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Abstract. In this paper we propose an approach to investigate a model of consump-
tion and investment with a mandatory retirement date and early retirement option; we
analyze properties of the optimal strategy and thereby contribute to understanding the
interaction between retirement, consumption, and portfolio decisions in the presence of
both the important features of retirement. In particular, we provide a characterization
of the threshold of wealth as a function of time, and we show that it is strictly decreas-
ing near the mandatory retirement date. The threshold is similar to the early exercise
boundary of an American option in the sense that if the agent’s wealth is above or equal
to the threshold level, then the agent immediately retires. We also provide comparative
static analysis.

Funding: H. K. Koo gratefully acknowledges the support of the National Research Foundation of
Korea grant funded by the Korea government (MSIP) [Grant NRF-2016R1A2B4008240]. Z. Yang is
partially supported by the National Natural Science Foundation of China [11771158 and 11371155]
and the Natural Science Foundation of Guangdong Province [2016A030313448].

Keywords: mandatory retirement • early retirement option • consumption • portfolio selection • variational inequality

1. Introduction
An increasing number of people are approaching retirement, as population aging is progressing rapidly in both
the developed and developing worlds. The decisions of the people close to retirement are affected significantly
by the outcomes of financial markets. For example, the big stock market boom between 1995 and 2000 led to
a dramatic increase in the number of people who chose voluntary early retirement (Fahri and Panageas [9]).
In reverse causality, these people’s decisions on retirement, consumption, and savings are expected to have
a significant effect on aggregate consumption and investments, and to have a large influence on the world’s
financial markets and economy.1
In this paper we study a model of consumption and investment with a mandatory retirement date and early

retirement option.2 More specifically, we study the optimal consumption and portfolio choice of an agent/wage
earner who faces a prespecified mandatory retirement date but has an option to retire earlier than that date.
We investigate the properties of the optimal choice of retirement time, consumption, and portfolio of assets.
There have been studies of models with one feature of retirement: either only with voluntary retirement (Choi
and Shim [3], Choi et al. [4], Dybvig and Liu [6], Fahri and Panageas [9]) or only with mandatory retirement
(Dybvig and Liu [6]). There, however, has not been a serious theoretical study devoted to the model where
both features—the mandatory retirement date and early retirement option—are present. For example, Dybvig
and Liu [6] study two different models, each with only one feature of retirement; the authors state that “an
alternative model of mandatory retirement that allows for early retirement is more complicated because of the
extra time dimension, but can be solved using the randomization method employed by Liu and Loewenstein . . .”
(p. 886). The method of Liu and Loewenstein [23], mentioned in this quote, is a model of transaction costs,
and not that of retirement. It provides an approximation to the final horizon by a random time and thus is
an approximation method, and it is not a method to study the true optimal solution. Fahri and Panageas [9]
provide an approximate solution to the problem with both features of retirement. Their investigation, however,
is an addendum to that of an infinite horizon problem, and they have not conducted a thorough analysis of the
true solution, as we do here.
Consideration of both the mandatory retirement requirement and voluntary early retirement option makes

it necessary to study a model with a finite horizon. Thus, in our model an agent chooses consumption and
the portfolio of assets, faces a mandatory retirement date T, and has an early retirement option (i.e., he or
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she can choose retirement time τ ≤ T). Thus, the model provides a challenge in the following two senses.
First, it is a problem where the optimal choice of consumption and investment is coupled with the optimal
stopping problem of choosing the retirement date, where the two decisions interact with each other. Second,
the embedded optimal stopping problem has a finite horizon, and so similar to an American option, which
does not admit a simple closed-form solution.
In this paper we propose an approach to investigate the model with a finite horizon and analyze properties of

the optimal strategy, and thereby contribute to understanding the interaction between retirement, consumption,
and portfolio decisions in the presence of both the important features of retirement. In particular, we provide
a characterization of the threshold of wealth as a function of time and show that it is strictly decreasing near
the mandatory retirement date. The threshold is similar to the early exercise boundary of an American option
in the sense that if the agent’s wealth is above or equal to the threshold level, then the agent immediately
retires. We also provide useful comparative static analysis. For example, we show that the threshold tends to go
higher if the wage rate increases, and the threshold tends to go down if the utility cost of labor increases, for
every t ∈ [0,T), extending the comparative static analysis by Choi and Shim [3], originally derived in an infinite
horizon without a mandatory retirement requirement.
In the literature there exist three common methods to analyze the properties of the value function and optimal

strategy of an optimal control problem without a choice of a stopping time: first, the martingale method with
a dual transformation (see, e.g., Cox and Huang [5], Karatzas and Shreve [16], Karatzas et al. [18]), second,
the transformation of the associated Hamilton-Jacobi-Bellman (HJB) equation into a linear partial differential
equation (PDE) through the Legendre transformation (see, e.g., Fleming and Soner [10], Karatzas et al. [19]),
and third, the stochastic maximum principle (see, e.g., Yong and Zhou [32]). But all of the methods cannot be
directly applied to our problem because the state equations before and after the retirement date are not the
same, and the dual transformations and Legendre transformations in the two stages are different. Moreover, the
stopping time is unknown and interacts with the optimal control. For an optimal stopping problem, there are
also three commonly used methods: the martingale method (see, e.g., Karatzas and Shreve [16], Karatzas and
Wang [17]), the probabilistic method (see, e.g., Peskir and Shiryaev [25]), and the PDE method via its associated
variational inequality (see, e.g., Bensoussan and Frideman [2], Friedman [11]). But it is difficult to discover the
properties of the value function and the optimal strategy only by the martingale method or by the probabilistic
method, because the optimal stopping time discovered with these methods is relatively abstract. The PDE
method attempts to identify the optimal stopping boundary for a Markovian optimal stopping problem, but
it cannot be directly applied to our problem, because the associated HJB equation is a variational inequality
with a fully nonlinear parabolic differential operator. Thus, it is very difficult to discover the properties of the
solution. If the horizon is infinite, the associated HJB equation is an ordinary differential equation, and an
explicit solution can be found and properties can be discovered by investigating the explicit form (e.g., Choi and
Shim [3], Dybvig and Liu [6, 7]). But it is impossible to obtain an explicit solution of a finite horizon problem,
even for a simple problem without optimal control, such as pricing a standard American call/put option.

In this paper we propose methods to get over the difficulty and discover important properties of the value
function and the optimal strategy of the agent’s choice problem with only a minimal assumption on the agent’s
utility function. Because of the aforementioned difficulty, the results a researcher can expect, under the assump-
tion of a general utility function, are usually a characterization of the value function as a unique solution to an
associated HJB equation, and there is a vast literature with such limited results (see, e.g., Hamadene et al. [14],
Touzi and Vieille [26]). For example, Koo et al. [20] have considered a finite horizon problem similar to ours
and have shown only the existence and uniqueness of the value function; they have not been able to derive the
properties of the optimal strategy. We overcome the difficulty in the following ways. First, we conduct succes-
sive transformations (see Section 3): first transforming the original problem into its dual problem (similar to
Karatzas and Wang [17]), then transforming the dual problem into a variational inequality. Second, we use the
PDE method to analyze the properties of the optimal strategy in the dual coordinate system. Finally, we come
back to the original problem and discuss the properties in the original coordinate system.

The rest of this paper is organized as follows. In Section 2 we explain our model. In Section 3 we transform
the original problem into a variational inequality and provide the verification theorem. In Section 4 we provide
a solution to the variational inequality and explain its properties. In Section 5 we study the optimal retirement
threshold. In Section 6 we conduct comparative static analysis, and in Section 7 we conclude.
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2. A Model of Retirement, Investment, and Consumption Choice
2.1. Objective of an Agent Facing Retirement
We consider an economic agent who receives a constant stream of labor income at a rate equal to % > 0. The
agent’s objective is to maximize the following utility function by choosing the consumption, portfolio of assets,
and time of retirement:

U ≡ Ɛ
[∫ T1

0
e−βt(U1(t , ct) − lI{t≤τ}) dt + e−βT1

U2(T1 ,WT1)
]
, (1)

where ct is the agent’s rate of consumption at time t, WT1 is his or her wealth at time T1, β > 0 is the subjective
discount rate, U1 is the felicity function of consumption, U2 is the bequest function, l > 0 is the utility cost of
labor, τ is the time of retirement, IA is the characteristic function of set A, and Ɛ denotes expectation. Time T1

is the final time of the agent’s horizon—that is, the time when the agent’s consumption plan ends and he or
she makes a bequest. We assume that the subjective discount rate β, the utility cost of labor l, and the final
time T1 are fixed constants. Our model, however, can be extended to accommodate a random final time—for
example, a random time of the agent’s death, with the assumption that there is no bequest motive (i.e., U2 � 0).
Consider the case where U2 � 0, and T1 is a random variable taking value in [T,T2], where T is the mandatory
retirement date explained below and T2 is a constant (an upper bound of the agent’s life span).3 Suppose that
the probability density function and the cumulative distribution function of T1 are f (ξ) and F(ξ), respectively.
Then the agent’s objective function can be written as

U � Ɛ

[∫ T

0
e−βt(U1(t , ct) − lI{t≤τ}) dt +

∫ T2

T

(∫ ξ

T
e−βtU1(t , ct) dt

)
f (ξ) dξ

]
� Ɛ

[∫ T

0
e−βt(U1(t , ct) − lI{t≤τ}) dt +

∫ T2

T

(∫ T2

t
f (ξ) dξ

)
e−βtU1(t , ct) dt

]
� Ɛ

[∫ T2

0
e−βt((1− F(t))U1(t , ct) − lI{t≤τ}) dt

]
. (2)

The above objective function belongs to the class defined in (1).
There is a mandatory retirement date T ≤ T1 when the agent is forced to retire from work. We assume that T

is a constant. Choi and Shim [3] have employed an objective function similar to (1) in their infinite horizon
model without a mandatory retirement date. After retirement, the agent does not have an option to go back
to work, and thus retirement is an irreversible decision. The agent, however, is allowed to retire earlier than
the mandatory retirement date and hence able to choose retirement time τ ≤ T. We assume that the agent does
not receive income after retirement.4 The agent thus faces a choice between earning higher income by delaying
retirement and saving the utility cost of labor by retiring immediately.
For later use, we define Ui(t , 0) , limc→0+ Ui(t , c).5 We make the following assumptions with regard to the

felicity function U1 and the bequest function U2.
Assumption 1. The utility functions Ui(t , c) ∈ C∞([0,T1]× (0,+∞)), i � 1, 2, take values in �,6 are strictly concave with
respect to c, and satisfy the following conditions:

lim
c→0+

∂cUi(t , c)�+∞, lim
c→+∞

∂cUi(t , c)� 0, lim sup
c→+∞

max
t∈[0,T1]

∂cUi(t , c)ck ≤ C

for any t ∈ [0,T1], where C and k are positive constants.
Remark 1. The first two conditions in Assumption 1 are called Inada conditions, which are commonly employed
in models of economic growth and consumption/savings (see, e.g., Inada [15], Uzawa [28]). Indeed, we can
dispense with the first condition, limc→0+ ∂cUi(t , c)�+∞, and consider the case limc→0+ ∂cUi(t , c)<+∞ for i � 1, 2.
Treatment of the latter case, however, turns out to be very similar to analysis of the problem under the first
Inada condition, and we will mainly focus our analysis on the case where the Inada condition is satisfied.7 From
Assumption 1, we can deduce that (see Karatzas and Shreve [16])

lim
c→0+

min
t∈[0,T1]

∂cUi(t , c)�+∞, lim
c→+∞

max
t∈[0,T1]

∂cUi(t , c)� 0.

Moreover, since utility functions Ui are concave, the inequality in Assumption 1 implies that

JUi
(t , x) ≤ C1(1+ x−1/k), ∀ (t , x) ∈ [0,T1] × (0,+∞), i � 1, 2, (3)

where JUi
(t , ·) are the inverse functions of ∂cUi(t , ·), and C1 is a positive constant.
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The last inequality in Assumption 1 is a technical assumption, which is satisfied by many commonly used
utility functions. For example, it is satisfied by the following CRRA utility function and constant absolute risk
aversion utility function; that is,

Ui(t , c)�
c1−γ

1− γ (0 < γ , 1) or Ui(t , c)� ln c or Ui(t , c)� 1− e−αc(α > 0). (4)

There exist examples of a time-inhomogeneous utility function for U1(t , c). An example is given by the class of
utility functions U1(t , c) � ∆(t)U(c), with U(c) satisfying Assumption 1 and ∆(t) > 0 being a general discount
function of time—that is, a declining function of time as in Watson and Scott [29].8 A special case of the utility
function in (2)—that is, a utility function of the form U1(t , c)� (1−F(t))U(c), where U(c) satisfies Assumption 1
and F(t) is the cumulative distribution function of a random time taking value in [T,T1]—belongs to this
class. Another example is the class of utility functions with time-varying risk aversion such as, for example,
U1(t , c) � c1−γ(t)/(1 − γ(t)), where γ(t) is a deterministic function satisfying γm ≤ γ(t) ≤ γM , with 0 < γm < γM
being constants such that γm > 1 or γM < 1.

2.2. Financial Market
The financial market consists of one riskless asset and d risky assets. We assume that the risk-free rate is a
positive constant and equal to r.

The price P0 of the riskless asset and the price Pi of the ith risky asset are governed by the following stochastic
differential equations (SDEs): 

dP0, t � rP0, t dt , P0, 0 � P0 ,

dPi , t � αiPi , t dt +
d∑

j�1
σ i jPi , t dB j

t , Pi , 0 � Pi ,

where Bt � (B1
t , . . . ,B

d
t )T is a d-dimensional standard Brownian motion, which represents sources of risk for

the asset returns; α � (α1 , . . . , αd)T represents the vector of expected rates of return on the risky assets; and
Σ� (σi j)d×d represents contributions by the risk sources to the volatility of asset returns ( T denotes the transpose
of a matrix). We assume that the investment opportunity is constant (i.e., α and Σ are a constant vector and a
constant matrix, respectively). The Brownian motion is defined on a probability space (Ω, (F t)T

1

t�0 ,� ), and (F t)T
1

t�0
is just the augmented filtration generated by Brownian motion B.9
We assume that Σ is positive-definite and α − r1d , 0d , where 1d and 0d denote the d-dimensional column

vectors of 1’s and 0’s, respectively. We will assume that all processes are (F t)T
1

t�0-progressively measurable, and
all stopping times are (F t)T

1

t�0-stopping times.

2.3. Admissible Choices and Optimization Problem
We now explain admissible choices of the agent. We consider the problem starting at time t ≥ 0.

The consumption rate, c, and the monetary amounts invested in the risky assets, π � (π1 , . . . , πd)T, are admis-
sible only if c ≥ 0. The time, τ, of voluntary retirement is admissible only if it belongs to Ut ,T , the set of all
stopping times taking values in [t ,T] (define [t ,T]� {t} if t >T in this paper). Namely, the agent’s choice should
be conditional only on currently available information.
The agent’s wealth process W is governed by

dW t ,w; τ, c , π
s �

[
πT

s (α− r1d)+ rW t ,w; τ, c , π
s − cs + %I{s≤τ}

]
ds + πT

sΣ dBs , Wt � w. (5)

Another requirement for the triplet of choices (τ, c , π) to be admissible is the following:∫ T1

t
cs + |πs |2 ds <∞ a.s. in Ω, subject to cs ≥ 0, τ ∈Ut ,T , W t ,w; τ, c , π

s > g(s)I{s<τ} , ∀ s ∈ [t ,T1], (6)

where

g(s)�
{ %

r
(e rs−rT − 1) ∀ s < T,

0 ∀ s ∈ [T,T1].
The quantity g(s), the negative of which is the present value of labor income at time s under the assumption

that the agent does not choose early retirement, is defined as above to facilitate the transformations. The exis-
tence of retirement option might cause mismatch of dual value functions at the time τ of retirement when one
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applies the martingale dual approach separately to the agent’s optimization problems before and after retire-
ment. The definition, however, allows us to modify the dual value function after retirement (see (16)), to make
the dual value function before retirement match the modified dual value function after retirement (see (24)), and
to derive a variational inequality (19) that connects the problems before and after retirement. In this paper we
allow the agent to borrow fully against the stream of future income. Consideration of limited borrowing ability
as in Dybvig and Liu [6, 7] would be interesting, but it introduces complications to the already challenging finite
horizon model. As a first step toward investigating the model of consumption, investment/retirement choice
with a mandatory retirement requirement, and a voluntary retirement option, we will confine our attention
to this case of the maximal borrowing ability, which is consistent with the agent being able to pay debt back
eventually (i.e., WT1 ≥ 0).
Remark 2. We may consider the case where the agent receives a pension income after retirement. For the
moment, let us assume that the rate of labor income is % l and the rate of pension income is %p such that
0 ≤ %p < % l . Let us denote % � % l − %p . Then, in the absence of borrowing constraints, it is easy to show that the
agent’s problem with Wt � w in this case is equivalent to the problem in our model with Wt � w + (%p/r)(1 −
e−r(T1−t)) in which the agent receives labor income at the rate of % before retirement and does not have income
when retired. In this sense, our assumption that the agent receives no income after retirement is not restrictive,
and the result we have obtained in this paper under the assumption can be extended to the more general case
with only a slight modification.
We will denote the set of all strategies satisfying (6) by A(t ,w). Finally, the set of admissible controls, denoted

by A1(t ,w), is defined as follows:

A1(t ,w) ,
{
(τ, c , π) ∈A(t ,w): Ɛ

[∫ T1

t
e−β(s−t)U−1 (s , cs) ds + e−β(T

1−t)U−2 (T1 ,W t ,w; τ, c , π
T1 )

]
< +∞

}
,

with U−i � max{0,−Ui}, i � 1, 2.
The agent’s objective at time t is to maximize the following utility function by choosing (τ, c , π) ∈A1(t ,w):

J(t ,w; τ, c , π) , Ɛ
[∫ T1

t
e−β(s−t)(U1(s , cs) − lI{s≤τ}) ds + e−β(T

1−t)U2(T1 ,W t ,w; τ, c , π
T1 )

]
� Ɛ

{∫ τ

t
e−β(s−t)(U1(s , cs) − l) ds + Ɛ

[∫ T1

τ

e−β(s−t)U1(s , cs) ds + e−β(T
1−t)U2(T1 ,W t ,w; τ, c , π

T1 )
����F τ

]}
,

∀ (t ,w) ∈ M̃T1 , (7)

where we have used the following notation, which we will use throughout this paper:
MT , {(t ,w): w > g(t), t ∈ [0,T)}, MT1 , {(t ,w): w > g(t), t ∈ [0,T1)},
M̃T , {(t ,w): w > g(t), t ∈ [0,T]}, M̃T1 , {(t ,w): w > g(t), t ∈ [0,T1]}. (8)

The agent’s problem is to find an optimal strategy, (τ∗ , c∗ , π∗) ∈A1(t ,w), such that

J(t ,w; τ∗ , c∗ , π∗)� V(t ,w) , sup{ J(t ,w; τ, c , π): (τ, c , π) ∈A1(t ,w)}, ∀ (t ,w) ∈ M̃T1 .

2.4. Static Budget Constraints and Convex Dual Functions
We will use the martingale and duality methods (see, e.g., Cox and Huang [5], Karatzas and Shreve [16],
Karatzas et al. [18]). Define the discount process D, the market price of risk θ, an exponential martingale M,
and the state-price-density process H as

D(s)� e−r(s−t) , θ �Σ−1(α− r1d), Ms � exp
{
−

∫ s

t
θTdBu − 1

2

∫ s

t
|θ |2 du

}
, Hs � D(s)Ms .

It is not difficult to deduce that

dHs[Ws − g(s)I{s<τ}]�−Hs cs ds +Hs[πT
sΣ− (Ws − g(s)I{s<τ})θT] dBs , ∀ s ∈ [t , τ) ∪ (τ,T1].

Since Ws − g(s)I{s<τ} ≥ 0 for any s ∈ [t ,T1], we can deduce that Ws − g(s)I{s≤τ} ≥ 0 for any s ∈ [t ,T1] from the
continuity of Ws − g(s) with respect to s. So Fatou’s lemma implies that

Ɛ

{
Hs[Ws − g(s)]+

∫ s

t
Hu cu du

}
≤ w − g(t), if 0 ≤ t ≤ s ≤ τ, (9)

Ɛ

[
HsWs +

∫ s

t
Hu cu du

]
≤ w , if 0 ≤ t � τ ≤ s ≤ T1. (10)
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Remark 3. The constraints (9) and (10) are called static budget constraints. According to Karatzas and Shreve [16]
and Karatzas and Wang [17], the inequalities in (9) and (10) hold as equalities for candidate optimal choices,
and the static budget constraints are equivalent to the wealth evolution equation (5).

We denote by Ũi the convex dual functions of the concave functions Ui , i � 1, 2. For convenience of exposition,
we list properties of Ũi (see Karatzas and Shreve [16]).

Lemma 1. Utility functions Ui and their convex dual functions Ũi , i � 1, 2 have the following properties:

Ũi(t , x) , sup
c>0
[Ui(t , c) − xc]� Ui(t ,JUi

(t , x)) − xJUi
(t , x), ∂xŨi(t , x)�−JUi

(t , x) < 0,

Ui(t , c)� inf
x>0
[Ũi(t , x)+ xc]� Ũi(t ,J Ũi

(t ,−c))+J Ũi
(t ,−c)c , ∂cUi(t , c)� J Ũi

(t ,−c) > 0,

∂xxŨi(t , x)�−∂xJUi
(t , x)� −1

∂ccUi(t ,JUi
(t , x)) > 0, ∂ccUi(t , c)�−∂cJ Ũi

(t ,−c)� −1
∂xxŨi(t ,J Ũi

(t ,−c))
,

∂xxxŨi(t , x)�
∂cccUi(t ,JUi

(t , x))
(∂ccUi(t ,JUi

(t , x)))3 , . . . , ∀ t ∈ [0,T1], x > 0, c > 0, i � 1, 2,

where J Ũi
(t , ·) is the inverse function of ∂xŨi(t , ·), i � 1, 2. Moreover, ∂xŨi(t , x)→−∞ as x→ 0+, and ∂xŨi(t , x)→ 0−

as x→+∞ for any t ∈ [0,T1], i � 1, 2.

2.5. Notation for Spaces of Stochastic Processes and Function Spaces
To facilitate the exposition, we introduce the following notation.
For some p ≥ 1, we introduce two spaces of stochastic processes and one space of random variables, which

will be useful for our later argument about backward stochastic differential equations (BSDEs) (we refer to Yong
and Zhou [32] for the theory of BSDEs):

• S
p
t , the space of continuous (F t)T

1

t�0-progressively measurable stochastic processes with norm
[Ɛ(sups∈[t ,T1] |Xs |p)]1/p for process (Xs)T

1

s�t ;
• L

p
t , the space of (F t)T

1

t�0-progressively measurable stochastic processes with norm [Ɛ(∫T1

t |Xs |p ds)]1/p for
process (Xs)T

1

s�t ; and
• Lp(F T1), the space of F T1 -measurable random variables with norm [Ɛ(|XT1 |p)]1/p for random variable XT1 .
We next introduce two Sobolev spaces, which will be useful to study variational inequalities (we refer to

Krylov [21] for the theory of Sobolev spaces; note that Itô’s formula still holds for V(t ,Xt) if V belongs to an
appropriate Sobolev space):10

• W2, 1
p (MT1), p ≥ 1, the completion of C∞(MT1) under the norm for V ,

‖V ‖W2, 1
p (MT1 ) ,

[∫
MT1

(|V |p + |∂tV |p + |∂xV |p + |∂xxV |p) dx dt
]1/p

; and

• W2, 1
p , loc(MT1), p ≥ 1, the set of all functions whose restrictions to the domain M∗T1 belong to W2, 1

p (M∗T1) for any
compact subset M∗T1 of MT1 .

3. Transformation of the Original Problem into a Variational Inequality and
Verification Theorem

In this section we will recast the original optimal stochastic control problem into a variational inequality (VI)
by making three successive transformations. Next we will present the verification theorem (Theorem 1), which
provides a connection to all three transformations. The verification theorem states that a solution to the VI
satisfying suitable regularity conditions gives an optimal strategy for the original optimization problem.

As a preparation for the transformations, we first consider the agent’s problem after retirement.

3.1. The Agent’s Optimization Problem After Retirement
In this subsection we will consider the agent’s optimization problem after retirement. The problem is a standard
optimal consumption and investment choice problem similar to Merton [24]. The solution to the problem with
a general utility function (in the absence of pension income) has been provided by Karatzas et al. [18].

After retirement, the agent does not face any choice of a stopping time. Thus, the control does not involve
stopping time τ. Formally, the model in the previous section accommodates this case if we let τ � t, where t
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is the fixed current time. Then, the admissible set is A1
t (t ,w) , {(c , π): (t , c , π) ∈A1(t ,w)}, where the admissible

set is dependent on the initial time t and the initial wealth w, and the subscript t indicates that the stopping
time is equal to t, (i.e., τ � t). Let us denote the agent’s value function after retirement by

¯
V ; that is,

¯
V(t ,w)� sup

(c , π)∈A1
t (t ,w)

Ɛ

[∫ T1

t
e−β(s−t)U1(s , cs) ds + e−β(T

1−t)U2(T1 ,W t ,w; t , c , π
T1 )

]
.

Now (10) implies that for any t ∈ [0,T1], x > 0, w > 0,

¯
V(t ,w) − xw ≤ sup

(c , π)∈A1
t (t ,w)

Ɛ

{∫ T1

t
[e−β(s−t)U1(s , cs) − xHs cs] ds + [e−β(T1−t)U2(T1 ,W t ,w; t , c , π

T1 ) − xHT1 W t ,w; t , c , π
T1 ]

}
≤ Ɛ

[∫ T1

t
e−β(s−t)Ũ1(s ,Xs) ds + e−β(T

1−t)Ũ2(T1 ,XT1)
]
, ˜

¯
V(t , x), (11)

with Xs � xeβ(s−t)Hs .

Remark 4. The Lagrange multiplier, x, and the dual variable process, (Xs)s∈[t ,T1], represent the agent’s marginal
utility of wealth at time t and at time s ∈ [t ,T1], respectively. We call ˜

¯
V(t , x) the dual value function of the agent’s

optimization problem after retirement. By the argument below in the proof of Theorem 1, we can show that
X � (Xs)s∈[t ,T1], X−1 ∈ S p

t for any p ≥ 1 and
¯
V <∞. Thus we know by (3) that all assumptions in Karatzas and

Shreve [16, theorem 3.6.11] are satisfied. Then, according to Karatzas and Shreve [16, theorem 3.6.11], we deduce
that for any x > 0, there exists a unique w > 0 such that the inequalities in the above hold as equalities, and ˜

¯
V

is the convex dual function of the concave function
¯
V ; that is,

˜
¯
V(t , x)� sup

w>0
[
¯
V(t ,w) − xw],

¯
V(t ,w)� inf

x>0
[ ˜
¯
V(t , x)+ xw], ∀ t ∈ [0,T1], x > 0, w > 0.

Thus, it is possible to deduce properties of
¯
V through those of ˜

¯
V .

Itô’s formula implies that X is governed by the following SDE:

dXs � (β− r)Xs ds − θTXs dBs , ∀ s ∈ [t ,T1], Xt � x. (12)

In view of the Feynman–Kac formula (see Fleming and Soner [10]), ˜
¯
V is expected to satisfy the following PDE:{

−∂t
˜
¯
V −L ˜

¯
V � Ũ1 in N T1 ;

˜
¯
V(T1 , x)� Ũ2(T1 , x), ∀ x ∈ (0,+∞), (13)

where we have used the following notation, which we will use throughout the paper:

L ,
|θ |2x2

2 ∂xx + (β− r)x∂x − β,
N T , [0,T) × (0,+∞), Ñ T , [0,T] × (0,+∞),

N T1 , [0,T1) × (0,+∞), Ñ T1 , [0,T1] × (0,+∞).

3.2. Transformations
In this subsection we make successive transformations to change the original problem into a VI.

Transformation 1. In the first step, we apply the dynamic programming principle to transform the problem into
an optimal consumption, investment/retirement problem where the utility function after retirement is given
by

¯
V the value function of the agent after retirement, which has been discovered in Subsection 3.1.
From the agent’s problem in (7), we can deduce that for any (t ,w) ∈ M̃T1 ,

V(t ,w) ≤ sup
(τ, c , π)∈A1(t ,w)

Ɛ

[∫ τ

t
e−β(s−t)(U1(s , cs) − l) ds + e−β(τ−t)

¯
V(τ,W t ,w; τ, c , π

τ )
]

(14)

subject to (5).
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Remark 5. If t ∈ [T,T1], then the agent has already retired, and thus, the agent’s problem is just that of a
standard optimal investment and consumption choice, and V(t ,w) �

¯
V(t ,w) for any (t ,w) ∈ [T,T1] × (0,+∞).

Hence, we will mainly focus on the case t ≤ T. Note that even if t > T, (14) still holds since we have defined
[t ,T]� {t} and τ ∈Ut ,T � {t} above.
Remark 6. According to the dynamic programming principle or the result in Koo et al. [20], we can prove that
the inequality in (14) is indeed an equality, and the problem in Transformation 1 is equivalent to the original
problem. That is, the agent’s optimization problem after retirement can be summarized by its value function

¯
V .

Transformation 2. In the second step we transform the original problem, which involves both stochastic control
and optimal stopping, into a standard optimal stopping problem that does not involve stochastic control. We
use the martingale and duality methods, following the idea in Karatzas and Shreve [16] and Karatzas and
Wang [17].
For a Lagrange multiplier x > 0, we define Û1, ˆ¯V as

Û1(t , x)� sup
c>0
[U1(t , c) − l − xc]� sup

c>0
[U1(t , c) − xc] − l � Ũ1(t , x) − l , (15)

ˆ
¯
V (t , x)� ˜

¯
V(t , x)+ x g(t), (16)

for any t ∈ [0,T], x > 0.

Remark 7. There is a difference in income before and after retirement, and the term x g(t) is necessary to adjust
the dual value function after retirement to the difference, as will be shown in (17).

As a result of the transformation, we will obtain the dual value function V̂ for the agent’s problem. Since the
retirement time τ must be no later than the mandatory retirement date T, we apply the transformation only
in M̃T rather than in M̃T1 .

So (14), (9), (15), (11), and (16) imply that for any (t ,w) ∈ M̃T , x > 0,

V(t ,w) − x(w − g(t))

≤ sup
(τ, c , π)∈A1(t ,w)

Ɛ

{∫ τ

t
[e−β(s−t)U1(s , cs) − l] ds + e−β(τ−t)

¯
V(τ,W t ,w; τ, c , π

τ ) − x
[∫ τ

t
Hs cs ds +Hτ(W t ,w; τ, c , π

τ − g(τ))
]}

� sup
(τ, c , π)∈A1(t ,w)

Ɛ

{∫ τ

t
[e−β(s−t)U1(s , cs) − l − xHs cs] ds + [e−β(τ−t)

¯
V(τ,W t ,w; τ, c , π

τ ) − xHτ(W t ,w; τ, c , π
τ − g(τ))]

}
≤ sup

τ∈Ut ,T

Ɛ

[∫ τ

t
e−β(s−t)Û1(s ,Xs) ds + e−β(τ−t)( ˜

¯
V(τ,Xτ)+Xτg(τ))

]
� sup
τ∈Ut ,T

Ɛ

[∫ τ

t
e−β(s−t)Û1(s ,Xs) ds + e−β(τ−t) ˆ

¯
V(τ,Xτ)

]
, V̂(t , x), (17)

where we recall Xs � xeβ(s−t)Hs .

Remark 8. Applying the idea in theorem 8.5, corrollary 8.7 in Karatzas and Wang [17], for any x > 0 we conjec-
ture that the inequalities in the above hold as equalities for a unique w > g(t). In addition,

V̂(t , x)� sup
w>g(t)
[V(t ,w) − x(w − g(t))], V(t ,w)� inf

x>0
[V̂(t , x)+ x(w − g(t))] (18)

for any t ∈ [0,T], x > 0, w > g(t). If the conjecture is true, then we can derive properties of V through those
of V̂ . We will show that the conjecture is true in the verification theorem (Theorem 1).

Transformation 3. The optimization problem represented by the right-hand side of the last equality in (17) is
a standard optimal stopping problem for t ∈ [0,T]. Thus, in this last step we can use the relationship between
optimal stopping problems and VIs to transform the original problem into a VI.
By relying on a standard relationship based on the dynamic programming principle, we derive the follow-

ing VI for V̂ from the optimal stopping problem in (17) (see, e.g., Peskir and Shriyaev [25]):
−∂tV̂ −LV̂ � Û1 , if V̂ > ˆ

¯
V and (t , x) ∈ N T ;

−∂tV̂ −LV̂ ≥ Û1 , if V̂ � ˆ
¯
V and (t , x) ∈ N T ;

V̂(T, x)� ˆ
¯
V(T, x), ∀ x ∈ (0,+∞).

(19)
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Remark 9. If t ∈ [T,T1], the agent has already retired. So we consider VI (19) only in Ñ T rather than Ñ T1 . But
to give a convenient and complete expression for our model, we extend V̂ and ˆ

¯
V as V̂(t , x) � ˆ

¯
V(t , x) � ˜

¯
V(t , x)

for any (t , x) ∈ (T,T1] × (0,+∞), where ˜
¯
V is the solution of PDE (13).

3.3. Verification Theorem
In this subsection we will state and prove the verification theorem, which provides a justification as well as a
connection to the three transformations. The verification theorem states that if solutions to VI (19) and PDE (13)
satisfy suitable regularity conditions, then the value function V of the original optimal control problem is just
the concave dual function of the solution of VI (19), and (18) is valid. In the theorem we also construct optimal
strategies by using the solution to VI (19). That is, the marginal utility of the wealth process is discovered by
using the inverse function of ∂x v̂(t , ·), where v̂ is the solution to VI (19) and optimal consumption is expressed
in terms of the inverse, JU1

, of the derivative of the felicity function (i.e., the marginal utility of consumption)
and the marginal utility of wealth process. The agent’s wealth at time T is determined by the inverse, J Û2

, of
the derivative of Û2 (i.e., the inverse of the marginal utility of wealth function at time T1). The optimal portfolio
is discovered from the unique solution to a BSDE. The optimal stopping time is determined as the first time
when v̂(s ,X∗s) hits ˆ¯v(s ,X

∗
s).

Theorem 1. Suppose that ˜
¯
v is the strong solution to PDE (13), and denote ˆ

¯
v � ˜

¯
v + x g(t) in Ñ T1 . Assume that v̂

is the strong solution to VI (19), where the terminal value and lower obstacle ˆ
¯
V is replaced by ˆ

¯
v. Extend v̂ � ˆ

¯
v in

(T,T1] × (0,+∞). Suppose that v̂ , ˆ
¯
v have the following properties:

(1) v̂ , ˆ
¯
v ∈W2, 1

p , loc(N T1) ∩C(Ñ T1) with some p ≥ 3, and ∂x v̂, ∂x ˆ¯v ∈ C(Ñ T1).
(2) ∂xx v̂ > 0 a.e. in N T1 . Moreover, ∂x v̂(t , x) → −∞ as x→ 0+, and ∂x v̂(t , x) → 0 as x→ +∞ for any t ∈ [0,T1].

There exist positive constants C and K such that

|∂x v̂(t , x)| + |∂x ˆ¯v(t , x)| ≤ C(1+ x−K), ∀ (t , x) ∈ Ñ T1 .

Then,
˜
¯
V � ˜

¯
v in Ñ T1 , ˆ

¯
V � ˆ

¯
v , V̂ � v̂ in Ñ T , (20)

where ˜
¯
V , ˆ

¯
V , and V̂ are defined in (11), (16), and (17), respectively. Moreover, for any (t ,w) ∈ M̃T1 , we have

V(t ,w)� inf
x>0
[v̂(t , x)+ x(w − g(t))]� v̂(t , x∗(t ,w))+ x∗(t ,w)(w − g(t)), (21)

where x∗(t ,w) � J v̂(t , g(t) − w) > 0, and J v̂(t , ·) is the inverse function of ∂x v̂(t , ·). Moreover, x∗ ∈ C(M̃T1), and for
any t ∈ [0,T1], x∗(t ,w) is strictly decreasing with respect to w and has the asymptotic properties: x∗(t ,w) → +∞ as
w→ g(t)+, and x∗(t ,w)→ 0+ as w→+∞.
The optimal consumption and the optimal retirement strategy can be described as

c∗s � JU1
(s ,X∗s), τ∗ � inf{s ∈ [t ,T]: v̂(s ,X∗s)� ˆ¯v(s ,X

∗
s)} with X∗s � x∗(t ,w)eβ(s−t)Hs ,

where X∗ is the solution of SDE (12) with the initial state x∗(t ,w). Moreover, the optimal investment strategy π∗ is
governed by the following BSDE:

W ∗
s � W ∗

T1 −
∫ T1

s

[
(π∗u)TΣθ+ rW ∗

u − c∗u + %I{u≤τ∗}
]

du −
∫ T1

s
(π∗u)TΣ dBu , ∀ s ∈ [t ,T1], (22)

with W ∗
T1 � JU2

(T1 ,X∗T1).

The proof of Theorem 1 is based on the martingale method and dual attainment. Concretely, the main idea
of the proof is to prove that

J(t ,w; τ∗ , c∗ , π∗) ≥ v̂(t , x∗)+ x∗(w − g(t)) ≥ V(t ,w) ≥ J(t ,w; τ∗ , c∗ , π∗).

The first inequality in the above means the strategy (τ∗ , c∗ , π∗) is optimal. The second and the third inequalities
imply that V is the dual concave function of v̂ (see (21)) and V is the value function.
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Proof of Theorem 1. First, we show that x∗(t ,w) in Theorem 1 is well defined and x∗(t ,w) > 0, x∗ ∈ C(M̃T1). We
also show that x∗(t ,w) has the monotonicity and asymptotic properties as in the conclusion of the theorem. In
fact, since ∂x v̂ ∈ C(Ñ T1) and ∂xx v̂ > 0 a.e. in N T1 , we deduce that ∂x v̂(t , x) is strictly increasing with respect to x
for any t ∈ [0,T1). And property (2) in the assumptions in this theorem implies that ∂x v̂(t , ·): (0,+∞)→ (−∞, 0)
for any t ∈ [0,T1). Hence, we deduce that x∗(t ,w) � J v̂(t , g(t) − w) exists for any (t ,w) ∈ MT1 , takes values on
(0,+∞), and is continuous and strictly decreasing with respect to w for any t ∈ [0,T1). And the asymptotic
properties of x∗(t ,w) come from those of ∂x v̂(t , x). Moreover, the properties on t � T1 come from the terminal
condition of PDE (13) and Lemma 1.
Second, we show that c∗ , W ∗

T1 , and τ∗ are well defined. In fact, Ui , i � 1, 2 are strictly concave by Assumption 1;
thus, JUi

are well defined, and hence, c∗ and W ∗
T1 are well defined. In the case of t ≤ T, since v̂(s ,X∗s) − ˆ¯v(s ,X

∗
s)

is continuous with respect to s, τ∗ is a stopping time. Moreover, the terminal value condition of VI (19) implies
that τ∗ ≤ T and τ∗ ∈Ut ,T . In the case of t > T, noting that we have defined [t ,T]� {t}, and recalling the fact that
v̂ � ˆ

¯
v in (T,T1] × (0,+∞), we deduce τ∗ � t ∈Ut ,T .

We will show in Lemma 2 that π∗ can be constructed from the solution of BSDE (22) and (τ∗ , c∗ , π∗) ∈
A1(t ,W ∗

t ). From the lemma we continue the proof of the theorem. The optimal investment strategy π∗ comes
from BSDE (22), and thus it is necessary to prove W ∗ � W t ,w; τ∗ , c∗ , π∗ . For this purpose, we compare SDE (5) with
BSDE (22), and recall Σθ � α− r1d . We find that

d(e−r(s−t)W t ,w; τ∗ , c∗ , π∗
s )� d(e−r(s−t)W ∗

s ), ∀ t ≤ s ≤ T1.

Hence, the uniqueness of the solution of the SDE implies that it is sufficient to prove that W ∗
t � w.

Applying Itô’s formula, we have

d[e−β(u−t)X∗u(W ∗
u − g(u))]� e−β(u−t)X∗u[−c∗u − %I{τ∗<u≤T}] du + e−β(u−t)X∗u[(π∗u)TΣ− θT(W ∗

u − g(u))] dBu , ∀ u ∈ [t ,T1].

So we deduce that

x∗[W ∗
t − g(t)]� e−β(T

1−t)X∗T1 W ∗
T1 +

∫ T1

t
e−β(u−t)X∗u[c∗u + %I{τ∗<u≤T}] du −

∫ T1

t
e−β(u−t)X∗u[(π∗u)TΣ− θT(W ∗

u − g(u))] dBu .

Taking F t-conditional expectation in this equality and applying the Markov property, and combining this
with the fact that X∗ ,W ∗ ∈S p

t , π∗ ∈L
p
t for any p ≥ 1 (refer to the proof of Lemma 2), we have

x∗[W ∗
t − g(t)]� Ɛ

[
e−β(T

1−t)X∗T1 W ∗
T1 +

∫ T1

t
e−β(u−t)X∗u[c∗u + %I{τ∗<u≤T}] du

]
� Ɛ

{
e−β(T

1−t)[U2(T1 ,W ∗
T1) − Ũ2(T1 ,X∗T1)]+

∫ T1

t
e−β(u−t)[U1(u , c∗u) − Ũ1(u ,X∗u)+ %X∗u I{τ∗<u≤T}] du

}
� J(t ,W ∗

t ; τ∗ , c∗ , π∗) − Ɛ
{

e−β(T
1−t) ˜

¯
v(T1 ,X∗

T1 ) +

∫ τ∗

t
e−β(u−t)Û1(u ,X∗u) du

+

∫ T1

τ∗
e−β(u−t)[Ũ1(u ,X∗u) − %X∗u I{u≤T}] du

}
. (23)

Here, we have used the definitions of c∗ and W ∗
T1 in the second equality and used (7) and (15) and the terminal

condition of PDE (13) in the third equality.
Since v̂(·,X∗· ) and ˆ¯v(·,X

∗
· ) are continuous stochastic processes (see Krylov [21] or Yang and Tang [31]), the

definition of τ∗ and v̂ � ˆ
¯
v � ˜

¯
v in [T,T1] × (0,+∞) imply that

v̂(T1 ,X∗T1)� ˆ¯v(T
1 ,X∗T1)� ˜

¯
v(T1 ,X∗T1), v̂(τ∗ ,X∗τ∗)� ˆ¯v(τ

∗ ,X∗τ∗). (24)

Recalling PDE (13), we have

∂t ˆ¯v(u ,X
∗
u)+L ˆ

¯
v(u ,X∗u)� ∂t[ ˜¯v(t , x)+ x g(t)](t , x)�(u ,X∗u ) +L[ ˜

¯
v(t , x)+ x g(t)](t , x)�(u ,X∗u )

�−Ũ1(u ,X∗u)+ %X∗u I{u≤T} , ∀ u ∈ [t ,T1]. (25)
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Since ˆ
¯
v ∈ W2, 1

p , loc(N T1) ∩ C(Ñ T1) with some p ≥ 3, applying Itô’s formula to ˆ
¯
v (see Krylov [21] or Yang and

Tang [31]), by (23)–(25), we deduce that

J(t ,W ∗
t ; τ∗ , c∗ , π∗) − x∗[W ∗

t − g(t)]

� Ɛ

{
e−β(T

1−t) ˆ
¯
v(T1 ,X∗T1)+

∫ τ∗

t
e−β(u−t)Û1(u ,X∗u) du +

∫ T1

τ∗
e−β(u−t)[Ũ1(u ,X∗u) − %X∗u I{u≤T}] du

}
� Ɛ

{
e−β(τ

∗−t) v̂(τ∗ ,X∗τ∗)+
∫ τ∗

t
e−β(u−t)Û1(u ,X∗u) du −

∫ T1

τ∗
e−β(u−t)∂x ˆ¯v(u ,X

∗
u)θTX∗u dBu

}
.

Property (2) in the assumptions in the theorem implies that

|e−β(u−t)∂x ˆ¯v(u ,X
∗
u)θTX∗u | ≤ CX∗u +C(X∗u)1−K , u ∈ [t ,T1].

Recalling X∗, (X∗)−1 ∈ S p
t for any p ≥ 1, we deduce that e−β(·−t)∂x ˆ¯v(·,X

∗
· )θTX∗· ∈ S

p
t for any p ≥ 1, too. Hence, we

have

J(t ,W ∗
t ; τ∗ , c∗ , π∗) − x∗[W ∗

t − g(t)]

� Ɛ

{
e−β(τ

∗−t) v̂(τ∗ ,X∗τ∗)+
∫ τ∗

t
e−β(u−t)Û1(u ,X∗u) du

}
� Ɛ[e−β(t−t) v̂(t ,X∗t)]� v̂(t , x∗).

In the second equality, we have used a method similar to that in the above and the fact that

∂t v̂(u ,X∗u)+L v̂(u ,X∗u)�−Û1(u ,X∗u), for any u ∈ [t , τ∗],

which can be deduced by the definition of τ∗ and VI (19).
Until now, we have proved that for any (t ,w) ∈ M̃T1 ,

J(t ,W ∗
t ; τ∗ , c∗ , π∗)� v̂(t , x∗)+ x∗[W ∗

t − g(t)] ≥ inf
x>0
{v̂(t , x)+ x[W ∗

t − g(t)]}

� v̂(t , x̂∗)+ x̂∗[W ∗
t − g(t)], (26)

where x̂∗ � J v̂(t , g(t) −W ∗
t ).

On the other hand, recalling (16), (11) and (13), and applying Itô’s formula, we have

ˆ
¯
V(t , x)� Ɛ

[∫ T1

t
e−β(s−t)Ũ1(s ,Xs) ds + e−β(T

1−t) ˜
¯
v(T1 ,XT1)

]
+ x g(t)

� Ɛ

[
e−β(t−t) ˜

¯
v(t , x) −

∫ T1

t
e−β(s−t)∂x ˜

¯
v(s ,Xs)θTXs dBs

]
+ x g(t)� ˆ

¯
v (t , x), ∀ (t , x) ∈ Ñ T1 . (27)

Combining (17), (27), and VI (19), and applying Itô’s formula, we deduce that for any (t , w̃) ∈ M̃T1 , x > 0,
(τ, c , π) ∈A1(t , w̃),

J(t , w̃; τ, c , π) ≤ V(t , w̃) ≤ V̂(t , x)+ x[w̃ − g(t)]

≤ sup
τ∈Ut ,T

Ɛ

[∫ τ

t
e−β(s−t)Û1(s ,Xs) ds + e−β(τ−t) v̂(τ,Xτ)

]
+ x[w̃ − g(t)]

≤ sup
τ∈Ut ,T

Ɛ

[
e−β(t−t) v̂ (t , x) −

∫ τ

t
e−β(s−t)∂x v̂(s ,Xs)θTXs dBs

]
+ x[w̃ − g(t)]

� v̂(t , x)+ x[w̃ − g(t)].

Setting w̃ � W ∗
t , x � x̂∗, (τ, c , π) � (τ∗ , c∗ , π∗) in the inequality, and recalling (26), we deduce that for any

(t ,w) ∈ M̃T1 ,

J(t ,W ∗
t ; τ∗ , c∗ , π∗)� v̂(t , x∗)+ x∗[W ∗

t − g(t)]� inf
x>0
{v̂(t , x)+ x[W ∗

t − g(t)]}

� v̂(t , x̂∗)+ x̂∗[W ∗
t − g(t)]� V̂(t , x̂∗)+ x̂∗[W ∗

t − g(t)]� V(t ,W ∗
t ). (28)
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Since ∂xx v̂ > 0 a.e. in N T1 , we have

J v̂(t , g(t) −w)� x∗ � x̂∗ � J v̂(t , g(t) −W ∗
t ).

Since J v̂(t , g(t) − w) is strictly decreasing with respect to w for any t ∈ [0,T1], we conclude that w � W ∗
t and

W ∗ � W t ,w; τ∗ , c∗ , π∗ for any (t ,w) ∈ M̃T1 .
Finally, (27) and (28) imply the statements in (20) and (21). This completes the proof. �

Lemma 2. Suppose that the assumptions in Theorem 1 are satisfied. Then, the strategy π∗ in Theorem 1 is well defined
and can be constructed from the solution to BSDE (22), and (τ∗ , c∗ , π∗) ∈A1(t ,W ∗

t ).
Proof. We prove the existence of π∗. In fact, SDE (12) implies that X∗ ∈S p

t for any p ≥ 1. Denote Y∗ , 1/X∗; then
it is not difficult to deduce that Y∗ is governed by

Y∗s �
1
x∗

+

∫ s

t
(r − β+ |θ |2)Y∗u du +

∫ s

t
θTY∗u dBu , ∀ s ∈ [t ,T1].

Thus, we can claim that (X∗)−1 � Y∗ ∈ S p
t for any p ≥ 1. Hence, (3) implies that W ∗

T1 � JU2
(T1 ,X∗T1) ∈ Lp(F T1) for

any p ≥ 1. Repeating the same argument as in the above, we derive that c∗ ∈S p
t . Consider the following BSDE:

W ∗
s � W ∗

T1 −
∫ T1

s
[ZT

uθ+ rW ∗
u − c∗u + %I{u≤τ∗}] du −

∫ T1

s
ZT

u dBu , ∀ s ∈ [t ,T1]. (29)

It is clear that BSDE (29) has a unique solution (W ∗ ,Z) ∈S p
t ×L

p
t for any p ≥ 1. Since Σ is positive-definite, we

can get π∗ � (Σ−1)TZ ∈Lp
t for any p ≥ 1.

Next, we prove that (τ∗ , c∗ , π∗) ∈ A1(t ,W ∗
t ). In fact, since the ranges of the functions JUi

, i � 1, 2 are (0,+∞)
and c∗ ∈S p

t , π
∗ ∈Lp

t for any p ≥ 1, we deduce that∫ T1

t
c∗s + ‖π∗s ‖2ds <∞, W ∗

T1 > 0 a.s. in Ω, c∗s > 0, for any s ∈ [t ,T1] a.s. in Ω.

Recalling the definitions of c∗ and W ∗
T1 , we deduce that∫ T1

t
e−β(s−t)U1(s , c∗s) ds + e−β(T

1−t)U2(T1 ,W ∗
T1)

�

∫ T1

t
e−β(s−t)[X∗s c∗s + Ũ1(s ,X∗s)] ds + e−β(T

1−t)[X∗T1 W ∗
T1 + Ũ2(T1 ,X∗T1)]

≥
∫ T1

t
e−β(s−t)[X∗s c∗s +U1(s , c) −X∗s c] ds + e−β(T

1−t)[X∗T1 W ∗
T1 +U2(T1 , c) −X∗T1 c],

where we have used that Ũi(t , x) ≥Ui(t , c) − xc for any t ∈ [0,T1], x , c > 0, i � 1, 2. Combining this with the fact
that X∗, W ∗, c∗ ∈S p

t for any p ≥ 1 and that c is arbitrary, we have

Ɛ

[∫ T1

t
e−β(s−t)U−1 (s , c∗s) ds + e−β(T

1−t)U−2 (T1 ,W ∗
T1)

]
< +∞.

Moreover, it is not difficult to check that (W ∗ − g(·)I{s<τ∗} ,ΣTπ∗) satisfies the following BSDE:

W ∗
u − g(u)I{s<τ∗} � W ∗

T1 −
∫ T1

u

[
(π∗ξ)TΣθ+ r(W ∗

ξ − g(ξ)I{s<τ∗}) − c∗ξ − %I{τ∗<ξ≤T}I{s<τ∗}
]

dξ

−
∫ T1

u
(π∗ξ)TΣ dBξ

for any t ≤ s ≤ u ≤ T1. Since W ∗
T1 > 0, c∗ξ + %I{τ∗<ξ≤T}I{s<τ∗} > 0, applying the comparison theory for BSDEs, we

deduce that W ∗
u − g(u)I{s<τ∗} > 0 for any t ≤ s ≤ u ≤ T1. In particular, setting u � s, then we have W ∗

s − g(s)I{s<τ∗} > 0
for any s ∈ [t ,T1]. Hence, we have proved that (τ∗ , c∗ , π∗) ∈A1(t ,W ∗

t ). �
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4. Solution to the Variational Inequality
In this section, we consider PDE (13) and VI (19), and we prove that the unique solution V̂ and the lower
obstacle ˆ

¯
V of VI (19) satisfy the assumptions in Theorem 1. We will use ˜

¯
V , V̂ for solutions to PDE (13) and (19),

respectively, rather than for the value functions defined in (11) and (17). We will show that ˆ
¯
V , ˜

¯
V + x g(t) and V̂

satisfy the assumptions of ˆ
¯
v , v̂ in Theorem 1, and the theorem implies that ˜

¯
V , ˆ

¯
V , and V̂ are, respectively, equal

to those defined in (11), (16), and (17). Thus, our notation does not lead to any confusion.
We first show the properties of the solution to PDE (13), ˜

¯
V , in the following theorem. The properties of the

lower obstacle ˆ
¯
V will be derived from those of ˜

¯
V by its definition, ˆ

¯
V � ˜

¯
V + x g(t).

Theorem 2. PDE (13) has a unique solution ˜
¯
V satisfying the following properties:

(1) ˜
¯
V ∈ C∞(Ñ T1).

(2) ∂xx
˜
¯
V > 0 in Ñ T1 .

(3) ∂x
˜
¯
V(t , x) < 0 for any (t , x) ∈ Ñ T1 . Moreover, ∂x

˜
¯
V(t , x) → −∞ as x→ 0+, ∂x

˜
¯
V(t , x) → 0− as x→ +∞ for any

t ∈ [0,T1]. There exist positive constants C and K such that

|∂x
˜
¯
V(t , x)| ≤ C(1+ x−K), ∀ (t , x) ∈ Ñ T1 . (30)

Proof. (1) Since the differential operator is degenerate parabolic, we need the following transformation to prove
the existence of the classical solution of PDE (13):

z � ln x , ˇ
¯
V(t , z)� ˜

¯
V(t , x). (31)

Then, it is not difficult to deduce that ˇ
¯
V is governed by the following PDE:{
−∂t
ˇ
¯
V − L̃ ˇ

¯
V � Ũ1(t , e z), in [0,T1) ×�,

ˇ
¯
V(T1 , z)� Ũ2(T1 , e z), ∀ z ∈ �, (32)

where
L̃ ,
|θ |2

2 ∂zz +

(
β− r − |θ |

2

2

)
∂z − β,

which is a uniformly parabolic differential operator with constant coefficients. Moreover, recalling Lemma 1,
we deduce that the inhomogeneous term, Ũ1(t , e z), and the terminal value, Ũ2(t , e z), belong to C∞([0,T1]×�).
Hence, the regularity theory for PDEs (see, e.g., Lieberman [22]) implies that PDE (32) has a unique solution, ˇ

¯
V ∈

C∞([0,T1]×�). Recalling transformation (31), we deduce that PDE (13) has a unique solution ˜
¯
V ∈C∞(Ñ T1).

(2) We now prove ˜
¯
V is strictly convex. Differentiating PDE (13) twice with respect to x, we derive that ∂xx

˜
¯
V

satisfies {
−∂t(∂xx

˜
¯
V) −Lxx(∂xx

˜
¯
V)� ∂xxŨ1 > 0, in N T1 ,

∂xx
˜
¯
V(T1 , x)� ∂xxŨ2(T1 , x) > 0, ∀ x ∈ (0,+∞),

where
Lxx ,

|θ |2x2

2 ∂xx + (2|θ |2 + β− r) x∂x + (|θ |2 + β− 2r).

The strong maximum principle implies that ∂xx
˜
¯
V > 0 in Ñ T1 .

(3) Temporarily denoting Q � ∂x
˜
¯
V , and differentiating PDE (13) with respect to x, we have{
−∂tQ −LxQ � ∂xŨ1 , in N T1 ,

Q(T1 , x)� ∂xŨ2(T1 , x), ∀ x ∈ (0,+∞), (33)

where
Lx ,

|θ |2x2

2 ∂xx + (|θ |2 + β− r)x∂x − r.

Since ∂xŨi < 0 in Ñ T1 for any i � 1, 2, the strong maximum principle (see, e.g., Lieberman [22]) implies that

∂x
˜
¯
V � Q < 0, in N T1 .

Moreover, we deduce that ∂x
˜
¯
V(T1 , x) < 0 for any x > 0 by using the terminal value of PDE (33) and Lemma 1.
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Next, we prove that there exist positive constants C and K such that

|∂x
˜
¯
V(t , x)| � |Q(t , x)| ≤ C(xK

+ x−K), ∀ (t , x) ∈ Ñ T1 . (34)

In fact, it is clear that Q can be approximated by Qn , n � 2, . . ., which is the unique classical solution to the
following PDE: 

−∂tQn −LxQn � ∂xŨ1 , in N n
T1 , [0,T1) × (1/n , n),

Qn(T1 , x)� ∂xŨ2(T1 , x), ∀ x ∈ [1/n , n],
Qn(t , 1/n)� ∂xŨ2(t , 1/n), Qn(t , n)� ∂xŨ2(t , n), ∀ t ∈ [0,T1].

It is clear that Qn→Q in C(N m
T1) for any m � 2, . . .. Let us temporarily denote

¯
Q(t , x)�−CeK3(T1−t)(xK

+ x−K), ∀ (t , x) ∈ Ñ T1 ,

where C and K are positive constants defined later. A straightforward calculation shows

−∂t
¯
Q −Lx

¯
Q � CeK3(T1−t)

{[
−K3

+
|θ |2

2 K(K − 1)+ (|θ |2 + β− r)K − r
]
xK

+

[
−K3

+
|θ |2

2 K(K + 1) − (|θ |2 + β− r)K − r
]
x−K

}
.

Recalling (3) and Lemma 1, we deduce that ∂xŨi(t , x) ≥ −C(xK + x−K) for any (t , x) ∈ Ñ T1 , i � 1, 2, where we
have changed the constant C and let K be large enough such that K ≥ 1/k, and

K3 ≥ |θ |
2

2 K(K + 1)+ (|θ |2 + β+ r)K + 1.

Hence, we have
−∂t

¯
Q −Lx

¯
Q ≤ −C(xK + x−K) ≤ ∂xŨ1 �−∂tQn −LxQn , in N n

T1 ,

¯
Q(T1 , x)�−C(xK + x−K) ≤ ∂xŨ2(T1 , x)� Qn(T1 , x), ∀ x ∈ [1/n , n],

¯
Q(t , 1/n) ≤

¯
Q(T1 , 1/n) ≤ ∂xŨ2(t , 1/n)� Qn(t , 1/n),

¯
Q(t , n) ≤ ∂xŨ2(t , n)� Qn(t , n), ∀ t ∈ [0,T1].

The comparison principle for PDEs (see Tso [27]) implies that Qn ≥
¯
Q in N n

T1 for any n � 2, . . .. Note that
¯
Q is

independent of n, so we have Q ≥
¯
Q in Ñ T1 . Since Q < 0 in Ñ T1 , (34) is obvious.

Moreover, since ∂xx
˜
¯
V > 0 in Ñ T1 , we deduce that

∂x
˜
¯
V(t , x) ≥min{∂x

˜
¯
V(s , 1): s ∈ [0,T1]}, ∀ t ∈ [0,T1], ∀ x ≥ 1.

Combining (34) and ∂x
˜
¯
V < 0 in N T1 , we can obtain (30) if we change the constant C appropriately.

Next, we prove the asymptotic properties of Q. By slight abuse of notation, we will redefine
¯
Q temporarily

as follows:

¯
Q(t , x)�


λ2δ

λ1 − λ2

(
x

Kx̃

)λ1

− λ1δ

λ1 − λ2

(
x

Kx̃

)λ2

− δ, (t , x) ∈ [0,T1] × [x̃ ,Kx̃],

−2δ, (t , x) ∈ [0,T1] × (Kx̃ ,+∞),
where K, x̃,and δ are positive constants that will be determined later, and λ1 and λ2 are the positive and
negative roots, respectively, of the following algebraic equation:

|θ |2
2 λ(λ− 1)+ (|θ |2 + β− r)λ− r � 0. (35)

It is not difficult to check that
¯
Q(t ,Kx̃)�−2δ, ∂x

¯
Q(t ,Kx̃)� 0 for any t ∈ [0,T1], and

¯
Q ∈ C([0,T1] × [x̃ ,+∞))∩W2, 1

p , loc([0,T
1] × (x̃ ,+∞)), ∂x

¯
Q(t , x) > 0, for any (t , x) ∈ [0,T1] × [x̃ ,Kx̃),

and

−∂t
¯
Q −Lx

¯
Q �

{
−rδ, in [0,T1) × [x̃ ,Kx̃),
−2rδ, in [0,T1) × (Kx̃ ,+∞).
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Fix x̃, then take δ � max{−∂xŨ1(t , x̃)/r,−∂xŨ2(t , x̃)/2 : t ∈ [0,T1]}, and choose K large enough such that

¯
Q(t , x̃)� λ2δ

λ1 − λ2

(
1
K

)λ1

− λ1δ

λ1 − λ2

(
1
K

)λ2

− δ ≤ − λ1δ

λ1 − λ2
K−λ2 ≤min{Q(t , x̃): t ∈ [0,T1]}.

By the fact that Ũi is convex with respect to x, we deduce that
¯
Q satisfies

−∂t
¯
Q −Lx

¯
Q ≤ −rδ ≤ ∂xŨ1(t , x̃) ≤ ∂xŨ1(t , x)�−∂tQ −LxQ , in [0,T1) × (x̃ ,+∞),

¯
Q(T1 , x) ≤

¯
Q(T1 ,Kx̃)�−2δ ≤ ∂xŨ2(T1 , x̃) ≤ ∂xŨ2(T1 , x)� Q(T1 , x), ∀ x ∈ (x̃ ,+∞),

¯
Q(t , x̃) ≤min{Q(t , x̃): t ∈ [0,T1]} ≤ Q(t , x̃), ∀ t ∈ [0,T1].

Thus, the comparison principle for PDEs implies that Q ≥
¯
Q in [0,T1] × [x̃ ,+∞). Letting x→+∞, we have

lim inf
x→+∞

Q(t , x) ≥ lim
x→+∞ ¯

Q(t , x)�−2δ � min{2∂xŨ1(t , x̃)/r, ∂xŨ2(t , x̃): t ∈ [0,T1]}, ∀ t ∈ [0,T1], x̃ > 0.

Recalling Lemma 1, and letting x̃→+∞, we deduce that

lim inf
x→+∞

Q(t , x) ≥ 0, ∀ t ∈ [0,T1].

Combining this with the fact that Q ≤ 0 in Ñ T1 , we derive that for any t ∈ [0,T1],
lim

x→+∞
∂x

˜
¯
V(t , x)� lim

x→+∞
Q(t , x)� 0.

Let us temporarily denote

Q̄(t , x)�


δ

λ1 − λ2
[(λ1 − λ2) − (λ1Kλ2 − λ2Kλ1)], (t , x) ∈ [0,T1] × (0, x̃),

δ
λ1 − λ2

{[
λ1

(
x
x̃

)λ2

− λ2

(
x
x̃

)λ1 ]
− (λ1Kλ2 − λ2Kλ1)

}
, (t , x) ∈ [0,T1] × [x̃ ,Kx̃],

where, by slight abuse of notation, K is a constant large enough such that (λ1 − λ2) − (λ1Kλ2 − λ2Kλ1) < 0, x̃ and
δ are positive constants that will be determined later, and λ1 and λ2 are the same as previously defined.
It is not difficult to check that

Q̄ ∈ C([0,T1] × (0,Kx̃]) ∩W2, 1
p , loc([0,T

1] × (0,Kx̃)), ∂xQ̄(t , x) > 0, for any (t , x) ∈ [0,T1] × (x̃ ,Kx̃],

and

−∂tQ̄ −LxQ̄ �


−rδ
λ1 − λ2

[(λ1Kλ2 − λ2Kλ1) − (λ1 − λ2)], in [0,T1) × (0, x̃),

−rδ
λ1 − λ2

(λ1Kλ2 − λ2Kλ1 ), in [0,T1) × (x̃ ,Kx̃].

Fix x̃, then take

δ �
λ1 − λ2

λ1Kλ2 − λ2Kλ1
min

{
−∂xŨ1(t ,Kx̃)

r
, −∂xŨ2(t ,Kx̃): t ∈ [0,T1]

}
.

Combining this with the fact that Ũi is convex with respect to x, we deduce that Q̄ satisfies
−∂tQ̄ −LxQ̄ ≥ ∂xŨ1(t ,Kx̃) ≥ ∂xŨ1(t , x)�−∂tQ −LxQ , in [0,T1) × (0,Kx̃),

Q̄(T1 , x) ≥ Q̄(T1 , x̃) ≥ −δ(λ1Kλ2 − λ2Kλ1)
λ1 − λ2

≥ ∂xŨ2(T1 ,Kx̃) ≥ ∂xŨ2(T1 , x)� Q(T1 , x), ∀ x ∈ (0,Kx̃],

Q̄(t ,Kx̃)� 0 ≥ Q(t ,Kx̃), ∀ t ∈ [0,T1].

Thus, the comparison principle for PDEs implies that Q ≤ Q̄ in [0,T1] × (0,Kx̃]. Letting x→ 0+, we have

lim sup
x→0+

Q(t , x) ≤ lim
x→0+

Q̄(t , x)� (λ1 − λ2) − (λ1Kλ2 − λ2Kλ1)
λ1Kλ2 − λ2Kλ1

min
{
−∂xŨ1(t ,Kx̃)

r
,−∂xŨ2(t ,Kx̃): t ∈ [0,T1]

}
for any t ∈ [0,T1].

Recalling Lemma 1, and letting x̃→ 0+, we deduce that

Kx̃→ 0+ , lim
x→0+

∂x
˜
¯
V(t , x)� lim

x→0+
Q(t , x)�−∞, ∀ t ∈ [0,T1]. �
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Next, we state and prove the properties of the unique solution V̂ of VI (19) in the following theorem.

Theorem 3. VI (19) has a unique strong solution V̂ satisfying the following properties:
(1) V̂ ∈W2, 1

p , loc(N T) ∩C(Ñ T) for any p ≥ 1 and ∂xV̂ , ∂tV̂ ∈ C(Ñ T).
(2) ∂xV̂ < 0 in Ñ T . Moreover, ∂xV̂(t , x)→ −∞ as x→ 0+ , ∂xV̂(t , x)→ 0 as x→ +∞ for any t ∈ [0,T]. There exist

positive constants C, K such that
|∂xV̂(t , x)| ≤ C(1+ x−K), ∀ (t , x) ∈ Ñ T . (36)

(3) ∂xxV̂ > 0 a.e. in Ñ T .

To prove the theorem, we study properties of the following function:

P , V̂ − ˆ
¯
V � V̂ − ˜

¯
V − x g(t).

Recalling that ˜
¯
V satisfies PDE (13), we transform VI (19) into that of P:

−∂tP −LP � %x − l , if P > 0 and (t , x) ∈ N T ,

−∂tP −LP ≥ %x − l , if P � 0 and (t , x) ∈ N T ,

P(T, x)� 0, ∀ x > 0.
(37)

In VI (37), the lower obstacle becomes 0; thus we have transformed the problem into a problem where the
continuation value after retirement is 0. We will show the existence and uniqueness of a strong solution to
VI (37) and properties of the solution in the lemmas below. The following proof of Theorem 3 will be based on
the lemmas.

Proof of Theorem 3. (1) Since V̂ � P + ˆ
¯
V � P + ˜

¯
V + g(t)x in Ñ T and g(t) ∈ C∞([0,T]), V̂ ∈W2, 1

p , loc(N T) ∩ C(Ñ T) for
any p ≥ 1. Conclusion 1 in Theorem 2 and the fact ∂xP ∈ C(Ñ T) (proved in Lemma 3) imply ∂xV̂ ∈ C(Ñ T). Also,
∂tV̂ ∈ C(Ñ T) follows from conclusion 1 in Theorem 2 and the fact ∂tP ∈ C(Ñ T) (proved in Lemma 4).
(2) The fact that ∂xV̂ < 0 in Ñ T is deduced from conclusion 3 in Theorem 2 and the fact that ∂xP(t , x) ≤ −g(t)

for any (t , x) ∈ Ñ T (proved in Lemma 5). By the fact that P ≡ 0 in the domain [0,T)×(0, x∞] (proved in Lemma 5),
we deduce that ∂xP(t , x) → 0 as x → 0+. Moreover, the fact that ∂xP(t , x) ≥ 0 and ∂xP(t , x) ≤ −g(t) for any
(t , x) ∈ Ñ T (proved in Lemmas 3 and 5) implies that ∂xP is bounded in Ñ T . Hence, conclusion 3 in Theorem 2
and the fact that ∂xP(t , x) → −g(t) as x→ +∞ for any t ∈ [0,T] (proved in Lemma 5) imply the asymptotic
properties of ∂xV̂ and (36).
(3) ∂xxV̂ > 0 comes from conclusion 2 in Theorem 2 and the fact that ∂xxP ≥ 0 a.e. in Ñ T (proved in Lemma 5). �

Lemma 3. VI (37) has a unique strong solution P satisfying the following properties:
(1) P ∈W2, 1

p , loc(N T) ∩C(Ñ T) for any p ≥ 1 and ∂xP ∈ C(Ñ T).
(2) ∂xP ≥ 0 in Ñ T and ∂tP ≤ 0 a.e. in Ñ T .

Proof. (1) Repeating the same transformation as in (31), the degenerate parabolic differential operator L is
transformed into a constant coefficient nondegenerate parabolic differential operator, L̃. Note that the inhomo-
geneous term %x − l, the lower obstacle 0, and the terminal condition 0, are smooth. Thus, it is not difficult
to prove that VI (37) has a unique solution P ∈W2, 1

p , loc(N T) ∩ C(Ñ T) for any p ≥ 1, and ∂xP ∈ C(Ñ T) (see, e.g.,
Friedman [13] or Yan et al. [30]).
(2) Next, we prove that ∂xP ≥ 0 in Ñ T . Let us temporarily denote P̃(t , x)� P(t , δx) with δ > 1; then we deduce

that
∂t P̃(t , x)� ∂tP(t , δx), x∂x P̃(t , x)� (δx)∂xP(t , δx), x2∂xx P̃(t , x)� (δx)2∂xxP(t , δx),

and
(∂t P̃ +LP̃)(t , x)� (∂tP +LP)(t , δx).

So P̃ satisfies 
−∂t P̃ −LP̃ � %δx − l , if P̃ > 0 and (t , x) ∈ N T ,

−∂t P̃ −LP̃ ≥ %δx − l , if P̃ � 0 and (t , x) ∈ N T ,

P̃(T, x)� 0, ∀ x > 0.

Since %δx − l ≥ %x − l for any δ > 1, x > 0, and the terminal values and the lower obstacles in VIs of P̃
and P are the same, the comparison principle for VIs (see, e.g., Friedman [13] or Yan et al. [30]) implies that
P(t , δx)� P̃(t , x) ≥ P(t , x) for any δ > 1 and (x , t) ∈ Ñ T . Hence, we deduce that ∂xP ≥ 0 in Ñ T .
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Let us temporarily denote P̂(t , x) � P(t − δ, x) with δ > 0 being sufficiently small. Then, it is not difficult to
deduce that P̂ satisfies

−∂t P̂ −LP̂ � %x − l , if P̂ > 0 and (t , x) ∈ N T, δ , [δ,T) × (0,+∞),
−∂t P̂ −LP̂ ≥ %x − l , if P̂ � 0 and (t , x) ∈ N T, δ ,

P̂(T, x)� P(T − δ, x) ≥ 0, ∀ x > 0.

Since P̂(T, x) ≥ P(T, x) for any δ > 0, x > 0, and the lower obstacles and the inhomogeneous terms in VIs of P̂
and P are the same, the comparison principle for VIs implies that P(t − δ, x) � P̂(t , x) ≥ P(t , x) for any δ > 0,
(x , t) ∈ N T, δ. Hence, we deduce that ∂tP ≤ 0 a.e. in Ñ T . �

Note, in particular, that ∂tP ≤ 0 in Lemma 3. It is monotonically decreasing in time.
Since ∂xP ≥ 0 in Ñ T , P is increasing with respect to x, and the following free boundary (the optimal retirement

boundary) is well defined:
Rx(t) , inf{x ≥ 0: P(t , x) > 0}, ∀ t ∈ [0,T).

We will show that Rx is increasing in the interval [0,T) in Lemma 6. Thus the left-hand limit of Rx(t) as t→ T
exists, and Rx(T) is well defined as the limit,

Rx(T) , lim
t→T−

Rx(t).

Moreover, we can define the working region (WRx) and the retirement region (RRx) as follows:

WRx � {(t , x): x > Rx(t), t ∈ [0,T)}, RRx � {(t , x): 0 < x ≤ Rx(t), t ∈ [0,T)}.

Note that if the initial (t , x) ∈WRx , then P(t , x) > 0 (i.e., V̂(t , x) > ˆ
¯
V(t , x)). The definition of τ∗ in Theorem 1

implies that τ∗ > t a.s. in Ω (i.e., the agent chooses to work). As time passes, s > t, before the trajectory of the
dual variable process X∗s first hits the optimal retirement boundary Rx(s), (s ,X∗s) ∈WRx , and τ∗ > s (i.e., the
agent keeps working). If X∗s hits Rx(s), then (s ,X∗s) ∈ RRx , τ

∗ � s, and the agent chooses to retire. If the initial
(t , x) ∈RRx , however, then P(t , x)� 0 (i.e., V̂(t , x)� ˆ

¯
V(t , x)). The definition of τ∗ in Theorem 1 implies that τ∗ � t

a.s. in Ω (i.e., the agent chooses to retire).
Since we have proved that ∂tP ≤ 0 a.e. in Ñ T ; the coefficient functions in the parabolic differential operator L;

and the terminal value function, the lower obstacle function, and the inhomogeneous term are all smooth, it is
not difficult to deduce the following regularity results by using a standard method as explained in Friedman [12].
We omit its proof.
Lemma 4. The optimal retirement boundary is smooth (i.e., Rx ∈C∞[0,T)∩C[0,T]). Moreover, the solution P≡0 in RRx ,
and P ∈ C∞({(t , x): x ≥ Rx(t), t ∈ [0,T]}), and ∂tP ∈ C(Ñ T).
Next, we state and prove the following lemma about P, which will lead us to the proof of Theorem 3.

Lemma 5. (1) P ≡ 0 in the domain [0,T) × (0, x∞], where x∞ is defined in (38). And P(t , x) > 0 in the domain [0,T) ×
(xT ,+∞) with xT , l/%. Hence, x∞ ≤ Rx ≤ xT in [0,T].

(2) ∂xP(t , x) ≤ −g(t) for any (t , x) ∈ Ñ T . Moreover, ∂xP(t , x)→−g(t) as x→+∞ for any t ∈ [0,T].
(3) ∂xxP ≥ 0 a.e. in Ñ T .

Proof. (1) First, we prove that P ≡ 0 in the domain [0,T) × (0, x∞]. Let us denote

P∞(t , x) ,


0, (t , x) ∈ [0,T] × (0, x∞),

l
β(1− λ4)

(
x

x∞

)λ4

+
%x
r
− l
β
, (t , x) ∈ [0,T] × [x∞ ,+∞),

where
x∞ ,

−rlλ4

%β(1− λ4)
, (38)

and λ3 and λ4 are, respectively, the positive and negative roots of the following algebraic equation:

|θ |2
2 λ(λ− 1)+ (β− r)λ− β � 0.

It is not difficult to check that

P∞ ∈ C(Ñ T) ∩W2, 1
p , loc(N T), ∂xxP∞(t , x) > 0, for any (t , x) ∈ [0,T] × (x∞ ,+∞),
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and

−∂tP
∞ −LP∞ �

{
0, in [0,T) × (0, x∞),
%x − l , in [0,T) × (x∞ ,+∞).

Since λ4 < 0 and

β(λ4 − 1) − rλ4 � (β− r)λ4 − β �
−|θ |2

2 λ4(λ4 − 1) < 0,

we have x∞ < l/% and
−∂tP

∞ −LP∞ ≥ %x − l , in N T .

Recalling ∂xP∞(t , x∞) � P∞(t , x∞) � 0 for any t ∈ [0,T], and ∂xxP∞ > 0 in [0,T] × (x∞ ,+∞), we deduce that
P∞ > 0 in [0,T] × (x∞ ,+∞).
Hence, P∞ satisfies the following VI:

−∂tP∞ −LP∞ � %x − l , if P∞ > 0 and (t , x) ∈ N T ,

−∂tP∞ −LP∞ ≥ %x − l , if P∞ � 0 and (t , x) ∈ N T ,

P∞(T, x) ≥ 0, ∀ x > 0.

Thus, the comparison principle for VIs implies that P ≤ P∞ in Ñ T . In particular,

0 ≤ P ≤ P∞ ≤ 0, in [0,T] × (0, x∞).

Hence, the definition of the optimal retirement boundary Rx implies that Rx ≥ x∞ in [0,T].
Next, we prove that P > 0 in the domain [0,T) × (xT ,+∞). In fact, VI (37) implies that in the domain RRx ,

P � 0, 0 �−∂tP −LP ≥ %x − l.

So we deduce that RRx ⊂ [0,T) × (0, xT]. Hence, it is clear that {(t , x): P(t , x) > 0} �WRx ⊃ [0,T) × (xT ,+∞). The
definition of the optimal retirement boundary Rx implies that Rx ≤ xT in [0,T].

(2) Next, we consider the property of ∂xP. It is clear that P satisfies{
−∂tP −LP � %x − l , in WRx ,

P(T, x)� 0, ∀ x ≥ Rx(T), P(t ,Rx(t))� 0, ∀ t ∈ [0,T]. (39)

Temporarily denoting Q � ∂xP + g(t), we have{
−∂tQ −LxQ � 0, din WRx ,

Q(T, x)� 0, ∀ x ≥ Rx(T), Q(t ,Rx(t))� g(t) ≤ 0, ∀ t ∈ [0,T], (40)

where we have used the fact ∂xP is continuous on [0,T]× (0,+∞), and, in particular, it continuously crosses the
optimal retirement boundary x � Rx(t).
Applying the comparison principle for PDEs, we deduce that Q ≤ 0 and ∂xP ≤ −g(t) in WRx . Moreover, it is

clear that ∂xP � 0 ≤ −g(t) in RRx . Hence, we conclude that ∂xP ≤ −g(t) in N T . In addition, ∂xP(T, x)� 0�−g(T)
follows from the terminal condition of VI (37). We thus have proved that ∂xP ≤ −g(t) in Ñ T .

Let us temporarily denote

¯
Q(t , x)� g(0)

(
x
xT

)λ2

, ∀ x > 0,

where λ2 is the negative root of (35).
Then we can check that

−∂t
¯
Q −Lx

¯
Q � 0 �−∂tQ −LxQ , in WRx ,

¯
Q(T, x) ≤ 0 � Q(T, x), ∀ x ≥ Rx(T),

¯
Q(t ,Rx(t))� g(0)

(
Rx(t)

xT

)λ2

≤ g(0) ≤ g(t)� Q(t ,Rx(t)), ∀ t ∈ [0,T],

where we have used the fact that Rx ≤ xT . Thus, the comparison principle for PDEs implies that Q ≥
¯
Q in WRx .

Combining this with the fact that Q ≤ 0 in WRx , we conclude that
¯
Q ≤ Q ≤ 0 and

Q(t , x)→ 0, ∂xP(t , x)� Q(t , x) − g(t)→−g(t), as x→+∞, ∀ t ∈ [0,T].
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(3) Differentiating PDE (39) twice with respect to x, we deduce that ∂xxP satisfies{
−∂t∂xxP −Lxx∂xxP � 0 in WRx ,

∂xxP(T, x)� 0, ∀ x ≥ Rx(T).

Moreover, we have P, ∂xP, and ∂tP ∈ C(Ñ T) from Lemmas 3 and 4. So on the optimal retirement boundary
x � Rx(t), t ∈ [0,T), we have P(t , x)� ∂xP(t , x)� ∂tP(t , x)� 0 and

∂xxP(t , x)� 2
|θ |2x2 (∂tP +LP)(t , x)� 2(l − %x)

|θ |2x2 ≥
2(l − %xT)
|θ |2x2 � 0.

Applying the comparison principle for PDEs, we deduce that ∂xxP ≥ 0 in WRx . Combining this with the fact
that P � 0 in RRx , we conclude that ∂xxP ≥ 0 a.e. in Ñ T . �
Remark 10. By Theorem 2 and 3, all the assumptions in Theorem 1 are satisfied by V̂ and ˆ

¯
V . Hence, the agent’s

optimal strategy and value function are given as in Theorem 1. It turns out that the optimal consumption is
a continuous stochastic process, since ∂xV̂ is continuous. This implies, in particular, that the agent’s optimal
consumption does not jump at the time of retirement.
Next, we finish the section with a lemma about the optimal retirement boundary Rx(t).

Lemma 6. The optimal retirement boundary, x � Rx(t), t ∈ [0,T], is strictly increasing with the terminal point Rx(T) ,
limt→T− Rx(t) � xT (see Figure 1). In addition, x∞ < Rx(t) < xT for any t ∈ [0,T), where xT and x∞ are defined in
Lemma 5.

Proof. By Lemma 3, we have

∂xP ≥ 0, ∂tP ≤ 0 a.e. in N T , P ∈ C([0,T] × (0,+∞)).

So we deduce that P is decreasing with respect to t and increasing with respect to x.
For any fixed t0 ∈ [0,T) and any x ∈ [0,Rx(t0)], t ∈ (t0 ,T], we deduce that

0 ≤ P(t , x) ≤ P(t ,Rx(t0)) ≤ P(t0 ,Rx(t0))� 0,

where we have used that P � 0 on the optimal retirement boundary x � Rx(t). Hence, the definition of the
optimal retirement boundary implies that Rx(t) ≥ Rx(t0) for any 0 ≤ t0 ≤ t ≤ T. Hence, Rx is increasing on [0,T].
Since Rx is increasing, the limit, Rx(T), of Rx(t) as t→ T− exists. Next, we prove that the limit is equal to xT .

Recalling property 1 in Lemma 5, we know that Rx ≤ xT in [0,T]. So it is sufficient to prove that Rx(T) ≥ xT .
Otherwise, Rx(T) < xT , and [0,T) × (Rx(T), xT) ⊂WRx (see Figure 2). Recalling (39), we can show the following
by computation:

∂tP(T, x)�−LP(T, x) − %x + l �−%x + l > 0, ∀ x ∈ (Rx(T), xT).
On the other hand, we know that ∂tP ≤ 0 a.e. in N T from Lemma 3, and P ∈ C∞({(t , x): x ≥ Rx(t), t ∈ [0,T]})
from Lemma 4. So we have ∂tP(T, x) ≤ 0 for any x ∈ (Rx(T), xT). Hence, we obtain a contradiction and thus have
proved that Rx(T) ≥ xT , and Rx(T)� xT .

Figure 1. The Optimal Retirement Boundary
x � Rx(t)

t

x∞
xT

T

RRx

WRx

Rx(t)

x

Figure 2. Nonstrictly-Increasing Optimal
Retirement Boundary

t

x

Rx(T )

T

x∞ x1

t1

t2

RRx WRx

Rx(t)

xT
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Next, we prove that Rx is strictly increasing on [0,T]. Otherwise, there exist constants x1, t1, and t2 such that
x1 ∈ [x∞ , xT], 0 ≤ t2 < t1 ≤ T, and Rx(t) � x1 for any t ∈ [t2 , t1] (see Figure 2). It is clear that P(t , x) � 0 for any
(t , x) ∈ [t2 , t1] × (0, x1]. Since ∂xP continuously crosses the optimal retirement boundary, ∂xP(t , x1) � 0 for any
t ∈ [t2 , t1]. We then deduce that

∂tP(t , x1)� 0, ∂t(∂xP)(t , x1)� 0, ∀ t ∈ [t2 , t1]. (41)

On the other hand, in the domain [t2 , t1) × (x1 ,+∞), P and ∂tP respectively satisfy

−∂tP −LP � %x − l in [t2 , t1) × (x1 ,+∞), P(t , x1)� 0, ∀ t ∈ (t2 , t1),{
−∂t∂tP −L∂tP � 0, ∂tP ≤ 0, in [t2 , t1) × (x1 ,+∞),
∂tP(t , x1)� 0, ∀ t ∈ (t2 , t1).

By applying the Hopf lemma (see Evans [8]), we deduce ∂x(∂tP)(t , x1)< 0, which contradicts the second equality
in (41).
Since x∞ ≤ Rx ≤ xT �Rx(T), and Rx is strictly increasing, we conclude that x∞ < Rx(t)< xT for any t ∈ [0,T). �

Remark 11. The proof of Lemma 6 shows that the optimal retirement boundary x � Rx(t) is independent of the
utility function after retirement. In other words, if we look at the agent’s problem through his or her marginal
utility of wealth, then the optimal retirement boundary, expressed in marginal utility, does not depend on the
agent’s utility function after retirement. The utility function after retirement influences the agent’s choice only
by affecting his or her marginal utility of wealth at initial time, not through other channels.

5. Optimal Retirement Threshold
In the previous section, we studied the properties of the convex dual function V̂ as a solution to PDE/VI. We
used (t , x), where t denotes time and x denotes marginal utility, as the coordinate system for the study. In
this section we will come back to study the value function V in the original coordinate system (t ,w), where w
denotes the wealth of the agent. For this purpose, we redefine the working domain and the retirement domain,
and we define the optimal retirement threshold in the (t ,w)-coordinate system.

Recalling Theorem 1, we know that x∗(t ,w) � J V̂(t ,−w + g(t)) is continuous and strictly decreasing with
respect to w in M̃T1 , and it is a bĳection from (g(t),+∞) to (0,+∞) for any t ∈ [0,T1]. So for any t ∈ [0,T1], x∗(t , ·)
has an inverse function w∗(t , ·), which is continuous, is strictly decreasing, and maps (0,+∞) to (g(t),+∞).
Let us define

Rw(t) , w∗(t ,Rx(t)), ∀ t ∈ [0,T], (42)
RRw , {(t ,w) ∈MT : (t , x∗(t ,w)) ∈RRx}, WRw , {(t ,w) ∈MT : (t , x∗(t ,w)) ∈WRx}.

Then, RRw , WRw , and w � Rw(t) represent the retirement region, the working region, and the optimal retire-
ment threshold in the (t ,w)-coordinate system, respectively. Moreover,

WRw � {(t ,w): g(t) < w < Rw(t), t ∈ [0,T)}, RRw � {(t ,w): w ≥ Rw(t), t ∈ [0,T)}.

If the trajectory of the wealth process W ∗
s stays in WRw , then the trajectory of the dual process X∗s stays in

WRx and the agent chooses to work. If, however, the trajectory of the wealth process W ∗
s reaches RRw , then the

trajectory of the dual variable process X∗s reaches RRx and the agent chooses to retire. The optimal retirement
threshold is such that the agent retires as soon as the wealth process reaches the threshold.
We now state and prove properties of the value function in the following theorem.

Theorem 4. The value function V satisfies the following properties:
(1) V ∈W2, 1

p , loc(MT1) for any p ≥ 1, and V , ∂wV ∈ C(M̃T1), ∂tV ∈ C(M̃T). Moreover, V is piecewise smooth—that is,
V ∈ C∞({(t ,w): g(t) < w ≤ Rw(t), t ∈ [0,T)}) ∩C∞(RRw) ∩C∞([T,T1] × (0,+∞)), where MT1 , M̃T1 , and M̃T are defined
in (8).
(2) ∂wV > 0 in M̃T1 . Moreover, ∂wV(t ,w)→+∞ as w→ g(t)+, and ∂wV(t ,w)→ 0+ as w→+∞ for any t ∈ [0,T1].
(3) ∂wwV < 0 a.e. in M̃T1 .
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Figure 3. The Optimal Retirement Threshold w � Rw(t)

t

w

T1

T

RRw

WRw

–�xV(T, xT)˜

Rw(t)

W

Proof. (1) Recalling conclusion 3 in Theorem 3, conclusion 2 in Theorem 2, and V̂ � ˜
¯
V in [T,T1] × (0,+∞), we

claim that ∂xxV̂ > 0 a.e. in Ñ T1 . By conclusion 1 in Theorem 3, we conclude that V̂ ∈W2, 1
p , loc(N T) for any p ≥ 1,

and V̂ , ∂xV̂ ∈ C(Ñ T), ∂tV̂ ∈ C(Ñ T).
Recalling ˜

¯
V ∈ C∞(Ñ T1) (by conclusion 1 in Theorem 2) and the fact that

V̂ � ˜
¯
V +P + x g(t) in Ñ T , V̂ � ˜

¯
V in [T,T1] × (0,+∞), P(T, x)� g(T)� 0,

we deduce that V̂ , ∂xV̂ ∈ C(Ñ T1). Moreover, combining this fact with Lemma 4, we have that V̂ ∈ C∞({(t , x): x ≥
Rx(t), t ∈ [0,T)}) ∩C∞(RRx) ∩C∞([T,T1] × (0,+∞)).
Combining the above regularity properties with (21) allows us to compute the following partial derivatives:

∂tV(t ,w)� ∂tV̂(t , x∗(t ,w))+ [∂xV̂(t , x∗(t ,w)) − g(t)+ w]∂t x
∗(t ,w) − x∗(t ,w)g′(t)

� ∂tV̂(t , x∗(t ,w)) − x∗(t ,w)g′(t),
∂wV(t ,w)� x∗(t ,w), (43)

∂wwV(t ,w)� ∂w x∗(t ,w)� −1
∂xxV̂(t , x∗(t ,w))

, . . . , (44)

where we have used the fact that ∂xV̂(t , x∗(t ,w)) � g(t) − w. Hence, the results about the regularity of V are
obvious.
(2) Since ∂wV(t ,w)� x∗(t ,w)� J V̂(t , g(t)−w) and g(t) ≡ 0 for any t ∈ [T,T1], Theorem 1 implies all the results

in conclusion 2.
(3) Recalling (44) and ∂xxV̂ > 0 a.e. in Ñ T1 , we deduce that ∂wwV < 0 a.e. in M̃T1 . �

The optimal retirement threshold in the primal (t ,w)-coordinate system is illustrated in Figure 3.
We now state and prove properties of the optimal retirement threshold in the (t ,w)-coordinate system.

Theorem 5. (1) The optimal retirement threshold is given by w �Rw(t)�−∂x
˜
¯
V(t ,Rx(t)), and Rw ∈C∞([0,T))∩C([0,T])

with the terminal point Rw(T) , limt→T− Rw(t)�−∂x
˜
¯
V(T, xT). And W < Rw < W̄ in [0,T), where

W �−max{∂x
˜
¯
V(t , xT): t ∈ [0,T]}, W̄ �−min{∂x

˜
¯
V(t , x∞): t ∈ [0,T]}, (45)

and xT and x∞ are defined in Lemma 5. Moreover, Rw is strictly decreasing near the terminal time T with limt→T− R′w(t)
�−∞.
(2) The optimal consumption c∗t(t ,w) � JU1

(t , x∗(t ,w)) for any (t ,w) ∈ M̃T1 , where x∗(t ,w) is defined in Theo-
rem 1. The optimal consumption function c∗t ∈ C(M̃T1) and is strictly increasing with respect to w. Moreover, for any
t ∈ [0,T1), c∗t(t ,w)→ 0+ as w→ g(t)+, and c∗t(t ,w)→+∞ as w→+∞.
(3) The optimal investment is

π∗t(t ,w)� x∗(t ,w)∂xxV̂(t , x∗(t ,w))(ΣT)−1θ, and θTΣTπ∗t > 0 in M̃T1 .
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Proof. (1) Recalling (42), we know that Rw(t)� w∗(t ,Rx(t)), where w∗(t , ·) is the inverse function of x∗(t , ·).
Since x∗(t ,w) � J V̂(t ,−w + g(t)), we have ∂xV̂(t , x∗(t ,w)) � −w + g(t). Taking w � w∗(t , x), we can show by

computation
∂xV̂(t , x)� ∂xV̂(t , x∗(t ,w∗(t , x)))�−w∗(t , x)+ g(t), ∀ (t , x) ∈ Ñ T1 .

Hence, we deduce that w∗(t , x)� g(t) − ∂xV̂(t , x) for any (t , x) ∈ Ñ T1 . So we have

Rw(t)� w∗(t ,Rx(t))� g(t) − ∂xV̂(t ,Rx(t))� g(t) − ∂x(P + ˆ
¯
V)(t ,Rx(t))

� g(t) − ∂x[P + ˜
¯
V + g(t)x]x�Rx (t) �−∂x

˜
¯
V(t ,Rx(t)), ∀ t ∈ [0,T],

where we have used the fact that ∂xP(t ,Rx(t))� 0 for any t ∈ [0,T].
Since Rx ∈ C∞([0,T)) ∩C([0,T]) and ˜

¯
V ∈ C∞(Ñ T1), we deduce that Rw ∈ C∞([0,T)) ∩C([0,T]), too.

It is clear that
Rw(T)�−∂x

˜
¯
V(T,Rx(T))�−∂x

˜
¯
V(T, xT).

From Lemma 6, we have that xT < Rx(t) < x∞ for any t ∈ [0,T). Combining this with the fact that ∂x
˜
¯
V(t , x) is

strictly increasing with respect to x, we deduce that

−∂x
˜
¯
V(t , xT) < Rw(t) < −∂x

˜
¯
V(t , x∞), ∀ t ∈ [0,T).

And (45) is obvious.
Next, we prove that Rw(t) is strictly decreasing near the terminal time T with limt→T− R′w(t)�−∞. Differenti-

ating (39) with respect to x, we can show that

∂txP �−Lx(∂xP) − % in {(t , x): x ≥ Rx(t), t ∈ [0,T]}.

Recalling (33), we have

−∂tx
˜
¯
V � ∂xŨ1 +Lx∂x

˜
¯
V in {(t , x): x ≥ Rx(t), t ∈ [0,T]}.

Since ∂xP continuously crosses the optimal retirement boundary x � Rx(t) and P � 0 in RRx , we have
∂xP(t ,Rx(t))� 0 for any t ∈ [0,T]. So we have

∂txP(t ,Rx(t))+ ∂xxP(t ,Rx(t))R′x(t)� 0 ⇒ R′x(t)�−
∂txP(t ,Rx(t))
∂xxP(t ,Rx(t))

�
Lx(∂xP)(t ,Rx(t))+ %

∂xxP(t ,Rx(t))
.

Then, it is clear that for any t ∈ [0,T),

R′w(t)�−∂tx
˜
¯
V(t ,Rx(t)) − ∂xx

˜
¯
V(t ,Rx(t)),R′x(t)

� ∂xŨ1(t ,Rx(t))+Lx(∂x
˜
¯
V)(t ,Rx(t)) − ∂xx

˜
¯
V(t ,Rx(t))

Lx(∂xP)(t ,Rx(t))+ %
∂xxP(t ,Rx(t))

.

Letting t→ T−, we have

R′w(t)→ ∂xŨ1(T,Rx(T))+Lx(∂x
˜
¯
V)(T,Rx(T)) − ∂xx

˜
¯
V(T,Rx(T))

Lx0+ %
0+

�−∞,

where we have used the terminal conditions of P, ∂xŨ1 < 0, ∂xx
˜
¯
V > 0, and ∂xxP ≥ 0 in Ñ T1 and ˜

¯
V ∈ C∞(Ñ T1).

Thus, R′w(t) is negative for every t sufficiently close to terminal time T, and the optimal retirement threshold Rw
is strictly decreasing near the terminal time.
(2) Recalling Theorem 1, we know that optimal consumption is given by c∗ � JU1

(·,X∗· ) ∈ S
p
t . So we have

c∗t � JU1
(t , x∗), and thus, c∗t(t ,w)� JU1

(t , x∗(t ,w)) in the (t ,w)-coordinate system.
Since x∗(t ,w) ∈ C(M̃T1) and JU1

(t , x) ∈ C(Ñ T1), we know that c∗t(t ,w) ∈ C(M̃T1).
Note that x∗(t ,w) is strictly decreasing with respect to w, and JU1

(t , x) is strictly decreasing with respect to x.
Then, we can deduce that c∗t(t ,w) is strictly increasing with respect to w.

Since x∗(t ,w)→+∞ as w→ g(t)+, and JU1
(t , x)→ 0+ as x→+∞, c∗t(t ,w)→ 0+ as w→ g(t)+.

Since x∗(t ,w)→ 0+ as w→+∞, and JU1
(t , x)→+∞ as x→ 0+, we deduce that c∗t(t ,w)→+∞ as w→+∞.
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(3) It is clear that the value function V satisfies the following HJB equation (see, e.g., Yong and Zhou [32]):

sup
π∈�, c>0

{
∂tV +

1
2π

TΣΣTπ∂wwV + [πTΣθ+ rw − c + %I{w<Rw (t)}]∂wV − βV +U1(t , c) − l I{w<Rw (t)}
}
� 0.

So the optimal investment is given by

π∗t(t ,w)�
−∂wV(t ,w)
∂wwV(t ,w) (Σ

T)−1θ � x∗(t ,w)∂xxV̂(t , x∗(t ,w))(ΣT)−1θ in M̃T1 ,

where we have used (43) and (44) in the second equality.
Finally, a straightforward compuation shows that

θTΣTπ∗t(t ,w)� x∗(t ,w)∂xxV̂(t , x∗(t ,w))|θ |2 > 0, ∀ (t ,w) ∈ M̃T1 . �

Remark 12. It is possible to prove that Rw( · ) is decreasing with respect to t in [0,T] under a restrictive
assumption—for example, the assumption that ∂txŨ1 ≤ 0 in Ñ T1 and ∂xŨ1(T, x)+Lx∂xŨ2(T, x) ≤ 0 for any x > 0.
Such an assumption, however, is rather technical, and hence, it is an interesting open question left for future
research to find an essential condition to ensure that Rw( · ) is monotonic.

6. Comparative Static Analysis
In this section we conduct comparative static analysis with respect to important model parameters. First, we
analyze the effect of the rate, %, of labor income on the agent’s optimal strategy.

Theorem 6. The value function V , the optimal retirement threshold Rw , and the optimal consumption c∗t are increasing
with respect to %.

Proof. Suppose %1 > %2. Denote V, V̂, . . . for the case % � % i by Vi , V̂i , . . . , i � 1, 2.
From VI (19) and (16), we know that V̂ − x g(t) satisfies the following VI:

−∂t(V̂ − x g(t)) −L(V̂ − x g(t))� Ũ1 − l + %x , if V̂ − x g(t) > ˜
¯
V and (t , x) ∈ N T ,

−∂t(V̂ − x g(t)) −L(V̂ − x g(t)) ≥ Ũ1 − l + %x , if V̂ − x g(t)� ˜
¯
V and (t , x) ∈ N T ,

V̂(T, x) − x g(T)� ˜
¯
V(T, x), ∀ x ∈ (0,+∞),

(46)

where Ũ1 is independent of %, and ˜
¯
V satisfies PDE (13), which is independent of %. So we deduce that ˜

¯
V1 �

˜
¯
V2

in Ñ T1 . Since Ũ1 − l + %1x > Ũ1 − l + %2x, the comparison principle for VIs implies that V̂1 − x g1(t) ≥ V̂2 − x g2(t)
in Ñ T . Recalling the extension of V̂ to (T,T1] × (0,+∞) in Remark 9, we deduce that

V̂1(t , x) − x g1(t)� V̂1(t , x)� ˜
¯
V1(t , x)� ˜

¯
V2(t , x)� V̂2(t , x)� V̂2(t , x) − x g2(t), ∀ (t , x) ∈ (T,T1] × (0,+∞).

Hence, V̂1 − x g1(t) ≥ V̂2 − x g2(t) in Ñ T1 .
Since Vi(t ,w)� infx>0[V̂i(t , x) − x(gi(t) −w)] in M̃T1 , i , i � 1, 2, we have V1 ≥ V2 in M̃T1 , 2 � M̃T1 , 1 ∩ M̃T1 , 2.
Consider VI (37). Since %1x − l > %2x − l, the comparison principle for VIs implies that P1 ≥ P2, and {P1 > 0} ⊃
{P2 > 0}. Hence, the definition of the optimal retirement boundary implies that Rx , 1 ≤ Rx , 2.
Consider PDE (33), which is independent of %. So we deduce that −∂x

˜
¯
V1 �−∂x

˜
¯
V2 in Ñ T1 . Since −∂x

˜
¯
V1(t , x) is

decreasing with respect to x, we derive that Rw , 1 ≥ Rw , 2 by Theorem 5.
Recalling (39), we have{

−∂t∂xP1 −Lx∂xP1 � %1 , in WRx , 2 ,

∂xP1(T, x)� 0, ∀ x ≥ Rx , 2(T), ∂xP1(t ,Rx , 2(t)) ≥ 0, ∀ t ∈ [0,T],

and {
−∂t∂xP2 −Lx∂xP2 � %2 , in WRx , 2 ,

∂xP2(T, x)� 0, ∀ x ≥ Rx , 2(T), ∂xP2(t ,Rx , 2(t))� 0, ∀ t ∈ [0,T],
where we have used the fact that ∂xP ≥ 0, Rx , 1 ≤ Rx , 2 and WRx , 1 ⊃WRx , 2. So the comparison principle for VIs
implies that ∂xP1 ≥ ∂xP2 in Ñ T .

Combining this with the fact that −∂x
˜
¯
V1 �−∂x

˜
¯
V2 in Ñ T1 and V̂i � Pi + gi(t)x + ˜

¯
V i in Ñ T , i � 1, 2, we know that

g1(t) − ∂xV̂1 �−∂xP1 − ˜
¯
V1 ≤ −∂xP2 − ˜

¯
V2 � g2(t) − ∂xV̂2 in Ñ T .
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Moreover, recalling Remark 9 and the definition of g(t), we deduce that g1(t)− ∂xV̂1 ≤ g2(t)− ∂xV̂2 in Ñ T1 . From
x∗i (t ,w)� J V̂i

(−w + gi(t)), i � 1, 2, we know by straightforward computation that

g1(t) − ∂xV̂1(t , x∗1(t ,w))� w � g2(t) − ∂xV̂2(t , x∗2(t ,w)) ≥ g1(t) − ∂xV̂1(t , x∗2(t ,w)).

Since −∂xV̂i(t , x), i � 1, 2 are decreasing with respect to x, x∗1(t ,w) ≤ x∗2(t ,w) in M̃T1 , 2. Combining this with the
fact that JU1

(t , x) is decreasing with respect to x, we conclude that c∗t , 1(t ,w) ≥ c∗t , 2(t ,w) in M̃T1 , 2. �

Remark 13. Theorem 6 says that as the wage increases, the optimal retirement threshold tends to go higher and
optimal consumption tends to increase. Thus, the agent consumes more and retires later if the wage increases.
This is an intuitive result and extends a similar result by Choi and Shim [3] originally derived in an infinite
horizon model.

In the next theorem we show the effect of the utility cost of labor, l, on the agent’s optimal strategy.

Theorem 7. The value function V , the optimal retirement threshold Rw , and the optimal consumption c∗t are decreasing
with respect to l.

Proof. Suppose l1 > l2. Denote V, V̂, . . . for the case l � li by Vi , V̂i , . . ., i � 1, 2.
Recalling VI (46) and Ũ1 − l1 + %x < Ũ1 − l2 + %x, and repeating an argument similar to that in the proof of

Theorem 6, we can deduce that V̂1 − x g1(t) ≤ V̂2 − x g2(t) in Ñ T1 , and V1 ≤ V2 in M̃T1 .
Again, repeating an argument similar to that in the proof of Theorem 6, and using %x − l1 < %x − l2, we can

show that P1 ≤ P2 in Ñ T , and Rx , 1 ≥ Rx , 2, and Rw , 1 ≤ Rw , 2.
Repeating an argument similar to that in the proof of Theorem 6, we deduce that ∂xP1 ≤ ∂xP2 in Ñ T , g1(t) −

∂xV̂1 ≥ g2(t) − ∂xV̂2 in Ñ T1 , x∗1(t ,w) ≥ x∗2(t ,w) in M̃T1 , and c∗t , 1(t ,w) ≤ c∗t , 2(t ,w) in M̃T1 . �

Remark 14. Theorem 7 says that as the utility cost of labor increases, the optimal retirement threshold tends to
go lower and optimal consumption tends to decrease. Thus, the agent consumes less and retires earlier if the
utility cost of labor increases. This result also extends a similar result by Choi and Shim [3] originally derived
in an infinite horizon model.

Next, we compare the optimal strategy in our model with that in the model where the agent does not have
an early retirement option and every other feature is the same as in our model. We will refer to the latter as
the nonretirement option model.

Theorem 8. Denote the value function and the optimal consumption of the nonretirement option model by V and C∗t ,
respectively. Then,

V (t ,w) ≤ V(t ,w), C∗t(t ,w) ≥ c∗t(t ,w), ∀ (t ,w) ∈ M̃T1 .

Proof. It is clear that the nonretirement option model has the following admissible set:

A2(t ,w) , {(τ, c , π) ∈A1(t ,w): τ � T}.

Let V̂ be the smooth solution of the following PDE:{
−∂tV̂ −LV̂ � Û1 � Ũ1 − l , in N T ,

V̂ (T, x)� ˆ
¯
V(T, x)� ˜

¯
V(T, x), ∀ x ∈ (0,+∞). (47)

As previously, extend V̂ as V̂ � ˜
¯
V in [T,T1] × (0,+∞). Then, for any (t ,w) ∈ M̃T1 , we have

V (t ,w)� inf
x>0
[V̂ (t , x) − x g(t)+ xw].

The optimal consumption is given by C∗t(t ,w)�JU1
(t ,X ∗(t ,w)), where X ∗(t ,w)�J V̂ (t ,−w+ g(t)) for any (t ,w) ∈

M̃T1 , and the optimal investment is given by

π∗t(t ,w)�X ∗(t ,w)∂xxV̂ (t ,X ∗(t ,w))(ΣT)−1θ in M̃T1 .

Recalling (19), we deduce that V̂ satisfies{
−∂tV̂ −LV̂ ≥ Û1 , in N T ,

V̂(T, x)� ˜
¯
V(T, x), ∀ x ∈ (0,+∞).
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Hence, the comparison principle implies that V̂ ≥ V̂ in Ñ T . So, V ≥ V in M̃T1 is obvious.
Comparing (47) with (13), we deduce that

V̂ (t , x)� ˜
¯
V(t , x)+ l

r
(e rt−rT − 1)I{t≤T} , ∂xV̂ (t , x)� ∂x

˜
¯
V(t , x), ∀ (t , x) ∈ Ñ T1 .

Thus, by (16), we have
∂x
ˆ
¯
V ≤ ∂x

˜
¯
V � ∂xV̂ in Ñ T1 , ∂xV̂ � ∂x

ˆ
¯
V ≤ ∂xV̂ in RRx .

Moreover, from (19) and (47), it is not difficult to check that
−∂t∂xV̂ −Lx∂xV̂ � ∂xÛ1 �−∂t∂xV̂ −Lx∂xV̂ , in WRx ,

∂xV̂(T, x)� ∂x
ˆ
¯
V(T, x)� ∂xV̂ (T, x), ∀ x ∈ (0,+∞),

∂xV̂(t ,Rx(t)) ≤ ∂xV̂ (t ,Rx(t)), ∀ t ∈ [0,T].

Hence, the comparison principle implies that ∂xV̂ ≥ ∂xV̂ in WRx , too. So we have proved that ∂xV̂ ≥ ∂xV̂ in N T .
Since V̂ � ˜

¯
V � V̂ in [T,T1] × (0,+∞), we have ∂xV̂ ≥ ∂xV̂ in N T1 . Thus, we know that

∂xV̂(t , x∗(t ,w))�−w + g(t)� ∂xV̂ (t ,X ∗(t ,w)) ≥ ∂xV̂(t ,X ∗(t ,w)), ∀ (t ,w) ∈ M̃T1 .

Combining this with ∂xxV̂ > 0 in Ñ T1 , we can show that X ∗(t ,w) ≤ x∗(t ,w) for any (t ,w) ∈ M̃T1 , and C∗t(t ,w) ≥
c∗t(t ,w) for any (t ,w) ∈ M̃T1 . �

Remark 15. Theorem 8 says that the agent consumes less when he or she has an early retirement option than
when he or she does not. Indeed, the agent gives up future labor income if he or she chooses early retirement,
and thus the agent’s consumption is lower when there exists an early retirement option. This result also extends
a similar result in Choi and Shim [3]. Choi and Shim [3] also show that the agent tends to take higher risk when
there is a retirement option than when the agent is forced to work forever in a model without a mandatory
retirement date (see also a similar result in Dybvig and Liu [6]). It is possible to prove the same result in our
model with a mandatory retirement date under the assumption that the absolute risk aversion coefficient of Ui ,
i � 1, 2 is increasing with respect to consumption or wealth. The assumption, however, is too restrictive, and we
leave it as an interesting open question to find the necessary and sufficient conditions for the result to hold in
a model with a mandatory retirement date.

7. Conclusion
We have studied a retirement/consumption and investment choice problem of an agent who faces the trade-off
between receiving labor income and suffering the utility cost caused by hardship or lost leisure as a result
of labor. We have derived a solution to the problem by successive transformations, which ultimately result in
a pure optimal stopping problem, and provided a verification theorem. We have also derived properties of
optimal strategy and conducted comparative static analysis, which studies the effects of parameter values on
the optimal strategy.
The method we have proposed in this paper combines transformations and the PDE approach to analyze

properties of the optimal strategy, which has not yet been widely used in the study of financial models. We
expect that the approach proposed in this paper will have wide applicability in future studies.

In this paper we have assumed a constant investment opportunity set for simplicity of analysis; the consid-
eration of time-varying investment opportunity is left as a topic for future research. Also, consideration of the
borrowing constraints as in Fahri and Panageas [9] and Dybvig and Liu [6] will be an important extension of
the research of this paper.
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Endnotes
1Bakshi and Chen [1] have shown that population aging had significant effects on capital markets. We expect that retirement decisions also
have similar effects on the markets.
2This paper can be regarded as continuation of the study by Karatzas and Wang [17]. We work on the conjecture presented in appendix B
of their work and consider the case where the stream of consumption and investment extends beyond the moment of stopping.
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3 If the final time T1 is random and U2 , 0, or there is a nonzero probability that T1 < T, then the financial market is essentially incomplete,
and the method in this paper does not apply. The market can be made complete by introducing appropriate insurance contracts (see, e.g.,
Dybvig and Liu [6]). We leave market incompleteness or the introduction of insurance for future research.
4 It turns out that this assumption is not restrictive. In the absence of borrowing constraints, the case where the agent has pension income
is equivalent to the case where the agent has no income but his or her wealth is augmented by the present value of pension income. See
Remark 2 in the next subsection.
5The limiting value Ui(t , 0) maybe be equal to −∞, for example, if Ui is the constant relative risk aversion (CRRA) utility function with
γ > 1 or the logarithmic function in (4).
6We need U2(T1 , ·) defined only at t � T1. For convenience of exposition, we will assume that it is defined for all t ∈ [0,T1]. Indeed, if it is
defined only for t � T1, then we can extend it by letting U2(t , c)� U2(T1 , c) for t ∈ [0,T1).
7Treatment of the case ∂cUi(t , 0) < +∞ is available from the authors upon request.
8 In this case, the discount rate for utility of consumption is deterministic but time varying. The discount rate for utility of labor, however,
is assumed to be constant and equal to β.
9We considered an extension of our model to the case where the final time is random in Section 2.1. In such an extension, we assume the
random time is independent of (F t)T

1
t�0.

10For details, one can refer to Krylov [21] or Yang and Tang [31].
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