫ t

0

ϕV (s)dWV (s)−
1

2

∫ t

0

(ϕV (s))
2ds

}
.

(8)

Accordingly, ΛΦ(t) is a P-martingale. For each Φ, a new alternative measure Q that is

absolutely continuous with P on FT is defined by

dQ
dP

∣∣∣
FT

= ΛΦ(T ).

By Girsanov’s Theorem, under the alternative measure Q, we have

dWΦ
S (t) = dWS(t) + ϕS(t)dt,

dWΦ
V (t) = dWV (t) + ϕV (t)dt,

where WΦ
S (t) and W

Φ
V (t) are one-dimensional standard Brownian motions. Furthermore, the

price and volatility of the stock, the price of the derivative and the stochastic salary under

6Suppose that Φ := {ϕ(t) := (ϕS(t), ϕV (t))}t∈[0,T ] satisfies three conditions: (i) ϕS(t) and ϕV (t) are Ft-

measurable for each t ∈ [0, T ]; (ii) E
{
exp

{
1
2

∫ T

0

[
(ϕS(t))

2dt+ (ϕV (t))
2
]
dt
}}

< ∞; and (iii) |ϕ(t)|2 ≤ κ2V (t)

for a.s. (t, ω) ∈ [0, T ] × Ω, with constant κ ∈ [max(ϕ, ϕ
3
), κ/σV ), where ϕ, and ϕ

3
are defined in (22) and

(43), respectively. And we will explain ϕ in footnote 9 and ϕ
3
in footnote 16 below. We denote Θ for the

space of all such processes Φ.
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Q can be written as

dSΦ(t) = SΦ(t)
[(
r + λ1V

Φ(t)− ϕS(t)
√
V Φ(t)

)
dt+

√
V Φ(t)dWΦ

S (t)
]
, (9)

dV Φ(t) =

[
κ(δ − V Φ(t))− σV

√
V Φ(t)(ρV ϕS(t) +

√
1− ρ2V ϕV (t))

]
dt

+ σV
√
V Φ(t)(ρV dW

Φ
S (t) +

√
1− ρ2V dW

Φ
V (t)), (10)

dOΦ(t) = rOΦ(t)dt+ (OsS
Φ(t) + σV ρVOv)

[
λ1V

Φ(t)dt− ϕS(t)
√
V Φ(t)dt+

√
V Φ(t)dWΦ

S (t)
]

+ σV

√
1− ρ2VOv

[
λ2V

Φ(t)dt− ϕV (t)
√
V Φ(t)dt+

√
V Φ(t)dWΦ

V (t)
]
, (11)

dLΦ(t) = LΦ(t)
[
µLdt+ σLρL(λ1V

Φ(t)dt− ϕS(t)
√
V Φ(t)dt+

√
V Φ(t)dWΦ

S (t))

+ σL

√
1− ρ2L(λ2V

Φ(t)dt− ϕV (t)
√
V Φ(t)dt+

√
V Φ(t)dWΦ

V (t))

]
. (12)

2.3. Wealth process

Let u := {u(t) := (uS(t), uO(t))}t∈[0,T ] be a trading strategy, and Xu(t) is the wealth

process under strategy u, where uS(t), uO(t), 1 − uS(t) − uO(t) are the proportions of the

wealth invested in the stock, derivative and risk-free bond, respectively. Then, the wealth

process Xu(t) under probability measure P follows

dXu(t) = Xu(t)

[
(1− uS(t)− uO(t))

dS0(t)

S0(t)
+ uS(t)

dS(t)

S(t)
+ uO(t)

dO(t)

O(t)

]
+ ξL(t)dt

= Xu(t)
[
rdt+ θS(t)

(
λ1V (t)dt+

√
V (t)dWS(t)

)
+θV (t)

(
λ2V (t) +

√
V (t)dWV (t)

)]
+ ξL(t)dt,

Xu(0) = x0,

(13)

where

θ(t) =

 θS(t)

θV (t)

 =

 1 OsS(t)+σV ρV Ov

O(t)

0
σV

√
1−ρ2V Ov

O(t)

 uS(t)

uO(t)

 (14)

represent the investor’s exposures to market return risk WS(t) and additional volatility risk

WV (t), respectively. Here, we consider the exposures instead of portfolio weights to simplify

the analysis.7As shown in Liu and Pan (2003), the exposure stems from the dynamics of

asset prices and the specific portfolio.

7We also provide the non-redundant condition as shown in Eq. (3.3) in Escobar et al. (2015) and

Eq. (12) in Liu and Pan (2003). Because we have only one derivative in the model and the relationship

between risk exposure and the portfolio weight is shown by Eq. (14), the non-redundant condition becomes√
1− ρ2V Ov ̸= 0.
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In addition, we assume that the contribution rate of the salary is ξ ∈ [0, 1]. Then under

the ambiguity framework, the wealth process XΦ,u(t) under probability measure Q follows

dXΦ,u(t) = XΦ,u(t)
[
rdt+ θS(t)

(
λ1V

Φ(t)dt− ϕS(t)
√
V Φ(t)dt+

√
V Φ(t)dWΦ

S (t)
)

+θV (t)
(
λ2V

Φ(t)dt− ϕV (t)
√
V Φ(t)dt+

√
V Φ(t)dWΦ

V (t)
)]

+ ξLΦ(t)dt.

(15)

Definition 2.2. A strategy u = {u(t) := (uS(t), uO(t))}t∈[0,T ] is said to be admissible if

(i) uS(t) and uO(t) are Ft-progressively measurable processes;

(ii) ∀(t, x, v, l) ∈ O, Eq. (15) has a pathwise-unique solution
{
XΦ,u(t)

}
t∈[0,T ]

, where O :=

[0, T ]× R3;

(iii) EΦ
t,x,v,l{

∫ T

0
[(uS(t))

2 + (uO(t))
2]dt} <∞ and EΦ

t,x,v,l[U(X
Φ,u(s))] <∞, and

EΦ
t,x,v,l[·] = EΦ[·|(XΦ,u(t), V Φ(t), LΦ(t)) = (x, v, l)].

Denote by Π the set of all admissible strategies.

2.4. Optimization problem

In this paper, the pension investor is assumed to be risk averse with a constant relative

risk aversion (CRRA) utility function and seeks to derive an investment strategy during

the time interval [0, T ] to maximize the expected utility from terminal wealth under the

ambiguity framework. Then, the optimization problem for the investor can be written as8

sup
u∈Π

inf
Φ∈Θ

EΦ

[
U(XΦ,u(T )) +

∫ T

0

(
(ϕS(s))

2

2ΨS(s, x, v, l)
+

(ϕV (s))
2

2ΨV (s, x, v, l)

)
ds

]
, (16)

where

U(x) =
x1−γ

1− γ
, (17)

and γ is the coefficient of relative risk aversion. We assume that γ > 1 for practical relevance

(see Branger and Larsen, 2013; Escobar et al., 2015; Flor and Larsen, 2014). The pertur-

bations ϕS(t) and ϕV (t) in the penalty term are scaled by ΨS(t, x, v, l) and ΨV (t, x, v, l), re-

spectively. ΨS(t, x, v, l) and ΨV (t, x, v, l) represent the preference parameters for ambiguity-

aversion, and measure the degree of confidence in the reference model P at time t; and

deviations from the reference measure are penalized by the last integral term in the expec-

tation, which depends on the relative entropy arising from the diffusion risks. According to

8Following Anderson et al. (2003) and Maenhout (2004), the alternative models considered by the investor

are difficult to distinguish statistically from the reference model. To take this issue into account, the value

function includes a penalty term for deviating excessively from the reference model in the sense of relative

entropy (the last integral term in the expectation in Eq. (16)), which arises from diffusion risk.
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Maenhout (2004), the larger ΨS(t, x, v, l) and ΨV (t, x, v, l) are, the less the deviations from

the reference model are penalized. Furthermore, the pension investor has less faith in the

reference model, such that she is more likely to consider alternative models. Hence, the

pension investor’s ambiguity aversion is increasing w.r.t. ΨS(t, x, v, l) and ΨV (t, x, v, l).

Define

H(t, x, v, l) = sup
u∈Π

HΦ∗,u(t, x, v, l), (18)

where

HΦ∗,u(t, x, v, l) = inf
Φ∈Θ

HΦ,u(t, x, v, l)

= inf
Φ∈Θ

EΦ
t,x,v,l

[
U(XΦ,u(T )) +

∫ T

t

(
(ϕS(s))

2

2ΨS(s, x, v, l)
+

(ϕV (s))
2

2ΨV (s, x, v, l)

)
ds

]
.

(19)

For analytical tractability, we assume that (cf. Pathak, 2002; Branger and Larsen, 2013;

Escobar et al., 2015; Flor and Larsen, 2014; Maenhout, 2004)

ΨS(t, x, v, l) =
βS

(1− γ)H(t, x, v, l)
, ΨV (t, x, v, l) =

βV
(1− γ)H(t, x, v, l)

, (20)

where βS and βV are positive constants and called ambiguity aversion parameters; these are

used to describe the investor’s attitude toward ambiguity. We allow the level of ambiguity

concerning the stock price to differ from that concerning the stock’s volatility. For con-

venience, we abuse the notation slightly and interpret βS as ambiguity aversion regarding

market return risk and βV as ambiguity aversion regarding additional volatility risk.

Proposition 2.3. There exists a unique value function H(t, x, v, l) of the optimal control

problem that consists of (18), (19) and (20) subject to (15), (10) and (12).

Proof. See Appendix A.

Based Proposition (2.3), we define H(t, x, v, l) the optimal value function.

3. Optimal investment strategy with a derivative

This section is devoted to deriving the optimal investment strategy for the DC pension

investor in the presence of a derivative. We first provide a closed-form solution to the case

in which the investor is ambiguity averse in general and then analyze a special case without

ambiguity aversion.
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For convenience, we introduce some notations. Let

C1,2,2,2(O) = {ψ(t, x, v, l)|ψ(t, ·, ·, ·) is once continuously differentiable on [0, T ]

and ψ(·, x, v, l) is twice continuously differentiable on R3} .

Let u = (uS, uO), θ = (θS, θV ) and ϕ = (ϕS, ϕV ) denote the values that u(t) = (uS(t), uO(t)),

θ(t) = (θS(t), θV (t)) and ϕ(t) = (ϕS(t), ϕV (t)) take, respectively. For any (t, x, v, l) ∈ O and

ψ(t, x, v, l) ∈ C1,2,2,2(O), we define an infinitesimal generator as

Aϕ,uψ(t, x, v, l) = ψt + [rx+ xθSλ1v + xθV λ2v − xθSϕS

√
v − xθV ϕV

√
v + ξl]ψx

+
[
κ(δ − v)− σV

√
vρV ϕS − σV

√
v
√

1− ρ2V ϕV

]
ψv

+
[
µLl + lσLλ1vρL − lσL

√
vϕSρL + lσLλ2v

√
1− ρ2L − lσL

√
vϕV

√
1− ρ2L

]
ψl

+
1

2
x2v(θ2S + θ2V )ψxx +

1

2
σ2
vvψvv +

1

2
l2σ2

Lvψll + lσLvσV

(
ρV ρL +

√
1− ρ2V ρ

2
L

)
ψlv

+(xσV θSvρV + xσV θV v
√
1− ρ2V )ψxv + (xθSlσLvρL + xθV lσLv

√
1− ρ2L)ψxl,

where ψt, ψx, ψv, ψl, ψxx, ψvv, ψll, ψlv, ψxv and ψxl represent the partial derivatives of ψ

w.r.t. the corresponding variables.

According to the principle of dynamic programming, the HJB equation with ambiguity

aversion can be derived as (see Escobar et al., 2015; Maenhout, 2006; Yi et al., 2013)

sup
u∈R2

inf
||ϕ||≤√

κv

{
Aϕ,uJ(t, x, v, l) +

ϕ2
S

2ΨS

+
ϕ2
V

2ΨV

}
= 0 (21)

with the boundary condition J(T, x, v, l) = U(x).

The following proposition presents the conditions under which the solution of the HJB

equation is indeed the value function, and the control is the optimal strategy.

Proposition 3.1. If there exist a function J(t, x, v, l) ∈ C1,2,2,2(O) and a control (u∗,Φ∗) :=

{(u∗(t), ϕ∗(t))}t∈[0,T ] ∈ Π×Θ such that

(1) for any ||ϕ|| ≤ √
κv, Aϕ,u∗

J(t, x, v, l) +
ϕ2
S

2ΨS
+

ϕ2
V

2ΨV
≥ 0;

(2) for any u ∈ R2, Aϕ∗,uJ(t, x, v, l) +
(ϕ∗

S)
2

2ΨS
+

(ϕ∗
V )2

2ΨV
≤ 0;

(3) Aϕ∗,u∗
J(t, x, v, l) +

(ϕ∗
S)

2

2ΨS
+

(ϕ∗
V )2

2ΨV
= 0, with J(T, x, v, l) = U(x);

(4) {J(τ, x, v, l)}τ∈T and { (ϕ∗
S(τ))

2

2ΨS(τ,x,v,l)
+

(ϕ∗
V (τ))2

2ΨV (τ,x,v,l)
}τ∈T are uniformly integrable, where T de-

notes the set of stopping times τ ≤ T , u∗ = (u∗S, u
∗
O) and ϕ∗ = (ϕ∗

S, ϕ
∗
V ) denote the values

that u∗(t) = (u∗S(t), u
∗
O(t)) and ϕ∗(t) = (ϕ∗

S(t), ϕ
∗
V (t)) take, respectively. Then J(t, x, v, l) =

H(t, x, v, l) and (u∗,Φ∗) is an optimal control.

Proof. See Appendix B.
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According to Proposition 3.1, we know that the optimal investment strategy is u∗, the

optimal risk exposure is

θ∗(t) := (θ∗S(t), θ
∗
V (t)) =

 1 OsS(t)+σV ρV Ov

O(t)

0
σV

√
1−ρ2V Ov

O(t)

u∗(t),

the worst-case measure is Φ∗, and the corresponding optimal value function is J(t, x, v, l) if

Novikov’s condition is satisfied, which is given below.

Theorem 3.2. For the robust portfolio choice problem (18) with wealth process (15), if the

parameters satisfy certain technical conditions 9, the optimal risk exposure is

θ∗S(t) = m(t)

(
1 + h̄(t)

L(t)

Xu∗(t)

)
− σLρLh̄(t)

L(t)

Xu∗(t)
,

θ∗V (t) = n(t)

(
1 + h̄(t)

L(t)

Xu∗(t)

)
− σL

√
1− ρ2Lh̄(t)

L(t)

Xu∗(t)
;

(24)

the optimal investment strategy is

u∗S(t) = θ∗S(t)−
OsS(t) + σV ρVOv

O(t)
u∗O(t), u∗O(t) =

O(t)θ∗V (t)

σV
√

1− ρ2VOv

; (25)

the corresponding optimal value function is

J(t, x, v, l) =
(x+ h̄(t)l)1−γ

1− γ
exp(ḡ(t)v + ĝ(t)); (26)

and the worst-case measure is given by

ϕ∗
S(t) =

βS(λ1(1− γ) + σV ρV ḡ(t))
√
V (t)

(1− γ)(βS + γ)
, ϕ∗

V (t) =
βV (λ2(1− γ) + σV

√
1− ρ2V ḡ(t))

√
V (t)

(1− γ)(βV + γ)
,

(27)

9The technical conditions are ϕ < κ2/σ2
V with

ϕ , max

{
β2
Sλ

2
1

(βS + γ)2
,
β2
S(λ1(1− γ) + σV ρV ḡ(0))

2

(1− γ)2(βS + γ)2

}
+max

{
β2
V λ

2
2

(βV + γ)2
,
β2
V (λ2(1− γ) + σV

√
1− ρ2V ḡ(0))

2

(1− γ)2(βV + γ)2

}
,

(22)

and for ḡ(t) ∈ [ḡ(0), 0],

[64(1− γ)2 − 4(1− γ)][(m(t))2 + (n(t))2] + 8(1− γ)A(t) ≤ κ2

2σ2
V

, (23)

which are needed in the verification theorem. According to Dotsis et al. (2007) and Sepp (2008), who give

the parameter estimates of the Heston model using the S&P500 index, we know that the value of κ2/σ2
V

in the technique conditions is very large (approximately 375.39). Therefore, more parameters can satisfy

conditions (22) and (23).
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where {X∗(t)}t∈[0,T ] is the wealth process under the corresponding optimal strategy, and

m(t) =
λ1(1− γ) + (1− (βS + γ))σV ρV ḡ(t)

(1− γ)(βS + γ)
, (28)

n(t) =
λ2(1− γ) + (1− (βV + γ))σV

√
1− ρ2V ḡ(t)

(1− γ)(βV + γ)
, (29)

ḡ(t) =
ν1ν2 − ν1ν2e

α2(ν1−ν2)(T−t)

ν2 − ν1eα2(ν1−ν2)(T−t)
, (30)

ĝ(t) =

∫ T

t

[r(1− γ) + κδḡ(s)] ds, (31)

h̄(t) =
ξ

µL − r
(e(µL−r)(T−t) − 1), (32)

α1 = −κ+
λ1(1− (βS + γ))σV ρV

βS + γ
+
λ2(1− (βV + γ))σV

√
1− ρ2V

βV + γ
, (33)

α2 =
σ2
V

2
− βSσ

2
V ρ

2
V + βV σ

2
V (1− ρ2V )

2(1− γ)

+
(1− (βS + γ))2σ2

V ρ
2
V

2(βS + γ)(1− γ)
+

(1− (βV + γ))2σ2
V (1− ρ2V )

2(βV + γ)(1− γ)
, (34)

α3 =
λ21(1− γ)

2(βS + γ)
+
λ22(1− γ)

2(βV + γ)
, ν1,2 =

α1 ±
√
α2
1 − 4α2α3

−2α2

, (35)

A(t) = γ(m(t))2 − σV ρV ḡ(t)

βS + γ
m(t) + γ(n(t))2 −

σV
√
1− ρ2V ḡ(t)

βV + γ
n(t). (36)

Proof. See Appendix C.

Theorem 3.2 presents three features of our results. First, the componentsm(t) and n(t) in

optimal risk exposures θ∗S(t) and θ
∗
V (t) consist of traditional components involving the myopic

and hedging components. Taking exposure to market return risk θ∗S(t) as an example, the

myopic component λ1

βS+γ
is constant and decreases in the ambiguity aversion parameter βS

for stock risk but does not depend on the ambiguity aversion parameter βV for additional

volatility risk. This shows that a myopic investor concentrates solely on ambiguity aversion

parameter βS w.r.t. market return risk. The hedging component (1−(βS+γ))σV ρV ḡ(t)
(1−γ)(βS+γ)

is time

dependent, and for a non-myopic investor, this component depends on βV , as ḡ(t) depends

on βV . That is, the investor is concerned not only with βS but also with βV w.r.t. market

return risk. The case of exposure to additional volatility risk θ∗V (t) is easily analyzed in a

similar manner. Second, from the remaining components of optimal risk exposure, we find

that the salary process exists in the portfolio and generates a new hedging component w.r.t.

salary risk. Due to the assumption that the risk factors WS(t) and WV (t) are contained

in the salary process, this component is affected by both βS and βV . Third, the worst-case
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measure is chosen by Eq. (27), which is proportional to volatility
√
V (t). The case of ϕ∗

S(t) is

affected by both the ambiguity regarding market return risk βS and the ambiguity regarding

additional volatility risk βV .

Remark 3.3. In our results, m(t) and n(t) in optimal risk exposure are consistent with the

previous studies on ambiguity, such as Branger and Larsen (2013) and Escobar et al. (2015).

However, they do not consider the risk of salary, which is very important in a DC pension

plan. In this model, the worst-case measure here takes a form similar to that in Escobar et

al. (2015).

Theorem 3.4. For problem (18), if there exists a function J(t, x, v, l) ∈ C1,2,2,2(O), which

is a solution to the HJB equation (21) with boundary condition J(T, x, v, l) = U(x) and the

parameters satisfy conditions (22) and (23), then the optimal value function is H(t, x, v, l) =

J(t, x, v, l), and the optimal strategy is u∗ = {(u∗S(t), u∗O(t))}t∈[0,T ] given in Theorem 3.2.

Proof. See Appendix D.

Remark 3.5. We present several special cases to show the relationships between θ∗S(t),

θ∗V (t) and βS, βV and γ. It is obvious that the effects of σL on θ∗S(t) and θ
∗
V (t) depend on

the value of ρL. When ρL = 0, the optimal risk exposure in this case, denoted θ∗1S(t) and

θ∗1V (t), can be written as θ∗1S(t) = m(t)
(
1 + h̄(t) L(t)

Xu∗ (t)

)
and θ∗1V (t) = n(t)

(
1 + h̄(t) L(t)

Xu∗ (t)

)
−

σLh̄(t)
L(t)

Xu∗ (t)
, and the optimal value function in this case, denoted J1(t, x, v, l), can be written

as J1(t, x, v, l) =
(x+h̄(t)l)1−γ

1−γ
exp(ḡ1(t)v+ ĝ1(t)).

10 Moreover, as h̄(t) > 0, ḡ(t) < 0 and γ > 1,

following simple calculations, when ρV = 0, we have
∂θ∗1S(t)

∂(βS+γ)
< 0, which implies that the

optimal risk exposure decreases w.r.t. the sum of aversion to ambiguity and risk in some

cases, which implies that the investor decreases her exposure to market return risk when she

10The optimal investment strategy when ρL = 0, denoted u∗
1S(t) and u∗

1O(t), can be written as

u∗
1S(t) = θ∗1S(t) −

OsS(t)+σV ρV Ov(t)
O(t) u∗

1O(t) and u∗
1O(t) =

O(t)θ∗
1V (t)

σV

√
1−ρ2

V Ov

, and the worst-case measure in this

case, denoted ϕ∗
1S(t) and ϕ∗

1V (t), can be written as ϕ∗
1S(t) =

βS(λ1(1−γ)+σV ρV ḡ1(t))
√

V (t)

(1−γ)(βS+γ) and ϕ∗
1V (t) =

βV (λ2(1−γ)+σV

√
1−ρ2

V ḡ1(t))
√

V (t)

(1−γ)(βV +γ) , where

ḡ1(t) =
ν11ν21−ν11ν21e

α21(ν11−ν21)(T−t)

ν21−ν11eα21(ν11−ν21)(T−t) , ĝ1(t) =
∫ T

t
[r(1− γ) + κδḡ1(s)] ds,

α11 = −κ+ λ1(1−(βS+γ))σV ρ
βS+γ +

λ2(1−(βV +γ))σV

√
1−ρ2

V

βV +γ ,

α21 =
σ2
V

2 − β2
Sσ2

V ρ2
V +βV σ2

V (1−ρ2
V )

2(1−γ) +
(1−(βS+γ))2σ2

V ρ2
V

2(βS+γ)(1−γ) +
(1−(βV +γ))2σ2

V (1−ρ2
V )

2(βV +γ)(1−γ) ,

α31 =
λ2
1(1−γ)

2(βS+γ) +
λ2
2(1−γ)

2(βV +γ) , ν11,21 =
α11±

√
α2

11−4α21α31

−2α21
,

and h̄(t) is given by Eq. (32). By derivation, we obtain α2
11 − 4α21α31 ≥ 0.
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is more ambiguity averse and risk averse.

Remark 3.6. If σL = 0, the salary process is non-stochastic; then the optimal risk exposure

in this case, denoted θ∗2S(t) and θ∗2V (t), can be written as θ∗2S(t) = m(t)(1 + ĥ(t)

Xu∗ (t)
) and

θ∗2V (t) = n(t)(1+ ĥ(t)

Xu∗ (t)
), and the optimal value function in this case, denoted J2(t, x, v), can

be written as J2(t, x, v) =
(x+ĥ(t))1−γ

1−γ
exp(ḡ(t)v + ĝ(t)), where

ĥ(t) =
ξl0

µL − r
[exp(µLT − r(T − t))− exp(µLt)], (37)

and m(t), n(t), ḡ(t), ĝ(t) are given by Eqs. (28), (29), (30) and (31).11 In this case, we find

that the optimal risk exposures are proportional to m(t) and n(t).

Furthermore, if there is no salary in our model, i.e., ξ = 0 or L(t) = 0, our problem

reduces to a portfolio selection problem. The optimal risk exposure in this case, denoted

θ∗3S(t) and θ
∗
3V (t), can be written as θ∗3S(t) = m(t) and θ∗3V (t) = n(t), and the optimal value

function in this case, denoted J3(t, x, v), can be written as J3(t, x, v) =
x1−γ

1−γ
exp(ḡ(t)v+ ĝ(t)),

where m(t), n(t), ḡ(t) and ĝ(t) are given by Eqs. (28), (29), (30) and (31), respectively.12

Correspondingly, the optimal risk exposure is independent of wealth x. It is worth noting

that the optimal investment strategy obtained in the case without stochastic salary is the

same as that given in Escobar et al. (2015) without jumps.

Remark 3.7. If the pension investor is ambiguity neutral, i.e., both ambiguity aversion

parameters βS and βV equal 0, the optimal risk exposure in this case, denoted θ∗4S(t) and

θ∗4V (t), can be written as θ∗4S(t) =
λ1+σV ρV ḡ2(t)

γ

(
1 + h̄(t) L(t)

Xu∗ (t)

)
−σLρLh̄(t) L(t)

Xu∗ (t)
and θ∗4V (t) =

λ2+σV

√
1−ρ2V ḡ2(t)

γ

(
1 + h̄(t) L(t)

Xu∗ (t)

)
− σL

√
1− ρ2Lh̄(t)

L(t)

Xu∗ (t)
, and the optimal value function in

this case, denoted J2(t, x, v, l), can be written as J4(t, x, v, l) =
(x+h̄(t)l)1−γ

1−γ
exp(ḡ2(t)v+ ĝ2(t)),

where

ḡ2(t) =
ν12ν22 − ν12ν22e

α22(ν12−ν22)(T−t)

ν22 − ν12eα22(ν12−ν22)(T−t)
, ĝ2(t) =

∫ T

t

[r(1− γ) + κδḡ2(s)] ds, (38)

11The optimal investment strategy when σL = 0, denoted u∗
2S(t) and u∗

2O(t), can be written as

u∗
2S(t) = θ∗2S(t) −

OsS(t)+σV ρV Ov

O(t) u∗
2O(t) and u∗

2O(t) =
O(t)θ∗

2V (t)

σV

√
1−ρ2

V Ov

, and the worst-case measure in this

case, denoted ϕ∗
2S(t) and ϕ∗

2V (t), can be written as ϕ∗
2S(t) =

βS(λ1(1−γ)+σV ρV ḡ(t))
√

V (t)

(1−γ)(βS+γ) and ϕ∗
2V (t) =

βV (λ2(1−γ)+σV

√
1−ρ2

V ḡ(t))
√

V (t)

(1−γ)(βV +γ) .
12The optimal investment strategy without stochastic salary, denoted u∗

3S(t) and u∗
3O(t), can be writ-

ten as u∗
3S(t) = θ∗3S(t) − OsS(t)+σV ρV Ov

O(t) u∗
3O(t) and u∗

3O(t) =
O(t)θ∗

3V (t)

σV

√
1−ρ2

V Ov

, and the worst-case mea-

sure in this case, denoted ϕ∗
3S(t) and ϕ∗

3V (t), can be written as ϕ∗
3S(t) =

βS(λ1(1−γ)+σV ρV ḡ(t))
√

V (t)

(1−γ)(βS+γ) and

ϕ∗
3V (t) =

βV (λ2(1−γ)+σV

√
1−ρ2

V ḡ(t))
√

V (t)

(1−γ)(βV +γ) .
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and h̄(t) is given by Eq.(32). By derivation, we obtain α2
12 − 4α22α32 ≥ 0.13

Similarly, the following remark provides the optimal investment strategy in the case of

no ambiguity and no stochastic salary.

Remark 3.8. If the pension investor is ambiguity neutral and σL = 0, the salary process

is non-stochastic, and the optimal risk exposure in this case, denoted θ∗5S(t) and θ
∗
5V (t), can

be written as θ∗5S(t) =
λ1+σV ρV ḡ2(t)

γ
(1 + ĥ(t)

Xu∗ (t)
) and θ∗5V (t) =

λ2+σV

√
1−ρ2V ḡ2(t)

γ
(1 + ĥ(t)

Xu∗ (t)
), and

the optimal value function in this case, denoted J5(t, x, v), can be written as J5(t, x, v) =

(x+ĥ(t))1−γ

1−γ
exp(ḡ2(t)v + ĝ2(t)), where ĥ(t), ḡ2(t) and ĝ2(t) are given by Eqs. (37)-(38).14

Furthermore, if there is no salary and no ambiguity in our model, the optimization

problem becomes a portfolio selection problem for an ambiguity-neutral investor; the optimal

risk exposure in this case, denoted θ∗6S(t) and θ
∗
6V (t), can be written as θ∗6S(t) =

λ1+σV ρV ḡ2(t)
γ

and θ∗6V (t) =
λ2+σV

√
1−ρ2V ḡ2(t)

γ
, and the optimal value function in this case, denoted J6(t, x, v),

can be written as J6(t, x, v) = x1−γ

1−γ
exp(ḡ2(t)v + ĝ2(t)), where ḡ2(t) and ĝ2(t) are given by

Eq. (38).15 In this case, the result reduces to that of the optimal portfolio problem in the

case without jumps in Liu and Pan (2003).

4. Optimal investment strategy without a derivative

In this section, to illustrate the significant role of the derivative, we seek the solution to

the case without a derivative and compare it to the result with a derivative.

If there is no derivative security in the financial market, the optimal investment strategy

equals the optimal risk exposure to WS(t), and the surplus process of an ambiguity-averse

13The optimal investment strategy without ambiguity, denoted u∗
4S(t) and u∗

4O(t), can be written as

u∗
4S(t) = θ∗4S(t)−

OsS(t)+σV ρV Ov

O(t) u∗
4O(t) and u∗

4O(t) =
O(t)θ∗

4V (t)

σV

√
1−ρ2

V Ov

. In Eq. (38),

α12 = −κ+
λ1(1− γ)σV ρV

γ
+

λ2(1− γ)σV

√
1− ρ2V

γ
, α22 =

σ2
V

2γ
,

α32 =
(λ2

1 + λ2
2)(1− γ)

2γ
, ν12,22 =

α12 ±
√
α2
12 − 4α2a32

−2α22
.

14The optimal investment strategy when σL = 0 for an ambiguity-neutral pension investor, denoted u∗
5S(t)

and u∗
5O(t), can be written as u∗

5S(t) = θ∗5S(t)−
OsS(t)+σV ρV Ov

O(t) u∗
5O(t) and u∗

5O(t) =
O(t)θ∗

5V (t)

σV

√
1−ρ2

V Ov

.

15The optimal investment strategy without stochastic salary and ambiguity, denoted u∗
6S(t) and u∗

6O(t),

can be written as u∗
6S(t) = θ∗6S(t)−

OsS(t)+σV ρV Ov

O(t) u∗
6O(t) and u∗

6O(t) =
O(t)θ∗

6V (t)

σV

√
1−ρ2

V Ov

.
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pension investor under measure Q becomes

dX Φ̃,ũ(t) = X Φ̃,ũ(t)

[
rdt+ ũ(t)

(
λ1V

Φ̃(t)dt− ϕ̃S(t)
√
V Φ̃(t)dt+

√
V Φ̃(t)dW Φ̃

S (t)

)]
+ξLΦ̃(t)dt,

(39)

where ũ := {ũ(t)}t∈[0,T ], Φ̃ := {ϕ̃(t) := (ϕ̃S(t), ϕ̃V (t))}t∈[0,T ], and the risk exposure equals

the investment strategy, i.e., θ̃S(t) = ũ(t). The optimization problem becomes

sup
ũ∈Π

inf
Φ̃∈Θ

{
EΦ̃
t,x,v,l

[
U(X Φ̃,ũ(T )) +

∫ T

t

(
(ϕ̃S(s))

2

2Ψ̃S(s, x, v, l)
+

(ϕ̃V (s))
2

2Ψ̃V (s, x, v, l)

)
ds

]}
, (40)

and the corresponding HJB equation becomes

sup
ũ∈R

inf
||ϕ̃||≤√

κv

{
Ãϕ̃,ũJ̃(t, x, v, l) +

ϕ̃2
S

2Ψ̃S

+
ϕ̃2
V

2Ψ̃V

}
= 0, (41)

Ψ̃S(t, x, v, l) =
βS

(1− γ)J̃(t, x, v, l)
, Ψ̃V (t, x, v, l) =

βV

(1− γ)J̃(t, x, v, l)
, (42)

with the boundary condition J̃(T, x, v, l) = U(x), where ũ and ϕ̃ = (ϕ̃S, ϕ̃V ) denote the

values that ũ(t) and ϕ̃(t) = (ϕ̃S(t), ϕ̃V (t)) take, respectively, and

Ãϕ̃,ũψ(t, x, v, l) = ψt + [rx+ xũλ1v − xũϕ̃S

√
v + ξl]ψx +

1

2
x2vũ2ψxx

+ [κ(δ − v)− σV
√
vρV ϕ̃S − σV

√
v
√

1− ρ2V ϕ̃V ]ψv +
1

2
σ2
vvψvv

+
[
µLl + lσLλ1vρL − lσL

√
vϕ̃SρL + lσLλ2v

√
1− ρ2L − lσL

√
vϕ̃V

√
1− ρ2L

]
ψl

+
1

2
l2σ2

Lvψll + lσLvσV (ρV ρL +
√

1− ρ2V
√
1− ρ2L)ψlv + xσV ũvρV ψxv + xũlσLvρLψxl.

The following theorem presents the optimal investment strategy and optimal value func-

tion for the DC pension investor without a derivative.

Theorem 4.1. For the robust portfolio choice problem (40) without a derivative, if the

parameters satisfy certain technical conditions, 16 the optimal investment strategy and risk

16The technical conditions are ϕ
3
< κ/σV , where

ϕ
3
, max

{
β2
Sλ

2
1

(βS + γ)2
,
β2
S(λ1(1− γ) + σV ρV ḡ3(0))

2

(1− γ)2(βS + γ)2

}
+max

{
β2
V λ

2
2

(βV + γ)2
,
β2
V (λ2(1− γ) + σV

√
1− ρ2V ḡ3(0))

2

(1− γ)2(βV + γ)2

}
,

(43)

and for ḡ3(t) ∈ [ḡ3(0), 0],

[64(1− γ)2 − 4(1− γ)](m̃(t))2 + 8(1− γ)γ(m̃(t))2 − 8(1− γ)
σV ρḡ3(t)

βS + γ
m̃(t) ≤ κ2

2σ2
V

. (44)

Similar to conditions ϕ < κ/σV and (23), conditions ϕ
3
< κ/σV and (44) are also technical conditions and

easily satisfied.
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exposure are

ũ∗(t) = θ̃∗S(t) = m̃(t)

(
1 + h̄(t)

L(t)

Xu∗(t)

)
− σLρLh̄(t)

L(t)

Xu∗(t)
; (45)

the corresponding optimal value function is

J̃(t, x, v, l) =
(x+ h̄(t)l)1−γ

1− γ
exp(ḡ3(t)v + ĝ3(t)); (46)

and the worst-case measure is given by

ϕ̃∗
S(t) =

βS
√
V (t)(λ1(1− γ) + σV ρV ḡ3(t))

(1− γ)(βS + γ)
, ϕ̃∗

V (t) =
βV
√
V (t)(λ2(1− γ) + σV

√
1− ρ2V ḡ3(t))

(1− γ)(βV + γ)
,

(47)

where {X∗(t)}t∈[0,T ] is the wealth process under the corresponding optimal strategy, and

m̃(t) =
λ1(1− γ) + (1− (βS + γ))σV ρV ḡ3(t)

(1− γ)(βS + γ)
, ḡ3(t) =

ν̃1ν̃2 − ν̃1ν̃2e
α̃2(ν̃1−ν̃2)(T−t)

ν̃2 − ν̃1eα̃2(ν̃1−ν̃2)(T−t)
,

ĝ3(t) =

∫ T

t

[r(1− γ) + κδḡ3(s)] ds, α̃1 = −κ+
λ1(1− (βS + γ))σV ρV

βS + γ
,

α̃2 =
σ2
V

2
− βSσ

2
V ρ

2
V

2(1− γ)
− βV σ

2
V (1− ρ2V )

2(1− γ)
+

(1− (βS + γ))2σ2
V ρ

2
V

2(βS + γ)(1− γ)
,

α̃3 =
λ21(1− γ)

2(βS + γ)
, ν̃1,2 =

α̃1 ±
√
α̃2
1 − 4α̃2α̃3

−2α̃2

,

(48)

and h̄(t) is given by Eq.(32). By derivation, we obtain α̃2
1 − 4α̃2α̃3 ≥ 0.

The proof of Theorem 4.1 is similar to that of Theorem 3.2, and thus, we omit it here.

Theorem 4.2. For problem (40), if there exists a function J̃(t, x, v, l) ∈ C1,2,2,2(O) that is

a solution to the HJB equation (55) with boundary condition J̃(T, x, v, l) = U(x), and the

parameters satisfy conditions (43) and (44), then the optimal value function is J̃(t, x, v, l),

and the optimal strategy is ũ∗ = {ũ∗(t)}t∈[0,T ] given in Theorem 4.1.

The proof of Theorem 4.2 is similar to that of Theorem 3.4, and thus, we omit it here.

From Theorem 4.1, we find that the optimal investment strategy and risk exposure are

both given by Eq. (45). Compared with the former case and optimal exposure to market

return risk (24), the difference lies in the form of m̃(t), particularly, the values of ν1,2 and

ν̃1,2. Here, because the market is incomplete and the investor has only one stock to invest

in and obtains one risk premium, the equity premium λ2 for additional volatility risk is

disappearing; as a result, hedging w.r.t. additional volatility risk is less efficient. This

quantitative influence depends on the chosen parameters of the model, as illustrated in the

following numerical examples. We find that the utility that the pension investor gains is
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substantially improved when investing in the derivative. Similar results are also found in

Escobar et al. (2015). Similar to the case of investment with the derivative, we also provide

some special cases if the pension investor has no access to the derivative in Appendix E.

5. Numerical analysis

In this section, we provide several numerical examples to illustrate the effects of model

parameters on the robust optimal risk exposures and investment strategies. We also illus-

trate the utility improvements by considering ambiguity aversion and derivative trading. To

examine the empirical properties of our results, we fix a set of base-case parameters for our

model (Table 1) using results from existing empirical studies. Details can be referred to Liu

and Pan (2003) and Escobar et al. (2015).17

Table 1: Values of model parameters in the numerical examples.

r κ δ ξ λ1 λ2 µL σL σV γ βS βV

0.05 5 0.132 0.2 4 -6 0.08 0.5 0.25 4 3 1

ρV ρL x l v S K τ T t

-0.4 0.3 1 1 0.152 100 100 0.1 5 0

5.1. Effects of model parameters on risk exposures

Risk exposures θ∗S and θ∗V are independent of the types of options; they have more general

trends and can describe the exposures to risks WS and WV more intuitively. Other corre-

sponding literature also considers the performance of risk exposures; please see Escobar et

al. (2015). Therefore, in this subsection, we first consider the effects of model parameters

on risk exposures.

Figure 1 shows the effects of the ambiguity aversion parameters βS and βV on the optimal

market return risk exposure θ∗S and volatility risk exposure θ∗V , respectively. We find that

the optimal exposure to market return risk θ∗S decreases in βS, consistent with Escobar et

al. (2015). Another main result is that along with increases in βV , the optimal exposure to

17According to Liu and Pan (2003), the empirical properties of the stochastic volatility model are exten-

sively examined using either the time-series data on the S&P 500 index alone (Andersen et al., 2002; Eraker

et al., 2003) or the joint time-series data on the S&P 500 index and options (Chernov and Ghysels, 2000;

Pan, 2002). Because of different sample periods or empirical approaches in those studies, the exact model

estimates may differ from one paper to another. Our chosen model parameters agree with the cases studied

by Liu and Pan (2003) and Escobar et al. (2015).
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volatility risk θ∗V is significantly decreasing (in absolute terms). These results show that in an

ambiguous environment, the investor becomes less aggressive. We now focus on one specific

risk exposure and show how the two ambiguity aversion parameters generate distinct effects

on it. Taking market return risk exposure θ∗S as an example, we find that the stock ambiguity

aversion parameter βS has a relatively larger effect than the volatility ambiguity aversion

parameter βV . This is consistent with the case of volatility risk exposure θ∗V . Compared to

βV (βS), βS (βV ) represents a direct way to affect market return risk exposure (volatility risk

exposure).
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Figure 1: Effects of βS and βV on θ∗S and θ∗V .
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Figure 2: Effects of κ and σV on θ∗S and θ∗V .

Figure 2 shows the effects of the mean-reversion rate κ and volatility coefficient σV on

the optimal market return risk exposure θ∗S and volatility risk exposure θ∗V , respectively. In

the stock return variance process, a smaller mean-reversion rate κ and larger volatility σV

usually imply greater additional volatility risk. As a result, optimal volatility risk exposure

θ∗V decreases with κ and increases with σV (in absolute terms). The case of market return
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risk exposure θ∗S is similar to that of volatility risk exposure, as there is a diversification

effect (benefit from risk diversification).
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Figure 3: Effects of salary parameters µL, σL, ξ and l0 on θ∗S and θ∗V .

Figure 3 shows the effects of the salary parameters, appreciation rate µL, volatility coeffi-

cient σL, contribution rate ξ and initial salary l0 on the optimal market return risk exposure

θ∗S and volatility risk exposure θ∗V , respectively. We find that both θ∗S and θ∗V (in absolute

terms) increase with µL, ξ and l0. When µL, ξ and l0 increase, there will be greater pension

fund accumulation. Therefore the investor prefers to undertake more risks to earn more

profits. In addition, θ∗S decreases with σL and θ∗V (in absolute terms) increases with σL.
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Figure 4: Effects of ρV and ρL on θ∗S and θ∗V .

Figure 4 shows the effects of correlation coefficients ρV and ρL on the optimal market

return risk exposure θ∗S and volatility risk exposure θ∗V , respectively. This figure shows that

θ∗S decreases with ρV and ρL, while θ
∗
V (in absolute terms) increases first and then decreases

with ρV and ρL. This behavior stems from the assumption of our model. Eqs. (24), (28)

and (29) show that ρV and
√

1− ρ2V (ρL and
√

1− ρ2L) reflect the different properties of

a sensitivity analysis for ρV (ρL). ρV (ρL) may be negative or non-negative, and
√

1− ρ2V

(
√

1− ρ2L) is non-negative. Therefore, the risk exposure to WS decreases with ρV and ρL,

and the risk exposure to WV (in absolute terms) decreases with |ρV | and |ρL|.

5.2. Effects of model parameters on investment strategies

In this subsection, to further illustrate the role of derivative on the optimal investment

strategy, we take the straddle option18 as an example to show the effects of model parameters

on investment strategies. From Figures 5-8, we find that the derivative has an important

effect on the investment strategies.

18The straddle is a portfolio comprising a call option and a put option with the same underlying strike

price, time to maturity, and market volatility, and its price is given in Appendix F. We assume that the

initial stock price is 100, and the strike price is chosen in a way that makes the straddle “delta-neutral”. For

details, referred to Liu and Pan (2003) and Cui et al. (2017). We also conduct some numerical examples with

other types of options, such as call options and put options. If the readers are interested, we can provide

our simulation examples. The analysis is similar. To saving space, we do not include these in our paper.
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Figure 5: Effects of βS and βV on u∗
S and u∗

O.

Figure 5 shows the effects of the ambiguity aversion parameters βS and βV on the optimal

proportions invested in stock u∗S and derivative u∗O, respectively. We find that both u∗S and

u∗O (in absolute terms) decrease with βS. Compared to stock investment, the changes in

derivative investment are relatively small. When βS grows larger, the investor becomes more

ambiguity averse to the return of the stock and investment less in the stock. Moreover,

u∗O (in absolute terms) decreases with βV in a similar way. However, u∗S increases with βV .

The reason may be as follows. Ambiguity reduces the volatility risk premium and derivative

investment becomes less attractive to the ambiguous investor, thereby inducing her to invest

more wealth in stock as the result of a substitution effect between the two risky assets.
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Figure 6: Effects of κ and σV on u∗
S and u∗

O.

Figure 6 shows the effects of mean-reversion rate κ and volatility coefficient σV on the

optimal proportions invested in stock u∗S and derivative u∗O, respectively. As κ increases,

both u∗S and u∗O (in absolute terms) decrease. As in our model the correlation ρV is negative,

the uncertainties of the stock price and its volatility change in different ways. Although

V (t) will be stable as κ increases, there is an increased probability of a decrease in the stock
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price. The decrease affects not only the stock investment but also the derivative investment.

Moreover, when κ < 2, the effect of σV on the optimal investment strategies in the stock

and the derivative are not monotone; when κ ≥ 2, u∗S and u∗O (in absolute terms) decrease

as σV increases. We attribute to the fact that the larger σV is, the more risk the stock has.

Therefore the investor will invest less proportion in the stock and hold less opposite position

in the derivative.

Figure 7 shows the effects of the salary parameters, appreciation rate µL, volatility co-

efficient σL, contribution rate ξ and initial salary l0, on the optimal proportions invested in

stock u∗S and derivative u∗O. We find that both u∗S and u∗O (in absolute terms) increase with

µL, ξ and l0: the increasing of µL, ξ and l0 imply that there will be greater pension fund

accumulation, and then the investor prefers to undertake more risks to earn more. In addi-

tion, u∗S decreases with σL and u∗O (in absolute terms) increases with σL. This is because a

larger σL implies greater risk of the salary, which involves more risk into the wealth process.

Therefore the investor would invest less in the stock to reduce the total risk of the wealth

process, while invest more in the derivative to derive an advantage risk-return tradeoff.
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Figure 7: Effects of salary parameters µL, σL, ξ and l0 on u∗
S and u∗

O.
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Figure 8: Effects of ρV and ρL on u∗
S and u∗

O.

Figure 8 shows the effects of correlation coefficients ρV and ρL on the optimal proportions

invested in stock u∗S and derivative u∗O, respectively. On the one hand, both u∗S and uO (in

absolute terms) increase with ρV . When the risks of the financial market become larger,

investor goes longs on more stock and shorts more derivative to reduce the portfolio risk.

On the other hand, both u∗S and uO (in absolute terms) decrease with ρL. Because the risk of

the salary is difficult to reduce from the portfolio of the stock and the derivative; therefore,

the investment in the stock and the derivative will decrease.

5.3. Utility improvement

In this subsection, we study the effects of considering ambiguity aversion and derivative

trading on utility improvement. We focus on two cases of utility improvement for the DC

pension investor. One is the utility improvement delivered by taking ambiguity aversion

into consideration, the other is the utility improvement delivered by allowing the investor to

trade in the derivative.

We define the first type of utility improvement. We calculate it by considering ambiguity

aversion compared with the case in which the ambiguity-averse investor follows an investment

strategy that ignores ambiguity. In particular, we assume that the investor does not adopt

the optimal strategy u∗ = {(u∗S(t), u∗O(t)}t∈[0,T ] given in Theorem 3.2 but instead makes

the decision as if she were ambiguity neutral, i.e., the pension investor follows the strategy

u∗
4 = {(u∗4S(t), u∗4O(t))}t∈[0,T ] given in Remark 3.7. The value function for the pension investor

in this case is defined by

J̄(t, x, v, l) = inf
Φ̄∈Θ

{
EΦ̄

t,x,v,l

[
U(X Φ̄,u∗

4(T )) +

∫ T

t

(
(ϕ̄S(s))

2

2Ψ̄S(s, x, v, l)
+

(ϕ̄V (s))
2

2Ψ̄V (s, x, v, l)

)
ds

]}
,
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where

Ψ̄S(t, x, v, l) =
βS

(1− γ)J̄(t, x, v, l)
, Ψ̄V (t, x, v, l) =

βV
(1− γ)J̄(t, x, v, l)

.

Similar to the above derivation, we derive the optimal value function under the suboptimal

strategy

J̄(t, x, v, l) =
(x+ h̄(t)l)1−γ

1− γ
exp(ḡ9(t)v + ĝ9(t)).

19 (49)

Furthermore, we define the utility improvement by considering the ambiguity aversion

given by

UI1(t, x, v, l) := 1− J(t, x, v, l)

J̄(t, x, v, l)
= 1− exp((ḡ(t)− ḡ9(t))v + ĝ(t)− ĝ9(t)), (50)

where J(t, x, v, l) and J̄(t, x, v, l) are given by Eqs. (26) and (49).

We define the second type of utility improvement. We calculate it by considering deriva-

tive trading compared with the case in which the pension investor has no access to a deriva-

tive. In particular, it is defined by

UI2(t, x, v, l) := 1− J(t, x, v, l)

J̃(t, x, v, l)
= 1− exp((ḡ(t)− ḡ3(t))v + ĝ(t)− ĝ3(t)), (51)

where J(t, x, v, l) and J̃(t, x, v, l) are given by Eqs. (26) and (46).

Remark 5.1. From the expressions of ḡ9(t), ĝ9(t), ḡ3(t), utility improvements UI1 and UI2

are independent of the salary process.

Remark 5.2. Liu and Pan (2003) state that in a setting with no ambiguity, trading in

the derivative can significantly improve the investor’s utility. Here, we further show that

when the investor is ambiguity averse, there is also utility improvement from having access

to the derivatives market. The quantitative improvement is shown in the following numer-

ical examples, which also reveal that the utility improvement delivered by having access to

the derivative is large. This implies that the derivative plays a crucial role in providing

investment opportunities and improving the efficiency of the market.

19In Eq. (49),

ḡ9(t) =
ν̄1ν̄2−ν̄1ν̄2e

ᾱ2(ν̄1−ν̄2)(T−t)

ν̄2−ν̄1eᾱ2(ν̄1−ν̄2)(T−t) , ĝ9(t) =
∫ T

t
[r(1− γ) + κδḡ9(s)] ds,

ᾱ1 = −κ+ (λ1+σV ρV ḡ2(t))(1−(βS+γ))σV ρV

γ +
(λ2+σV

√
1−ρ2

V ḡ2(t))(1−(βV +γ))σV

√
1−ρ2

V

γ ,

ᾱ2 =
σ2
V

2 − βSσ2
V ρ2

V

2(1−γ) − βV σ2
V (1−ρ2

V )
2(1−γ) , ν̄1,2 =

ᾱ1±
√

ᾱ2
1−4ᾱ2ᾱ3

−2ᾱ2
,

ᾱ3 = − (λ1+σV ρV ḡ2(t))
2(1−γ)βS

2γ2 − (λ2+σV

√
1−ρ2

V ḡ2(t))
2(1−γ)βV

2γ2 +
(1−γ)(λ2

1+λ2
2−σ2

V (ḡ2(t))
2)

2γ ,

and h̄(t) and ḡ2(t) are given by Eqs. (32) and (38). After some calculations, we have ᾱ2
1 − 4ᾱ2ᾱ3 ≥ 0.
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Figure 9 shows the effects of the ambiguity aversion parameters βS and βV on utility

improvements. UI1 is the utility improvement from considering ambiguity aversion, and we

find that it increases with the ambiguity aversion parameters βS and βV . Intuitively, when

the investor is more uncertain about the reference model, considering ambiguity aversion

may deliver greater utility improvements. Furthermore, the ambiguity aversions w.r.t. stock

and volatility have different effects on the degree of utility improvement. UI2 is the utility

improvement from trading in the derivative. The effects of βS and βV on UI2 are different

from those on UI1. This shows that when the investor has no access to the derivative, the

effects of βS and βV on UI2 are much less obvious than those on UI1, and even if in the absence

of ambiguity aversion (βS = βV = 0), there is also a high degree of utility improvement for

the investor. The reason is as given above, and we reiterate that it is suboptimal to exclude

the derivative. The derivative completes the market, provides frequent trading and improves

efficiency, which help the investor to pursue good investment performance.
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Figure 9: Effects of βS and βV on utility improvements.

Figure 10 shows the effects of mean-reversion rate κ and volatility coefficient σV on

utility improvements. In the stock return variance process, a larger mean-reversion rate

κ and smaller volatility σV reveal less uncertainty in the variance process. That is, the

investor faces low volatility risk. The utility improvement from either considering ambiguity

aversion UI1 or trading in the derivative UI2 decrease w.r.t. κ and increase w.r.t. σV . When

the investor has low volatility risk, compared with the case in which the investor ignores

ambiguity aversion or has no access to the derivative, the utility improvement is small.20

20This is because there is ambiguity aversion toward the volatility risk and the derivative investment

opportunity exists; as a result, when the volatility risk is low, the investor’s optimal behavior will lead to

less utility improvement than in the case in which volatility risk is high.
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Figure 10: Effects of κ and σV on utility improvements.

Figure 11 shows the effects of the time horizon T and correlation ρV ∈ (−1, 1) on utility

improvements. The figure shows that the utility improvements UI1 and UI2 increase w.r.t.

the time horizon T . When the investor faces a longer investment horizon, she will gain a

greater utility improvement from considering ambiguity aversion or derivative trading. It is

therefore necessary to consider ambiguity aversion and derivative trading in a DC pension

plan over a long investment period. The case of the correlation ρV is interesting. Due to

the specific parametrization of the model, the utility improvements (both UI1 and UI2)

first increase and then decrease in the correlation ρV . Note that when ρV → ±1, two risky

assets are almost fully correlated; then, the role of the derivative is weakened once utility

improvements are relatively small.
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Figure 11: Effects of ρV and T on utility improvements.

6. Conclusion

In this paper, we consider a robust optimal investment problem for a DC pension investor

facing a stochastic salary. The stock price exhibits stochastic volatility, and the investor has
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different levels of uncertainty regarding the diffusion component of the stock and its volatility.

To cope with volatility risk, she is able to invest her wealth in a derivative. We first solve an

optimal investment problem with both ambiguity aversion and a derivative in closed-form

and provide verification theorems to guarantee the validity of the solution. Next, we obtain

the solutions without the derivative, ambiguity, or salary for some interesting special cases.

We also discuss the utility improvements for an investor who considers ambiguity aversion

or has access to the derivative. Finally, we explore several detailed conclusions in numerical

examples.

We find that three factors play significant roles in the optimal investment strategy in

the DC pension plan. The first factor is ambiguity aversion. When an investor experiences

uncertainty concerning her reference model, she usually reduces the exposures to market

return risk and volatility risk. This is because, in an uncertain environment, it is optimal to

adopt a conservative strategy. Moreover, the investor holds opposite positions in stock and

derivative and there are distinct effects of ambiguity on the stock and derivative investments.

The second factor is the derivative. Derivatives have the convenient properties of providing

frequent trading opportunities and improving market efficiency. Investment in derivatives

may deliver a large utility improvement. The third factor is salary. In a DC pension plan,

the salary and the contribution thereof are essential and generate additional wealth for the

investor. More importantly, the salary has an important effect on her investment strategy,

and the investor has a new hedge demand in her portfolio to address salary risk. In the

numerical examples, we verify the results and find that different model parameters generate

distinct properties and that different degrees of ambiguity aversion lead to complicated cases.

It is necessary to determine a more accurate relationship between the key factors; this is an

interesting problem left for future research.
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Appendix A.

Proof of Proposition 2.3. We will use the contraction mapping principle (see Theorem

5.1 in Gilbarg and Trudinger, 2001) to prove the conclusion. (If the mapping T from Banach

space B onto itself satisfies that there exists a constant θ < 1 such that ∥T J1 − T J2∥ ≤

θ∥J1 − J2∥ for all J1, J2 ∈ B, then, there exists a unique solution J ∈ B such that T J = J .)

Restrict the initial state (x, v, l) in a compact set A ⊂ R3, choose a small enough positive

constant δ, defined below, and let B = L∞(B) with B = [T − δ, T ]×A, where L∞(B) is the

space of Borel-measurable functions with norm esssup{|J(t, x, v, l)| : (t, x, v, l) ∈ B}. Next,

we first consider the optimal control problem on the time interval [T − δ, T ]. Fix a function

J ∈ B; then, we denote

ΨJ
S(s, x, v, l) =

βS
(1− γ)J(s, x, v, l)

, ΨJ
V (s, x, v, l) =

βV
(1− γ)J(s, x, v, l)

,

and

Hu;J(t, x, v, l) = inf
Φ∈Θ

EΦ
t,x,v,l

[
U(XΦ,u(T )) +

∫ T

t

(
(ϕS(s))

2

2ΨJ
S(s, x, v, l)

+
(ϕV (s))

2

2ΨJ
V (s, x, v, l)

)
ds

]
subject to (15), (10) and (12).

Consider the optimal control problem

HJ(t, x, v, l) = sup
u∈Π

Hu;J(t, x, v, l), ∀ (t, x, v, l) ∈ B.

It is clear that there exists a unique value function HJ ∈ B (see Yong and Zhou, 1999)

for the above optimal control problem. Thus, we define a mapping T : J → HJ from

B onto itself. Suppose that J1, J2 are two functions in B; then, we compute that for any

Φ ∈ Θ, u ∈ Π,

∥T (J1)− T (J2)∥B = sup
(t,x,v,l)∈B

|HJ1(t, x, v, l)−HJ2(t, x, v, l)|

≤ sup
u∈Π,Φ∈Θ,(t,x,v,l)∈B

∣∣∣∣∣EΦ
t,x,v,l

[∫ T

t

(
(ϕS(s))

2

2ΨJ1
S (s, x, v, l)

+
(ϕV (s))

2

2ΨJ1
V (s, x, v, l)

− (ϕS(s))
2

2ΨJ2
S (s, x, v, l)

− (ϕV (s))
2

2ΨJ2
V (s, x, v, l)

)
ds

]∣∣∣∣∣
≤ 1− γ

2
sup

Φ∈Θ,(t,x,v,l)∈B
EΦ

[∫ T

T−δ

|(J1 − J2)(s, x, v, l)|
(

(ϕS(s))
2

βS
+

(ϕV (s))
2

βV

)
ds

]

≤ (1− γ)∥J1 − J2∥B
2min{βS, βV }

sup
Φ∈Θ

EΦ

[ ∫ T

T−δ

||ϕ(s)||2 ds
]
. (52)
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It is not difficult to compute that

sup
Φ∈Θ

EΦ

[ ∫ T

T−δ

||ϕ(s)||2 ds
]
= sup

Φ∈Θ
E

[
ΛΦ(T )

∫ T

T−δ

||ϕ(s)||2 ds
]

= sup
Φ∈Θ

E

[ [
ΛκΦ/κσV (T )

]κσV /κ

exp

{
κ− κσV
2κσV

∫ T

0

||ϕ(s)||2 ds
}∫ T

T−δ

||ϕ(s)||2 ds
]

≤ sup
Φ∈Θ

κ2E

[ [
ΛκΦ/κσV (T )

]κσV /κ

exp

{
κ(κ− κσV )

2σV

∫ T

0

V (s) ds

}∫ T

T−δ

V (s) ds

]

≤ sup
Φ∈Θ

κ2 E
[
ΛκΦ/κσV (T )

]κσV /κ
E

[
exp

{
κ2

2σ2
V

∫ T

0

V (s) ds

}]κσV (κ−κσV )/κ2

E

[ ∫ T

T−δ

(V (s))κ
2/(κ−κσV )2 ds

](κ−κσV )2/κ2

δ1−(κ−κσV )2/κ2

, (53)

where we used Assumption (iii) in footnote 6 in the first equality and Holder’s inequality in

the second inequality.

From Theorem 5.1 in Taksar and Zeng (2009), we conclude that

E

[
exp

(
κ2

2κ2σ2
V

∫ T

0

||ϕ(s)||2ds
)]

≤ E

[
exp

(
κ2

2σ2
V

∫ T

0

V (s)ds

)]
<∞,

and ΛκΦ/κσV is an exponential martingale. Moreover, the regularity result for SDE implies

that

E

[ ∫ T

0

(V (s))κ
2/(κ−κσV )2 ds

]
< +∞.

Thus, combining (52) and (53), we can choose a small enough δ > 0 such that

sup
Φ∈Θ

EΦ

[ ∫ T

T−δ

||ϕ(s)||2 ds
]
≤ min{βS, βV }

1− γ
,

and

∥T (J1)− T (J2)∥B ≤ 1

2
∥J1 − J2∥B.

Hence, the mapping T is a contraction mapping. According to the contraction mapping

principle, the mapping T has a unique fixed point. This means that there exists a unique

value function H(t, x, v, l) of the optimal control problem if t ∈ [T − δ, T ] and (x, v, l) ∈ A,

which consists of (18), (19) and (20) subject to (15), (10) and (12).

Next, we extend the result into the total time interval [ 0, T ]. Suppose that we have

proven that there exists a unique value function H(t, x, v, l) of the optimal control problem

if t ∈ [ T̂ , T ] and (x, v, l) ∈ A.

Then, we choose a small enough positive number δ such that

sup
Φ∈Θ

EΦ

[∫ T̂

T̂−δ

||ϕ(s)||2 ds

]
=

min{βS, βV }
1− γ

.
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Moreover, let B = L∞(B) with B = [ T̂ − δ, T̂ ]× A. Fix a function J ∈ B; then, we denote

ΨJ
S(s, x, v, l) =

βS
(1− γ)J(s, x, v, l)I{s∈[ T̂−δ,T̂ ]} + (1− γ)H(s, x, v, l)I{s∈(T̂ ,T ]}

,

ΨJ
V (s, x, v, l) =

βV
(1− γ)J(s, x, v, l)I{s∈[ T̂−δ,T̂ ]} + (1− γ)H(s, x, v, l)I{s∈(T̂ ,T ]}

,

and

Hu;J(t, x, v, l) = inf
Φ∈Θ

EΦ
t,x,v,l

[
U(XΦ,u(T )) +

∫ T

t

(
(ϕS(s))

2

2ΨJ
S(s, x, v, l)

+
(ϕV (s))

2

2ΨJ
V (s, x, v, l)

)
ds

]
subject to (15), (10) and (12).

Consider the optimal control problem

HJ(t, x, v, l) = sup
u∈Π

Hu;J(t, x, v, l), ∀ (t, x, v, l) ∈ B.

Repeating the same argument as above, we can prove that there exists a unique value

function H(t, x, v, l) of the optimal control problem if (t, x, v, l) ∈ B. Repeating the same

argument in the domain [T − 2δ, T − δ ] × A, [T − 3δ, T − 2δ ] × A, · · ·, we can prove that

there exists a unique value function H(t, x, v, l) of the optimal control problem if (t, x, v, l) ∈

[ 0, T ] × A. Since the set A is arbitrary, and the compatibility in different compact sets is

obvious, then we have proven that there exists a unique value function H(t, x, v, l) of the

optimal control problem for any (t, x, v, l) ∈ [ 0, T ]× R3. �

Appendix B.

Proof of Proposition 3.1. We know that ΨS(t, x, v, l), ΨV (t, x, v, l) in Proposition 2.3 are

ΨJ
S(t, x, v, l), Ψ

J
V (t, x, v, l), respectively. Consider the optimal control problem

HJ(t, x, v, l) = sup
u∈Π

inf
Φ∈Θ

EΦ
t,x,v,l

[
U(XΦ,u(T )) +

∫ T

t

g(s, x, v, l, ϕS, ϕV ) ds

]
subject to (15), (10) and (12) for any (t, x, v, l) ∈ O, where

g(s, x, v, l, ϕS, ϕV ) =
ϕ2
S

2ΨJ
S(s, x, v, l)

+
ϕ2
V

2ΨJ
V (s, x, v, l)

.

Note that in this optimal control problem, J in ΨJ
S and ΨJ

V is the given function in as-

sumptions rather than the value function. Thus, g is a given function w.r.t. (s, x, v, l, ϕ),

independent of the value function HJ , and the optimal control problem is standard.

Repeating a proof similar to that in Theorem 3.2 in Mataramvura and Øksendal (2008),

we deduce that J is the value function of the above optimal control problem. Since the
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value function and J in ΨJ
S and ΨJ

V are the same, J is the value function of the optimal

control problem, consisting of (18), (19) and (20) subject to (15), (10) and (12). Thus, by

Proposition 2.3, the uniqueness of the value function implies that H(t, x, v, l) = J(t, x, v, l)

for any (t, x, v, l) ∈ O, and (u∗,Φ∗) is an optimal control. �

Appendix C.

Proof of Theorem 3.2. According to the first-order optimality conditions, the functions

ϕ∗
S and ϕ∗

V , which realize the infimum part of Eq. (21), are given by

ϕ∗
S =

βS
√
v

(1− γ)J
[xθSJx + σV ρJv + lσLρLJl] ,

ϕ∗
V =

βV
√
v

(1− γ)J

[
xθV Jx + σV

√
1− ρ2LJv + lσL

√
1− ρ2Jl

]
.

(54)

Substituting Eq. (54) into Eq. (21), we have

Jt + (rx+ xθSλ1v + xθV λ2v + ξl)Jx + κ(δ − v)Jv + (µLl + lσLλ1vρL + lσLλ2v
√

1− ρ2L)Jl

+
1

2
x2v(θ2S + θ2V )Jxx +

1

2
σ2
V vJvv +

1

2
l2σ2

LvJll + (xσV θSvρV + xσV θV v
√
1− ρ2V )Jxv

+(xθSlσLvρL + xθV lσLv
√

1− ρ2L)Jxl + lσLvσV (ρV ρL +
√

1− ρ2V
√

1− ρ2L)Jlv

− βSv

2(1− γ)J
[xθSJx + σV ρV Jv + lσLρLJl]

2

− βV v

2(1− γ)J
[xθV Jx + σV

√
1− ρ2V Jv + lσL

√
1− ρ2LJl]

2 = 0.

(55)

Differentiating Eq. (55) w.r.t. (θS, θV ) implies

θ∗S =
λ1Jx − βS

(1−γ)J
(σV ρV JxJv + lσLρLJxJl) + σV ρV Jxv + lσLρLJxl

x
[

βS

(1−γ)J
J2
x − Jxx

] ,

θ∗V =
λ2Jx − βV

(1−γ)J
(σV
√

1− ρ2V JxJv + lσL
√

1− ρ2LJxJl) + σV
√
1− ρ2V Jxv + lσL

√
1− ρ2LJxl

x
[

βV

(1−γ)J
J2
x − Jxx

] .

(56)
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Plugging Eq. (56) into Eq. (55) implies

Jt + (rx+ ξl)Jx + κ(δ − v)Jv + (µLl + lσLλ1vρL + lσLλ2v
√

1− ρ2L)Jl +
1

2
σ2
V vJvv +

1

2
l2σ2

LvJll

+lσLvσV (ρV ρL +
√
1− ρ2V

√
1− ρ2L)Jlv −

βSv

2(1− γ)J
(σ2

V ρ
2
V J

2
v + l2σ2

Lρ
2
LJ

2
l + 2σV σLρV ρLlJvJl)

− βV v

2(1− γ)J

(
σ2
V (1− ρ2V )J

2
v + l2σ2

L(1− ρ2L)J
2
l + 2σV σL

√
1− ρ2V

√
1− ρ2LlJvJl

)

+
v
[
λ1Jx − βS

(1−γ)J
(σV ρV JxJv + lσLρLJxJl) + σV ρV Jxv + lσLρLJxl

]2
2
[

βS

(1−γ)J
J2
x − Jxx

]
+
v[λ2Jx − βV

(1−γ)J
(σV
√

1− ρ2V JxJv + lσL
√

1− ρ2LJxJl) + σV
√

1− ρ2V Jxv + lσL
√

1− ρ2LJxl]
2

2
[

βV

(1−γ)J
J2
x − Jxx

] = 0.

(57)

To solve Eq. (57), we attempt to conjecture the solution in the following form:

J(t, x, v, l) =
(x+ h(t, l))1−γ

1− γ
g(t, v), h(T, l) = 0, g(T, v) = 1, (58)

the partial derivatives of which are

Jt = gt
(x+ h)1−γ

1− γ
+ g(x+ h)−γht, Jx = g(x+ h)−γ, Jxx = −γg(x+ h)−γ−1,

Jv = gv
(x+ h)1−γ

1− γ
, Jvv = gvv

(x+ h)1−γ

1− γ
, Jl = g(x+ h)−γhl, Jlv = gv(x+ h)−γhl

Jll = −γg(x+ h)−γ−1h2l + g(x+ h)−γhll, Jxv = gv(x+ h)−γ, Jxl = −γg(x+ h)−γ−1hl.

(59)

Substituting Eqs. (58)-(59) into Eq. (57), we have

gt
(x+ h)1−γ

1− γ
+ g(x+ h)−γht + rxg(x+ h)−γ + ξlg(x+ h)−γ + κ(δ − v)gv

(x+ h)1−γ

1− γ

+(µLl + lσLλ1vρL + lσLλ2v
√

1− ρ2L)g(x+ h)−γhl +
1

2
σ2
V vgvv

(x+ h)1−γ

1− γ

+
1

2
l2σ2

Lv[−γg(x+ h)−γ−1h2l + g(x+ h)−γhll] + lσLvσV (ρV ρL +
√

1− ρ2V
√

1− ρ2L)gv(x+ h)−γhl

−βSv
2g

[
σ2
V ρ

2
V g

2
v

(x+ h)1−γ

(1− γ)2
+ l2σ2

Lρ
2
Lg

2(x+ h)−γ−1h2l + 2σLσV ρV ρLlgv
(x+ h)−γ

1− γ
ghl

]
−βV v

2g

[
σ2
V (1− ρ2V )g

2
v

(x+ h)1−γ

(1− γ)2
+ l2σ2

L(1− ρ2L)g
2(x+ h)−γ−1h2l

+2σLσV
√

1− ρ2V
√

1− ρ2Llgv
(x+ h)−γ

1− γ
ghl

]

+
v
[
λ1g(x+ h)−γ + 1−(βS+γ)

1−γ
σV ρV gv(x+ h)−γ − (βS + γ)lσLρLg(x+ h)−γ−1hl

]2
2(βS + γ)g(x+ h)−γ−1

+
v
[
λ2g(x+ h)−γ + 1−(βV +γ)

1−γ
σV
√
1− ρ2V gv(x+ h)−γ − (βV + γ)lσL

√
1− ρ2Lg(x+ h)−γ−1hl

]2
2(βV + γ)g(x+ h)−γ−1

= 0.

(60)
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Furthermore, let

g(t, v) = eḡ(t)v+ĝ(t), ḡ(T ) = ĝ(T ) = 0,

h(t, l) = h̄(t)l + ĥ(t), h̄(T ) = ĥ(T ) = 0.

(61)

Then,

gt = g(ḡtv + ĝt), gv = gḡ, gvv = gḡ2, ht = h̄tl + ĥt, hl = h̄, hll = 0. (62)

Inserting Eqs. (61)-(62) into Eq. (60) implies

x+ h

1− γ

{
v

[
ḡt +

(
−κ+

λ1(1− (βS + γ))σV ρ

βS + γ
+
λ2(1− (βV + γ))σV

√
1− ρ2

βV + γ

)
ḡ

+

(
σ2
V

2
− βSσ

2
V ρ

2

2(1− γ)
− βV σ

2
V (1− ρ2)

2(1− γ)
+

(1− (βS + γ))2σ2
V ρ

2

2(βS + γ)(1− γ)
+

(1− (βV + γ))2σ2
V (1− ρ2)

2(βV + γ)(1− γ)

)
ḡ2

+
λ21(1− γ)

2(βS + γ)
+
λ22(1− γ)

2(βV + γ)

]
+ ĝt + r(1− γ) + κδḡ

}
+ l
{
h̄t + (µL − r)h̄+ ξ

}
+ ĥt − rĥ = 0.

(63)

By separating the variables with and without x, v and l, we can derive the following equa-

tions:

ḡt +

(
−κ+

λ1(1− (βS + γ))σV ρ

βS + γ
+
λ2(1− (βV + γ))σV

√
1− ρ2

βV + γ

)
ḡ

+

(
σ2
V

2
− βSσ

2
V ρ

2

2(1− γ)
− βV σ

2
V (1− ρ2)

2(1− γ)
+

(1− (βS + γ))2σ2
V ρ

2

2(βS + γ)(1− γ)
+

(1− (βV + γ))2σ2
V (1− ρ2)

2(βV + γ)(1− γ)

)
ḡ2

+
λ21(1− γ)

2(βS + γ)
+
λ22(1− γ)

2(βV + γ)
= 0,

ĝt + r(1− γ) + κδḡ = 0,

h̄t + (µL − r)h̄+ ξ = 0, ĥt − rĥ = 0.

Considering the boundary conditions, we have

ḡ(t) =
ν1ν2 − ν1ν2e

α2(ν1−ν2)(T−t)

ν2 − ν1eα2(ν1−ν2)(T−t)
, ĝ(t) =

∫ T

t

[r(1− γ) + κδg1(s)] ds,

h̄(t) =
ξ

µL − r
(e(µL−r)(T−t) − 1), ĥ(t) = 0,

(64)

where

α1 = −κ+
λ1(1− (βS + γ))σV ρ

βS + γ
+
λ2(1− (βV + γ))σV

√
1− ρ2

βV + γ
,

α2 =
σ2
V

2
− βSσ

2
V ρ

2

2(1− γ)
− βV σ

2
V (1− ρ2)

2(1− γ)
+

(1− (βS + γ))2σ2
V ρ

2

2(βS + γ)(1− γ)
+

(1− (βV + γ))2σ2
V (1− ρ2)

2(βV + γ)(1− γ)
,

α3 =
λ21(1− γ)

2(βS + γ)
+
λ22(1− γ)

2(βV + γ)
,

ν1,2 =
α1 ±

√
α2
1 − 4α2α3

−2α2

.
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Substituting ḡ(t), ĝ(t), h̄(t) and ĥ(t) into Eqs. (54) and (56), we can derive θ∗S(t), θ
∗
V (t),

ϕ∗
S(t) and ϕ

∗
V (t).

As βS, βV > 0, γ > 1, we have α2 > 0 and α3 < 0. By calculations, we obtain

α2 =
σ2
V

2
− βSσ

2
V ρ

2

2(1− γ)
− βV σ

2
V (1− ρ2)

2(1− γ)
+

(1− (βS + γ))2σ2
V ρ

2

2(βS + γ)(1− γ)
+

(1− (βV + γ))2σ2
V (1− ρ2)

2(βV + γ)(1− γ)
,

=
σ2
V

2
− βSσ

2
V ρ

2

2(1− γ)
− βV σ

2
V (1− ρ2)

2(1− γ)
+

σ2
V ρ

2

2(βS + γ)(1− γ)
− σ2

V ρ
2

1− γ
+

(βS + γ)σ2
V ρ

2

2(1− γ)

+
σ2
V (1− ρ2)

2(βV + γ)(1− γ)
− σ2

V (1− ρ2)

1− γ
+

(βV + γ)σ2
V (1− ρ2)

2(1− γ)
,

=
σ2
V

2
+

σ2
V ρ

2

2(βS + γ)(1− γ)
+

σ2
V (1− ρ2)

2(βV + γ)(1− γ)
− σ2

V

1− γ
+

γσ2
V

2(1− γ)
.

As γ > 1, we have

σ2
V ρ

2

2(βS + γ)(1− γ)
+

σ2
V (1− ρ2)

2(βV + γ)(1− γ)
>

σ2
V ρ

2

2(1− γ)
+
σ2
V (1− ρ2)

2(1− γ)
=

σ2
V

2(1− γ)
.

Therefore,

α2 >
σ2
V

2
+

σ2
V

2(1− γ)
− σ2

V

1− γ
+

γσ2
V

2(1− γ)
= 0.

Because α3 < 0, α2
1 − 4α2α3 > 0. The proof of Theorem 3.2 is completed.

Appendix D

This appendix mainly provides the proof of Theorem 3.4. Before giving the proof, we

present some lemmas, which are used in the proof of Theorem 3.4.

Lemma D.1. ḡ(t) given by Eq. (30) is an increasing function of t and ḡ(t) ≤ 0, ∀t ∈ [0, T ].

Proof. The direct calculation shows that

ḡt(t) =
−ν1ν2(ν1 − ν2)

2α2e
α2(ν1−ν2)(T−t)

(ν2 − ν1eα2(ν1−ν2)(T−t))2
.

It is obvious that ν2 > 0 > ν1 and α2 > 0, which implies ḡt(t) > 0, i.e., ḡ(t) is an increasing

function of t. As ḡ(T ) = 0, then ḡ(t) ≤ 0, ∀t ∈ [0, T ].

In Theorem 3.2, we have already derived the optimal risk exposure and the optimal

investment strategy. However, we should guarantee that the Radon-Nikodym derivative

Λ∗(t) of Q w.r.t. P corresponding to the optimal worst-case scenario drifts ϕ∗
S(t) and ϕ

∗
V (t),

i.e., the expression Λ(t) with ϕ∗
S(t), ϕ

∗
V (t) instead of ϕS(t) and ϕV (t), is indeed a P-martingale,

which ensures a well-defined Q∗. The following lemma states sufficient conditions for this

scenario based on Novikov’s condition and Theorem 5.1 in Taksar and Zeng (2009).

39



Lemma D.2. Novikov’s condition

E

[
exp

(∫ T

0

(
1

2
(ϕ∗

S(s))
2 +

1

2
(ϕ∗

V (s))
2

)
ds

)]
<∞

holds for ϕ∗
S(t) and ϕ

∗
V (t) if the parameters satisfy that for ∀ḡ(t) ∈ [ḡ(0), 0],

β2
S(λ1(1− γ) + σV ρV ḡ(t))

2

(1− γ)2(βS + γ)2
+
β2
V (λ2(1− γ) + σV

√
1− ρ2V ḡ(t))

2

(1− γ)2(βV + γ)2
<
κ2

σ2
V

. (65)

Proof. From Theorem 3.2, we have

ϕ∗
S(t) =

βS
√
V (t)(λ1(1− γ) + σV ρV ḡ(t))

(1− γ)(βS + γ)
, ϕ∗

V (t) =
βV
√
V (t)(λ2(1− γ) + σV

√
1− ρ2V ḡ(t))

(1− γ)(βV + γ)
.

Then

E

[
exp

(∫ T

0

(
1

2
(ϕ∗

S(s))
2 +

1

2
(ϕ∗

V (s))
2

)
ds

)]
= E

[
exp

(∫ T

0

(
β2
S(λ1(1− γ) + σV ρḡ(s))

2

2(1− γ)2(βS + γ)2
+
β2
V (λ2(1− γ) + σV

√
1− ρ2ḡ(s))2

2(1− γ)2(βV + γ)2

)
V (t)ds

)]
.

With condition (65), we can verify that Φ∗ := {ϕ∗(t) := (ϕ∗
S(t), ϕ

∗
V (t))}t∈[0,T ] satisfies

Novikov’s condition as follows.

E

[
exp

(
1

2

∫ T

0

||ϕ∗(s)||2ds
)]

= E

[
exp

(∫ T

0

(
1

2
(ϕ∗

S(s))
2 +

1

2
(ϕ∗

V (s))
2

)
ds

)]
≤ E

[
exp

(
κ2

2σ2
V

∫ T

0

V (s)ds

)]
<∞.

The first estimate follows from condition (65) because of the property of quadratic functions,

and the second is from Theorem 5.1 in Taksar and Zeng (2009).

To verify condition (4) in Proposition 3.1, we present another lemma.

Lemma D.3. For problem (18), if J(t, x, v, l) is the solution to the HJB equation (21) and

the parameters satisfy that for ḡ(t) ∈ [ḡ(0), 0],

[64(1− γ)2 − 4(1− γ)][(m(t))2 + (n(t))2] + 8(1− γ)A(t) ≤ κ2

2σ2
V

, (66)

we have

EΦ∗

[
sup

t∈[0,T ]

|J(t,XΦ∗,u∗
(t), V (t), L(t))|4

]
<∞,

and

EΦ∗

[
sup

t∈[0,T ]

∣∣∣∣ (ϕ∗
S(t))

2

2ΨS(t,XΦ∗,u∗(t), V (t), L(t))
+

(ϕ∗
V (t))

2

2ΨV (t,XΦ∗,u∗(t), V (t), L(t))

∣∣∣∣2
]
<∞,

where

A(t) = γ(m(t))2 − σV ρV ḡ(t)m(t) + γ(n(t))2 − σV
√
1− ρ2V ḡ(t)n(t), (67)

and m(t), n(t) are given by Eqs. (28) and (29).
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Proof. Step 1. Proof of EΦ∗ [
supt∈[0,T ] |J(t,XΦ∗,u∗

(t), V (t), L(t))|4
]
<∞.

Substituting Eqs. (24) and (27) into Eq. (15), we have

d(XΦ∗,u∗
(t) + h̄(t)L(t))

XΦ∗,u∗ + h̄(t)L(t)
= (r + A(t)V (t))dt+m(t)

√
V (t)dWΦ∗

S (t) + n(t)
√
V (t)dWΦ∗

V (t),

(68)

where m(t), n(t) and A(t) are given by Eqs. (28), (29) and (67). It is easy to obtain that

Eq. (68) has a unique positive solution

XΦ∗,u∗
(t) + h̄(t)L(t) = (x0 + h̄(0)l0) exp

{∫ t

0

rds+

∫ t

0

(
A(s)− 1

2
(m(s))2 − 1

2
(n(s))2

)
︸ ︷︷ ︸

Ā(s)

V (s)ds

+

∫ t

0

m(s)
√
V (s)dWΦ∗

S (s) +

∫ t

0

n(s)
√
V (s)dWΦ∗

V (s)

}
.

Because

J(t,XΦ∗,u∗
(t), V (t), L(t)) =

(XΦ∗,u∗
(t) + h̄(t)L(t))1−γ

1− γ
exp(ḡ(t)V (t) + ĝ(t)),

ḡ(t) ∈ [ḡ(0), 0], and ĝ(t) is bounded, we obtain the following estimate with the appropriate

constant K1 > 0,

|J(t,XΦ∗,u∗
(t), V (t), L(t))|4 =

∣∣∣∣(XΦ∗,u∗
(t) + h̄(t)L(t))1−γ

1− γ
exp(ḡ(t)V (t) + ĝ(t))

∣∣∣∣4
≤ K1

∣∣∣∣(XΦ∗,u∗
(t) + h̄(t)L(t))1−γ

∣∣∣∣4.
Next, we focus on |(XΦ∗,u∗

(t) + h̄(t)L(t))1−γ|4.∣∣∣∣(XΦ∗,u∗
(t) + h̄(t)L(t))1−γ

∣∣∣∣4
≤ K2 exp

{∫ t

0

4(1− γ)Ā(s)V (s)ds+

∫ t

0

4(1− γ)m(s)
√
V (s)dWΦ∗

S (s)

+

∫ t

0

4(1− γ)n(s)
√
V (s)dWΦ∗

V (s)

}
= K2 exp

{∫ t

0

[
32(1− γ)2(m(s))2 + 32(1− γ)2(n(s))2 + 4(1− γ)Ā(s)

]
V (s)ds

}
︸ ︷︷ ︸

F1(t)

· exp
{∫ t

0

− 32(1− γ)2(m(s))2V (s)ds+

∫ t

0

4(1− γ)m(s)
√
V (s)dWΦ∗

S (s)

}
︸ ︷︷ ︸

F2(t)

· exp
{∫ t

0

− 32(1− γ)2(n(s))2V (s)ds+

∫ t

0

4(1− γ)n(s)
√
V (s)dWΦ∗

V (s)

}
︸ ︷︷ ︸

F3(t)

,
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where K2 is a constant. For the term F2(t), we can find an estimate as

EΦ∗
[(F2(t))

4]

= EΦ∗
[
exp

(∫ t

0

− 128(1− γ)2(m(s))2V (s)ds+

∫ t

0

16(1− γ)m(s)
√
V (s)dWΦ∗

S (s)

)]
<∞.

Because (F2(t))
4 is a non-negative local martingale, it is a supermartingale. In fact, (F2(t))

4

is a martingale due to bounded function 16(1 − γ)m(t) on [0, T ] (see Lemma 4.3 in Taksar

and Zeng, 2009). Similarly, we have EΦ∗
[(F3(t))

4] <∞, and (F3(t))
4 is also a martingale.

For the term F1(t), we estimate EΦ∗
[(F1(t))

2] as

EΦ∗
[(F1(t))

2] = EΦ∗
[
exp

(∫ t

0

(
64(1− γ)2(m(s))2 + 64(1− γ)2(n(s))2 + 8(1− γ)Ā(s)

)
V (s)ds

)]
.

Again applying Theorem 5.1 in Taksar and Zeng (2009), we obtain EΦ∗
[(F1(t))

2] <∞ if for

ḡ(t) ∈ [ḡ(0), 0], the following condition holds:

64(1− γ)2(m(s))2 + 64(1− γ)2(n(s))2 + 8(1− γ)Ā(s) ≤ κ2

2σ2
V

,

i.e.,

[64(1− γ)2 − 4(1− γ)][(m(s))2 + (n(s))2] + 8(1− γ)A(s) ≤ κ2

2σ2
V

.

Applying the Cauchy-Schwartz inequality, we can arrive at

EΦ∗ |J(t,XΦ∗,u∗
(t), V (t), L(t))|4 ≤ K3E

Φ∗ [|(XΦ∗,u∗
(t) + h̄(t)L(t))1−γ|4

]
≤ K4E

Φ∗
[F1(t)F2(t)F3(t)]

≤ K4

{
EΦ∗

[(F1(t))
2]EΦ∗

[(F2(t)F3(t))
2]
} 1

2

≤ K4

{
EΦ∗

[F1(t)
2](EΦ∗

[(F2(t))
4]EΦ∗

[(F3(t))
4])

1
2

} 1
2
<∞,

where K3 and K4 are appropriate positive constants.

Step 2. Proof of EΦ∗
[
supt∈[0,T ] |

(ϕ∗
S(t))

2

2ΨS(t,XΦ∗,u∗ (t),V (t),L(t))
+

(ϕ∗
V (t))2

2ΨV (t,XΦ∗,u∗ (t),V (t),L(t))
|2
]
< ∞.

Inserting Eq. (20) into EΦ∗
[
supt∈[0,T ] |

(ϕ∗
S(t))

2

2ΨS(t,XΦ∗,u∗ (t),V (t),L(t))
+

(ϕ∗
V (t))2

2ΨV (t,XΦ∗,u∗ (t),V (t),L(t))
|2
]
yields

EΦ∗

[
sup

t∈[0,T ]

∣∣∣∣ (ϕ∗
S(t))

2

2ΨS(t,XΦ∗,u∗(t), V (t), L(t))
+

(ϕ∗
V (t))

2

2ΨV (t,XΦ∗,u∗(t), V (t), L(t))

∣∣∣∣2
]

= EΦ∗

[
sup

t∈[0,T ]

∣∣∣∣(1− γ)J(t,XΦ∗,u∗
(t), V (t), L(t))(ϕ∗

S(t))
2

2βS

+
(1− γ)J(t,XΦ∗,u∗

(t), V (t), L(t))(ϕ∗
V (t))

2

2βV

∣∣∣∣2
]

≤ EΦ∗

[
sup

t∈[0,T ]

∣∣∣∣(1− γ)(ϕ∗
S(t))

2

2βS
+

(1− γ)(ϕ∗
V (t))

2

2βV

∣∣∣∣2|J(t,XΦ∗,u∗
(t), V (t), L(t))|2

]

≤ EΦ∗

[
sup

t∈[0,T ]

∣∣∣∣(1− γ)(ϕ∗
S(t))

2

2βS
+

(1− γ)(ϕ∗
V (t))

2

2βV

∣∣∣∣4
] 1

2

EΦ∗

[
sup

t∈[0,T ]

|J(t,XΦ∗,u∗
(t), V (t), L(t))|4

] 1
2

<∞.
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Based on Lemmas D.2 and D.3, we can prove the verification theorem.

Proof of Theorem 3.4. Following the process of solving the HJB equation, conditions

(1) and (2) of the admissible strategy hold, and condition (3) of the admissible strategy can

be obtained by EΦ∗ [
supt∈[0,T ] |J(t,XΦ∗,u∗

(t), V (t), L(t))|4
]
< ∞ in Lemma D.3. Thus, u∗ is

an admissible strategy. For Lemmas D.2 and D.3, we can simply apply Proposition 3.1 to

prove that u∗ is the optimal strategy for problem (18) and J(t, x, v, l) is the corresponding

optimal value function.

Appendix E

This appendix provides some special cases when the pension investor has no access to

the derivative.

Remark E.1. We present several special cases to show the relationships between ũ∗(t)

and βS, βV and γ. It is obvious that the effect of σL on ũ∗(t) depends on the value of ρL.

When ρL = 0, the optimal investment strategy in this case, denoted ũ∗1(t), can be written

as ũ∗1(t) = m̃1(t)
(
1 + h̄(t) L(t)

Xu∗ (t)

)
, and the optimal value function in this case, denoted

J̃1(t, x, v, l), can be written as J̃1(t, x, v, l) =
(x+h̄(t)l)1−γ

1−γ
exp(ḡ4(t)v + ĝ4(t)), where

m̃1(t) =
λ1(1− γ) + (1− (βS + γ))σV ρV ḡ3(t)

(1− γ)(βS + γ)
, ḡ4(t) =

ν̃11ν̃21 − ν̃11ν̃21e
α̃21(ν̃11−ν̃21)(T−t)

ν̃21 − ν̃11eα̃21(ν̃11−ν̃21)(T−t)
,

ĝ4(t) =

∫ T

t

[r(1− γ) + κδḡ4(s)] ds, α̃11 = −κ+
λ1(1− (βS + γ))σV ρV

βS + γ
,

α̃21 =
σ2
V

2
− βSσ

2
V ρ

2
V

2(1− γ)
− βV σ

2
V (1− ρ2V )

2(1− γ)
+

(1− (βS + γ))2σ2
V ρ

2
V

2(βS + γ)(1− γ)
,

α̃31 =
λ21(1− γ)

2(βS + γ)
, ν̃11,21 =

α̃11 ±
√
α̃2
11 − 4α̃21α̃31

−2α̃21

,

and h̄(t) is given by Eq. (32). By derivation, we obtain α̃2
11 − 4α̃21α̃31 ≥ 0. As h̄(t) > 0,

ḡ4(t) < 0, ρV = 0 and γ > 1, following simple calculations, we have
∂ũ∗

1(t)

∂(βS+γ)
< 0, which

implies that the optimal investment strategy decreases w.r.t. aversion to ambiguity and

risk in some cases. This result is intuitive and similar to the case involving the derivative.

When ρL = 1, the optimal investment strategy in this case, denoted ũ∗2(t), can be written

as ũ∗2(t) = m̃(t)
(
1 + h̄(t) L(t)

Xu∗ (t)

)
− σLh̄(t)

L(t)

Xu∗ (t)
, and the optimal value function in this case,
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denoted J̃2(t, x, v, l), can be written as J̃2(t, x, v, l) =
(x+h̄(t)l)1−γ

1−γ
exp(ḡ5(t)v + ĝ5(t)), where

ḡ5(t) =
ν̃12ν̃22 − ν̃12ν̃22e

α̃22(ν̃12−ν̃22)(T−t)

ν̃22 − ν̃12eα̃22(ν̃12−ν̃22)(T−t)
,

ĝ5(t) =

∫ T

t

[r(1− γ) + κδḡ5(s)] ds,

α̃12 = −κ+
λ1(1− (βS + γ))σV

βS + γ
,

α̃22 =
σ2
V

2
− βSσ

2
V

2(1− γ)
+

(1− (βS + γ))2σ2
V

2(βS + γ)(1− γ)
,

α̃32 =
λ21(1− γ)

2(βS + γ)
, ν̃12,22 =

α̃12 ±
√
α̃2
12 − 4α̃22α̃32

−2α̃22

,

and h̄(t) is given by Eq. (32). By derivation, we obtain α̃2
12 − 4α̃22α̃32 ≥ 0. When ρL =

−1, the optimal investment strategy in this case, denoted ũ∗3(t), can be written as ũ∗3(t) =

m̃(t)
(
1 + h̄(t) L(t)

Xu∗ (t)

)
+ σLh̄(t)

L(t)

Xu∗ (t)
, and the optimal value function in this case, denoted

J̃3(t, x, v, l), can be written as J̃3(t, x, v, l) =
(x+h̄(t)l)1−γ

1−γ
exp(ḡ6(t)v + ĝ6(t)), where

ḡ6(t) =
ν̃13ν̃23 − ν̃13ν̃23e

α̃23(ν̃13−ν̃23)(T−t)

ν̃23 − ν̃13eα̃23(ν̃13−ν̃23)(T−t)
,

ĝ6(t) =

∫ T

t

[r(1− γ) + κδḡ6(s)] ds,

α̃13 = −κ− λ1(1− (βS + γ))σV
βS + γ

,

α̃23 =
σ2
V

2
− βSσ

2
V

2(1− γ)
+

(1− (βS + γ))2σ2
V

2(βS + γ)(1− γ)
,

α̃33 =
λ21(1− γ)

2(βS + γ)
, ν̃13,23 =

α̃13 ±
√
α̃2
13 − 4α̃23α̃33

−2α̃23

,

and h̄(t) is given by Eq. (32). By derivation, we obtain α̃2
13 − 4α̃23α̃33 ≥ 0.

Compared with Remark 3.5, we find that when the investor has no access to the derivative,

the non-redundant condition is unnecessary. Therefore, we analyze the case of ρ = ±1 here

and provide related explicit results. From the previous results, we find that the equity

premium λ2 for additional volatility risk is now 0; the investor has no way to cope with

the volatility risk. She may increase her wealth invested in the stock (the second part in

Eq. (25) is dropped), which causes her to undertake more risk than in the case with the

derivative, and decrease her utility at retirement. The following special cases can be studied

in a similar way. For a detailed comparison, we list related explicit results below.

Remark E.2. If σL = 0, the salary process is non-stochastic; then, the optimal investment

in this case, denoted ũ∗4(t), can be written as ũ∗4(t) = m̃(t)(1+ ĥ(t)

Xu∗ (t)
), and the optimal value

function in this case, denoted J̃4(t, x, v), can be written as J̃4(t, x, v) =
(x+ĥ(t))1−γ

1−γ
exp(ḡ3(t)v+

ĝ3(t)), where ĥ(t), m̃(t), ḡ3(t) and ĝ3(t) are given by Eqs. (37) and (48). In this case, we

find that the optimal investment strategy is proportional to m̃(t).
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Furthermore, if there is no salary and no derivative, our model reduces to a portfolio

selection problem for an ambiguity-averse investor. The optimal investment strategy in this

case, denoted ũ∗5(t), can be written as ũ∗5(t) = λ1(1−γ)+(1−(βS+γ))σV ρV ḡ3(t)
(1−γ)(βS+γ)

, and the optimal

value function in this case, denoted J̃5(t, x, v), can be written as J̃5(t, x, v) =
x1−γ

1−γ
exp(ḡ3(t)v+

ĝ3(t)), where ḡ3(t) and ĝ3(t) are given by Eq. (48).

Remark E.3. If there is no derivative in the financial market and if the pension investor

is ambiguity neutral, then the optimal investment strategy, denoted ũ∗6(t), can be written

as ũ∗6(t) = λ1+σV ρV ḡ7(t)
γ

(
1 + h̄(t) L(t)

Xu∗ (t)

)
− σLρLh̄(t)

L(t)

Xu∗ (t)
, and the optimal value function,

denoted J̃6(t, x, v, l), can be written as J̃6(t, x, v, l) =
(x+h̄(t)l)1−γ

1−γ
exp(ḡ7(t)v + ĝ7(t)), where

ḡ7(t) =
ν̃14ν̃24 − ν̃14ν̃24e

α̃24(ν̃14−ν̃24)(T−t)

ν̃24 − ν̃14eα̃24(ν̃14−ν̃24)(T−t)
, (69)

ĝ7(t) =

∫ T

t

[r(1− γ) + κδḡ7(s)] ds, (70)

α̃14 = −κ+
λ1(1− γ)σV ρV

γ
, α̃24 =

σ2
V

2
+

(1− γ)σ2
V ρ

2
V

2γ
,

α̃34 =
λ21(1− γ)

2γ
, ν̃14,24 =

α̃14 ±
√
α̃2
14 − 4α̃24α̃34

−2α̃24

,

and h̄(t) is given by Eq.(32). By derivation, we obtain α̃2
14 − 4α̃24α̃34 ≥ 0.

Remark E.4. If there is no derivative in the financial market, the pension investor is ambi-

guity neutral and σL = 0, the salary process is non-stochastic; then, the optimal investment

strategy in this case, denoted ũ∗7S(t), can be written as ũ∗7S(t) =
λ1+σV ρV ḡ7(t)

γ
(1+ ĥ(t)

Xu∗ (t)
), and

the optimal value function in this case, denoted J̃7(t, x, v), can be written as J̃7(t, x, v) =

(x+ĥ(t))1−γ

1−γ
exp(ḡ7(t)v + ĝ7(t)), where ĥ(t), ḡ7(t) and ĝ7(t) are given by Eqs. (37), (69)-(70).

Furthermore, if there is no salary, no ambiguity and no derivative in our model, the op-

timization problem becomes a portfolio selection problem for an ambiguity-neutral investor;

the optimal investment in this case, denoted ũ∗8S(t), can be written as ũ∗8S(t) =
λ1+σV ρV ḡ7(t)

γ
,

and the optimal value function in this case, denoted J̃8(t, x, v), can be written as J̃8(t, x, v) =

x1−γ

1−γ
exp(ḡ7(t)v + ĝ7(t)), where ḡ7(t) and ĝ7(t) are given by Eqs. (69) and (70).

Remark E.5. If σV = 0, the volatility of the risky asset is non-stochastic, and as noted

above, the derivative is indeed redundant. The optimal investment strategy in this special

case, denoted ũ∗9(t), can be written as ũ∗9(t) = λ1

βS+γ
(1 + h̄(t) L(t)

Xu∗ (t)
) − σLρlh̄(t)

L(t)

Xu∗ (t)
, and

the optimal value function in this case, denoted J̃9(t, x, l), can be written as J̃9(t, x, l) =
(x+ h̄(t)l)1−γ

1− γ
exp(ĝ8(t)), where

ĝ8(t) =

(
r(1− γ) +

λ21(1− γ)δ

2(βS + γ)

)
(T − t) +

λ21(1− γ)(v0 − δ)

2(βS + γ)κ
(exp(−κt)− exp(−κT )) ,
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and h̄(t) is given by Eq.(32).

Appendix F

This appendix provides the optimal strategy under two special cases, European-style call

and put options. Option pricing for the stochastic volatility model adopted here refers to

Liu and Pan (2003) and Cui et al. (2017). We derive the prices of European-style call and

put options with time τ to expiration and striking at K as follows

C(t) = c(t, τ, S, V ;K); P (t) = p(t, τ, S, V ;K),

where S is the spot price and V is the market volatility at time t, and the call and put

options’ prices are respectively

c(t, τ, S, V ;K) = SP1(t, τ, S, V ;K)− e−rτKP2(t, τ, S, V ;K),

p(t, τ, S, V ;K) = e−rτK(1− P2(t, τ, S, V ;K))− S(1− P1(t, τ, S, V ;K)),

where the risk-neutral probabilities P1 and P2 are recovered from inverting the respective

characteristic functions

P1(t, τ, S, V ;K) =
1

2
− 1

π

∫ ∞

0

Im

[
eiz(lnK−lnS−rτ)eA(1−iz)+B(1−iz)V

z

]
dz,

P2(t, τ, S, V ;K) =
1

2
− 1

π

∫ ∞

0

Im

[
eiz(lnK−lnS−rτ)eA(−iz)+B(−iz)V

z

]
dz,

where Im denotes the imaginary component of a complex number, and A(y), B(y) are given

by

B(y) = − a(1− e−qτ )

2q − (q + b)(1− e−qτ )
,

A(y) = −κ
∗δ∗

σ2
V

(
(q + b)τ + 2 ln

(
1− q + b

2q
(1− e−qτ )

))
,

a = y(1− y), b = ρV σV y − κ∗,

q =
√
b2 + aσ2

V , κ∗ = κ+ σV (ρV λ1 +
√
1− ρ2V λ2), δ∗ =

κδ

κ∗
.

The price of the straddle option used in our numerical examples is given by

O(t) = c(t, τ, S, V ;K) + p(t, τ, S, V ;K).
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