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Abstract
In this paper we study the consumption and portfolio selection problem of a finitely-
lived economic agent with an early retirement option, that is, the agent can choose 
her/his early retirement time before a mandatory retirement time. Based on the theo-
retical results in Yang and Koo (Math Oper Res, 43(4):1378–1404, 2018), we derive 
an integral equation satisfied by the optimal retirement boundary or free boundary 
using the Mellin transform technique. We also derive integral equation representa-
tions for the optimal consumption-portfolio strategies and the optimal wealth pro-
cess. By using the recursive integration method, we obtain the numerical solutions 
for the integral equations and discuss economic implications for the optimal retire-
ment strategies by using numerical solutions.

Keywords Portfolio selection · Mandatory retirement · Early retirement · Free 
boundary · Mellin transform · Integral equation

1 Introduction

In this paper we study the optimal retirement decision of an agent in a continuous 
time model. We derive an integral equation for optimal policies and provide numeri-
cal schemes for the theoretical model proposed by Yang and Koo (2018).

Currently, life expectancy is increasing and population aging is prevalent, and 
hence retirement is a crucially important issue from a social as well as an individual 
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perspective. Understanding the joint problem of optimal retirement and consump-
tion and portfolio decision is a first step to tackle the issue.

In the literature Choi and Shim (2006) initiated investigation into the joint prob-
lem by studying a model where an agent chooses her/his retirement time as well as a 
portfolio of assets and consumption. In their model the decision to retire comes from 
the trade-off between labor income and the utility cost of labor. Farhi and Panageas 
(2007) and Choi et al. (2008) have proposed a model where an agent chooses labor, 
leisure and the retirement time. Dybvig and Liu (2010) and Lim and Shin (2011) 
have studied a model with borrowing constraints. The time horizon of these models, 
however, is infinite, and hence, the models do not allow investigation of the effects 
of changes in mandatory retirement dates or of increasing life expectancy.1 Recently, 
Yang and Koo (2018) have proposed a model with mandatory retirement date and 
early retirement option and extended results in Choi and Shim (2006) to a finite-
time horizon model. They have investigated the dual problem and shown the duality 
relationship that the value function of the primal problem is the concave conjugate 
of the dual value function by relying on the theory of partial differential equations 
and backward stochastic differential equations. They have established the existence 
and uniqueness of the value function and shown that an agent optimally retires if the 
agent’s wealth hits a boundary. All their results, however, are theoretical and do not 
include methods to calculate optimal strategies explicitly.

In this paper we focus on the numerical implementation of the optimal retirement 
and consumption/portfolio strategies based on the model proposed by Yang and Koo 
(2018). Firstly, we apply the Mellin transform to the variational inequality satisfied 
by the dual value function and derive an integral equation for the optimal retirement 
boundary. By using the integral equation, we obtain analytic representations of opti-
mal consumption, wealth and portfolio processes. The Mellin transform has been 
applied to option pricing as one among numerous integral transform methods. For 
example, Panini and Srivastav (2004) and Jeon et al. (2016) have derived integral 
equations satisfied by the American and Russian options by using the Mellin trans-
form. Utilizing the Mellin transform, we are able to transform the variational ine-
quality in Yang and Koo (2018) into an ordinary differential equation and to obtain 
an analytic solution to the variational inequality through the inverse Mellin trans-
form. Secondly, we obtain numerical solutions to the integral equation by applying 
the recursive integration method proposed by Huang et al. (1996). We study proper-
ties of the optimal retirement boundary, consumption and portfolio selection, inves-
tigating the numerical solutions.

The rest of this paper is structured as follows: In Sect. 2 we explain the model 
and briefly review the theoretical results in Yang and Koo (2018). In Sect.  3 we 
use the variational inequality derived by Yang and Koo (2018) and obtain the inte-
gral equation representation of the optimal retirement boundary by the Mellin trans-
form. In Sect. 4 we provide analytic solutions for optimal consumption, wealth and 
portfolio processes. In Sect. 5, we explain how to solve the integral equation using 

1 Dybvig and Liu (2010) have considered a model with a mandatory retirement date, but the model does 
not consider both the mandatory retirement date and early retirement option.
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the recursive integration method and derive economic implications by investigating 
numerical solutions. In Sect. 6 we conclude. All the detailed proofs are in Appendix.

2  Preliminaries

2.1  Model

In this section we explain the model of consumption and portfolio selection with 
early retirement option proposed by Yang and Koo (2018).

2.1.1  Objective Function and Financial Market

We consider an economy with a financial market in which an agent optimizes over a 
lifetime consumption profile. There is one consumption good. In reality there exist a 
large number of consumption goods. The one consumption good in our model thus 
represents the composite of all consumption goods consumed by the agent. Mod-
ern theory of portfolio selection and asset pricing has mostly been developed based 
on the single consumption good assumption (see e.g. Merton 1969; Cochrane 2005 
etc). Time is continuous and runs from 0 to T1 . The agent’s preference is represented 
by the following objective function:

where ct denotes the rate of consumption at time t,   𝛽 > 0 is a subjective discount 
rate, l > 0 is a constant describing the utility cost of labor, � is the time of retire-
ment, and �A denotes the characteristic function of a set A,   i.e., �A can take two 
values, 0 and 1, and �A(x) = 1 if and only if x ∈ A . It is implicit in the utility specifi-
cation that the agent works until the retirement time � and suffers the utility cost of 
labor and she/he will not bear the cost after retirement.

There exists a mandatory retirement time T < T1. The agent can choose the retire-
ment time � ≤ T . The agent receives income at a rate equal to 𝜌 > 0, which we will 
assume to be constant for simplicity of the model. The retirement decision is irre-
versible. In general the wage rate and the utility cost of labor are expected to be 
time-varying, depending on the agent’s productivity, labor supply, and health condi-
tion, etc.2 In order to focus on the effects of the fixed mandatory retirement date on 
optimal decisions we make the simplifying assumption of constant utility cost and 
wage rate.

To guarantee existence of a solution to the agent’s optimization problem, we 
assume that the utility function satisfies the following conditions:

(1)U ≜ �

[
�

T1

0

e−�t
(
U1(t, ct) − l�{t≤�}

)
dt + e−�T1U2(T1,WT1

)

]
,

2 See Choi et  al. (2008) for study of time varying labor supply and retirement decision in an infinite 
horizon.
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Assumption 1 For i = 1, 2 , the functions Ui(t, c) ∈ C∞([0, T1] × (0,∞)) are strictly 
increasing and strictly concave with respect to c and take values in ℝ, the set of real 
numbers. Also there exist C, k such that for any t ∈ [0, T1] , Ui(t, c), i = 1, 2 satisfy 
the following conditions:

The first two conditions are the Inada conditions and the last condition is a growth 
condition for marginal utility. As mentioned in Yang and Koo (2018), the constant 
relative risk aversion (CRRA) cardinal utility functions satisfy Assumption 1.

The financial market consists of two assets: a riskless asset and a risky asset. We 
assume that the risk-free rate r > 0 is constant and the price St of the risky asset fol-
lows the geometric Brownian motion (GBM):

where �, � are positive constants, B is a standard Brownian motion defined on a 
probability space (�, 𝔽 ,ℙ) endowed with the augmented filtration � ≡ {Ft}t≥0 gen-
erated by the Brownian motion.

2.1.2  Optimization Problem

We consider the agent’s optimization problem at t ∈ [0, T1].
The agent’s wealth (Ws)

T1
s=t evolves according to the following equation:

where �s is the amount invested in the risky asset at time s.
We transform the wealth process (2) into a static budget constraint by the martin-

gale approach developed by Karatzas et al. (1987) and Cox and Huang (1989). For 
this purpose, we define, for s ≥ t ∈ [0, T1],

We obtain the following static budget constraint from the wealth evolution Eq. (2)3:

where �t[⋅] = �[⋅|Ft] is the conditional expectation at time t on the filtration Ft , and

lim
c→0+

�cUi(t, c) = +∞, lim
c→+∞

�cUi(t, c) = 0, lim sup
c→+∞

max
t∈[0,T1]

�cUi(t, c)c
k ≤ C.

dSt = 𝜇Stdt + 𝜎StdBt, S0 = S > 0,

(2)dWs =
(
rWs + (� − r)�s − cs + ��{s≤�}

)
+ ��sdBs with Wt = w,

� ≜ � − r

�
, Zs ≜ e

−�(Bs−Bt)−
1

2
�2(s−t), Hs ≜ e−r(s−t)Zs.

(3)
�t

[
H�(W� − G(�)) + �

�

t

Hscsds

]
≤Wt − G(t), if t ≤ �,

�t

[
HT1

WT1
+ �

T1

t

Hscsds

]
≤Wt, if t(= �) ≤ T1,

3 The equation follows from the optional sampling theorem and Fatou’s lemma. See e.g., Karatzas and 
Shreve (1998).
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i.e., G(t) is the negative of the present value of labor income under the assumption 
that the agent does not retire before T.

We describe the admissible strategies in Appendix A. Denoting the set of admis-
sible strategies by A1(t,w), the agent’s objective function can now be described as 
follows: for all (t,w) ∈ M̃T1

 and (�, c,�) ∈ A1(t,w) (the definitions of A1(t,w) and 
M̃T1

 are referred to Appendix A),

We now state the agent’s optimization problem.

Problem 1 The agent chooses an optimal strategy, (�∗, c∗,�∗) ∈ A1(t,w) to maxi-
mize the objective function J in (4): namely,

subject to the budget constraint (3).

3  Analytic Solution of the Model

3.1  Derivation of a Non‑homogeneous PDE for P(t, x)

By the budget constraint (3) and the martingale method, we can define the dual 
value functions Ṽ(t, x) and V̂(t, x) of the agent’s problem after retirement and before 
retirement, respectively, as follows (for details, see Appendix B):

where Ut,T is defined in Appendix A, Xs ≜ xe�(s−t)Hs , x > 0 , and, for i = 1, 2,

JUi
(t, ⋅) is the inverse function of �xUi(t, ⋅), i = 1, 2 and

G(t) ≜ −�t

[
�

T

t∧T

�Hsds

]
= −

�

r

(
1 − e−r{T−(t∧T)}

)
,

(4)

J(t,w;�, c,�) ≜�t

[
�

T1

t

e−�(s−t)
(
U1(s, cs) − l�{s≤�}

)
ds + e−�(T1−t)U2(T1,WT1

)

]
.

(5)V(t,w) ≜ J(t,w;�∗, c∗,�∗) = sup
(�,c,�)∈A1(t,w)

J(t,w;�, c,�), ∀ (t,w) ∈ M̃T1
,

Ṽ(t, x) ≜ �t

[
�

T1

t

e−�(s−t)Ũ1(s,Xs)ds + e−�(T1−t)Ũ2(T1,XT1
)

]
,

V̂(t, x) ≜ sup
�∈Ut,T

�t

[
�

�

t

e−�(s−t)Û1(s,Xs)ds + e−�(�−t)V̂(�,X�)

]
,

�Ui(t, x) ≜ sup
c>0

[Ui(t, c) − xc] = Ui(t,JUi
(t, x)) − xJUi

(t, x),

�U1(t, x) ≜ sup
c>0

[
U1(t, c) − xc

]
− l = �U1(t, x) − l,
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As in Yang and Koo (2018) we study properties of the following function

By Lemma 3 in Yang and Koo (2018), the function P(t, x) is an increasing function 
with respect to x and the following free boundary (or the optimal retirement bound-
ary) is well-defined:

The following two regions, the working region ( ��x ) and the retirement region 
( ��x ) are also well-defined:

Yang and Koo (2018) have shown that the function P(t,  x) satisfies the following 
non-homogeneous parabolic PDE:

where the domain NT and the differential operator L are defined in Appendix B, and 
F(t, x) = −(𝜌x − l)�{x>Rx(t)}

.
Yang and Koo (2018) showed that there exists a unique strong solution to Eq. (6), 

the dual value functions can be constructed from the solution and the value function 
and the dual value function satisfy a duality relationship. See Appendix C for sum-
mary of their results.

3.2  Analytic Representation of P(t, x)

We will now derive an analytic representation of P(t, x) by using the Mellin trans-
form. The following Mellin convolution theorem is the key to derive the integral 
equation for P(t, x)4.

Proposition 1 (The Mellin Convolution Theorem) Suppose that f(x) and g(x) are 
locally integrable functions in (0,∞) and the Mellin transforms M[f](y) and M[g]
(y) exist for a1 < R(y) < a2 , where R(y) denotes the real part of complex number y. 
Then,

V̂(t, x) = Ṽ(t, x) + xG(t).

P(t, x) ≜ V̂(t, x) − V̂(t, x) = V̂(t, x) − Ṽ(t, x) − xG(t).

Rx(t) ≜ inf{x ≥ 0 ∣ P(t, x) > 0}, ∀t ∈ [0, T).

��x = {(t, x) ∣ P(t, x) > 0} = {(t, x) ∣ x > Rx(t), t ∈ [0, T)},

��x = {(t, x) ∣ P(t, x) = 0} = {(t, x) ∣ 0 < x ≤ Rx(t), t ∈ [0,T)}.

(6)
{

�tP(t, x) + LP(t, x) = F(t, x), ∀(t, x) ∈ NT ,

P(T , x) = 0,

4 In Appendix D, we briefly review the definition and properties of the Mellin transformation.
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Proposition 2 The function P(t,  x) in (6) has the following integral equation 
representation:

where

and N(⋅) is a standard normal distribution function.

Proof See Appendix E.   ◻

By smooth-pasting condition for P(t, x) (see Lemma 3 in Yang and Koo 2018), 
we deduce the following corollary:

Corollary 1 The free boundary Rx(t) satisfies the following integral equation:

4  Optimal Consumption and Portfolio Strategies

In this section we derive integral equation representations for optimal consumption, 
wealth and portfolio processes. In order to derive concrete results we will focus on 
the specific case where the felicity functions have constant relative risk aversion, i.e. 
we will assume that Ui, i = 1, 2 take the following forms:

f (x) ∗ g(x) ≜ 1

2𝜋i �
c+i∞

c−i∞

M[f ](y)M[g](y)x−ydy

= �
∞

0

f
(
x

u

)
g(u)

du

u
, where a1 < c < a2.

(7)
P(t, x) = �x∫

T

t

e−r(�−t)N

(
d+

(
� − t,

x

Rx(�)

))
d�

− l∫
T

t

e−�(�−t)N

(
d−

(
� − t,

x

Rx(�)

))
d�,

d±(t, x) =
log x +

�
� − r ±

1

2
�2
�
t

�
√
t

,

(8)
0 = �Rx(t)∫

T

t

e−r(�−t)N

(
d+(� − t,

Rx(t)

Rx(�)
)

)
d�

− l∫
T

t

e−�(�−t)N

(
d−(� − t,

Rx(t)

Rx(�)
)

)
d�.

(9)U1(c) =
c1−𝛾

1 − 𝛾
, U2(w) = A𝛾 w

1−𝛾

1 − 𝛾
, 𝛾 > 0, 𝛾 ≠ 1,
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where � is the agent’s coefficient of relative risk aversion and A is a positive constant 
denoting the strength of the agent’s bequest motive.

We will make the following assumption to guarantee the existence of a solution to 
the standard Merton problem (i.e. the consumption and portfolio selection problem in 
an infinite horizon without retirement (see Merton 1969)).

Assumption 2 
For the CRRA felicity functions, we have

and the dual value function Ṽ  of the agent’s problem after retirement is given by

We state an integral equation representation of the value function V(t, w) in the fol-
lowing proposition:

Proposition 3 The value function V(t, w) defined in (5) has the following integral 
equation representation:

where x∗ = x∗(t,w) is a unique solution to the following integral equation:

K ≜ r +
𝛽 − r

𝛾
+

𝛾 − 1

2𝛾2
𝜃2 > 0.

Ũ1(x) =
�

1 − �
x
−

1−�

� and Ũ2(x) = A
�

1 − �
x
−

1−�

� ,

(10)
Ṽ(t, x) = �t

[
∫

T1

t

e−�(s−t)
�

1 − �
X
−

1−�

�

s ds + e−�(T1−t)A
�

1 − �
X
−

1−�

�

T1

]

=
�

1 − �
x
−

1−�

�

(
A ⋅ e−K(T1−t) +

1 − e−K(T1−t)

K

)
.

V(t,w) =
1

1 − �
(x∗)

−
1−�

�

�
A ⋅ e−K(T1−t) +

1 − e−K(T1−t)

K

�

−
�

�
√
2�

x∗ ∫
T

t

exp

⎧⎪⎨⎪⎩
−r(� − t) −

d+(� − t,
x∗

Rx(�)
)2

2

⎫⎪⎬⎪⎭
1√
� − t

d�

+
l

�
√
2� ∫

T

t

exp

⎧⎪⎨⎪⎩
−�(� − t) −

d−(� − t,
x∗

Rx(�)
)2

2

⎫⎪⎬⎪⎭
1√
� − t

d�

− l∫
T

t

e−�(�−t)N

�
d−

�
� − t,

x∗

Rx(�)

��
d�,
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Proof See Appendix F.   ◻

Theorem 1 (Main Theorem) Before retirement, the optimal consumption c∗
s
 , the opti-

mal wealth W∗
s
 , and the optimal portfolio �∗

s
 at time s ≥ t are given by

 where X∗
s
= x∗(t,w)e�(s−t)Hs.

Proof See Appendix G.   ◻

(11)

w = (x∗)
−

1

�

�
A ⋅ e−K(T1−t) +

1 − e−K(T1−t)

K

�

+
l

�x∗
√
2� ∫

T

t

exp

⎧
⎪⎨⎪⎩
−�(� − t) −

d−(� − t,
x∗

Rx(�)
)2

2

⎫
⎪⎬⎪⎭

1√
� − t

d�

−
�

�
√
2� ∫

T

t

exp

⎧⎪⎨⎪⎩
−r(� − t) −

d+(� − t,
x∗

Rx(�)
)2

2

⎫⎪⎬⎪⎭
1√
� − t

d�

− �∫
T

t

e−r(�−t)N

�
d+

�
� − t,

x∗

Rx(�)

��
d�.

c∗
s
= (X∗

s
)
−

1

� ,

W∗
s
= (X∗

s
)
−

1

�

�
A ⋅ e−K(T1−s) +

1 − e−K(T1−s)

K

�

+
l

�X∗
s

√
2� ∫

T

s

exp

⎧⎪⎨⎪⎩
−�(� − s) −

d−(� − s,
X∗
s

Rx(�)
)2

2

⎫⎪⎬⎪⎭
1√
� − s

d�

−
�

�
√
2� ∫

T

s

exp

⎧⎪⎨⎪⎩
−r(� − s) −

d+(� − s,
X∗
s

Rx(�)
)2

2

⎫⎪⎬⎪⎭
1√
� − s

d�

− �∫
T

s

e−r(�−s)N

�
d+

�
� − s,

X∗
s

Rx(�)

��
d�,

�∗
s
=

�
�

�
1

�
(X∗

s
)
−

1

�

�
A ⋅ e−K(T1−s) +

1 − e−K(T1−s)

K

�

+
l

�X∗
s

√
2� ∫

T

s

exp

⎧⎪⎨⎪⎩
−�(� − s) −

d−(� − s,
X∗
s

Rx(�)
)2

2

⎫⎪⎬⎪⎭

⎛⎜⎜⎝
1√
� − s

+
d−(� − s,

X∗
s

Rx(�)
)

�(� − s)

⎞⎟⎟⎠
d�

+
�

�
√
2� ∫

T

s

exp

⎧
⎪⎨⎪⎩
−r(� − s) −

d+(� − s,
X∗
s

Rx(�)
)2

2

⎫
⎪⎬⎪⎭

⎛
⎜⎜⎝

1√
� − s

−
d+(� − s,

X∗
s

Rx(�)
)

�(� − s)

⎞⎟⎟⎠
d�

⎤
⎥⎥⎥⎦
,
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Theorem  1 in Yang and Koo (2018) implies that J
V̂
(t,−w + G(t)) = x∗(t,w) is 

continuous and strictly decreasing with respect to w in M̃T1
 , and maps (G(t),+∞) 

onto (0,+∞) for any t ∈ [0, T1] . So for any t ∈ [0, T1] , x∗(t, ⋅) has the inverse function 
w∗(t, ⋅) , which is continuous, strictly decreasing and maps (0,+∞) onto (G(t),+∞).

Thus, in the (t, w)-domain, we can define

where ��w , ��w , and Rw(t) represent the retirement region, the working region, 
and the optimal retirement threshold in the (t, w)-coordinate system, respectively.

Clearly, the two regions ��w and ��w can be represented by

Moreover, the optimal retirement threshold in the (t, w)-domain is given by

and hence, from (12) and (26), we see that

Since the optimal retirement boundary Rx(t) in (t, x)-domain is not affected by the 
final time T1 , we can deduce the following theorem from the relation in (13).

Theorem 2 The following statements are true:

(a) If the agent’s bequest motive is weak (i.e., 0 ≤ A < 1∕K ), the optimal retirement 
threshold Rw(t) in (t, w)-domain increases as the final time T1 increases.

(b) If the agent’s bequest motive is very strong (i.e., A > 1∕K ), the optimal retire-
ment threshold Rw(t) in (t, w)-domain decreases as the final time T1 increases.

(c) Otherwise (i.e., A = 1∕K ), the final time T1 does not affect the optimal retirement 
threshold Rw(t) in (t, w)-domain.

Theorem 2 provides a theoretical relationship between the life expectancy and the 
optimal retirement decision. Part (a) of the theorem shows that as the life expectancy 
increases the optimal retirement time tends to increase, since the optimal retire-
ment threshold increases, if the bequest motive is modest. The result is consistent 
with earlier theoretical results by Bloom et al. (2007a, b) and Prettner and Canning 
(2014), which are obtained without consideration of bequest motive. Parts (b) and 
(c) provide other possibilities if the bequest motive is substantially large. Given the 

Rw(t) ≜ w∗(t,Rx(t)), ∀ t ∈ [0, T],

��w ≜ {(t,w) ∈ MT ∣ (t, x∗(t,w)) ∈ ��x},

��w ≜ {(t,w) ∈ MT ∣ (t, x∗(t,w)) ∈ ��x},

��w = {(t,w)] ∣ w ≥ Rw(t), t ∈ [0,T)}, ��w = {(t,w)] ∣ G(t) < w < Rw(t), t ∈ [0,T)}.

(12)Rw(t) = w(t,Rx(t)) = −�xṼ(t,Rx(t)) − �xP(t,Rx(t)) = −�xṼ(t,Rx(t)),

(13)
Rw(t) = (Rx(t))

−
1

�

(
A ⋅ e−K(T1−t) +

1 − e−K(T1−t)

K

)

= (Rx(t))
−

1

�

[
1

K
+ e−K(T1−t)

(
A −

1

K

)]
.
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fact that empirical estimates of bequest motive is not large (Hurd 1989, 1990), the 
theoretical result is in conflict with the stylized fact that the retirement age has fallen 
substantially over the last 60 years in the industrialized world (see e.g., Hurd 1990; 
Blondal and Scarpetta 1997; Gruber and Wise 1998). Blondal and Scarpetta (1997) 
and Gruber and Wise (1998) explain the discrepancy by the financial incentives in 
the pension and public income support programs in the countries.

5  Numerical Results

We have obtained the optimal strategies of the agent’s optimization problem in 
Sect. 4. We need to find the free boundary Rx(t), t ∈ [0, T] , which is a solution to 
the integral equation given in (8), but the forms of optimal strategies are not fully 
explicit. However, using the recursive integration method (RIM) proposed by 
Huang et al. (1996), the solution Rx(t) to the integral equation in (8) can be obtained 
numerically.

5.1  Recursive Integration Method (RIM)

From the integral Eq. (8) we have

where � = T − t , R̃x(�) = Rx(T − �) , and

We will now explain how to calculate a numerical solution of the free boundary 
R̃x(�) in the integral Eq. (14) by using the RIM.

First, we divide the interval [0, �] into n time steps with end points 
�i, i = 0, 1,… , n , where �0 = 0, �n = � and �� = �∕n . Let R̃i denote a numerical 
approximation to R̃x(�i), i = 0, 1,… , n.

For � = �1 , by the trapezoidal rule, we can approximate the integral Eq. (14) by 
the following algebraic equation:

Remark 1 Since Eq. (14) contains the whole paths of the free boundary R̃x(�) from 0 
to � , it is difficult to apply the Gaussian quadrature rule when we discretize the inte-
gral equation. For this reason, when we apply the RIM, we use the trapezoidal rule.

(14)0 = ∫
�

0

I(�, �, R̃x(�), R̃x(� − �))d�,

I(�, �, R̃x(�), R̃x(� − �)) = �R̃x(�)e
−r�N

(
d+(�,

R̃x(�)

R̃x(� − �)
)

)

− le−��N

(
d−(�,

R̃x(�)

R̃x(� − �)
)

)
.

(15)0 =
��
2

[
I(�1, �0, R̃1, R̃1) + I(�1, �1, R̃1, R̃0)

]
.
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By Lemma 6 in Yang and Koo (2018), we see that

Thus, R̃0 = l∕� and only R̃1 is unknown in Eq. (15). Using the bisection method as a 
root-finding scheme, we can find a solution for R̃1 in (15).

For � = �2 , we have

Since we know the R̃0 and R̃1 , we also obtain a solution for R̃2 in (16).
Hence, we can obtain a solution for R̃j (j = 1, 2,… , n) recursively by solving the 

following equations:

Similarly, the function P(t, x) in (7) can be approximated as follows:

We summarize the procedures of simulating the optimal strategies by using the RIM 
in Table 1.

5.2  Comparison with the Binomial Tree Method

In this subsection, we compare our numerical solution P(t, x) with the binomial 
tree method (BTM) developed by Cox et al. (1979). When the number of time 
steps is increased the BTM converges to the true value (see Theorem  6.18 in 
Jiang 2003), and hence with by selecting a large number of time steps one can 

R̃x(0+) = lim
t→T−

Rx(t) =
l

�
.

(16)0 =
��
2

[
I(�2, �0, R̃2, R̃2) + 2I(�2, �1, R̃2, R̃1) + I(�2, �2, R̃2, R̃0)

]
.

(17)0 =
��
2

[
I(�j, �0, R̃j, R̃j) + 2

j−1∑
i=1

I(�j, �j−i, R̃j, R̃i) + I(�j, �j, R̃j, R̃0)

]
.

(18)P(t, x) ≈
��
2

[
I(�n, �0, x, R̃n) + 2

n−1∑
i=1

I(�n, �n−i, x, R̃i) + I(�n, �n, x, R̃0)

]
.

Table 1  Algorithm to find optimal strategies by the RIM

Algorithm

Step 0: Set (n + 1) to be the number of time points dividing the interval [0,T − t] into n equal subinter-
vals.

Step 1: Approximate the optimal retirement boundary (R̃x(�))
T−t
�=0

 in (14) by the RIM.

      Step 1-1: For R̃0 = l∕� , obtain R̃1 in Eq. (15) by a numerical root-finding method.

      Step 1-2: Calculate R̃j (j = 2, 3,⋯ , n) , by solving Eq. (17) recursively.
Step 2: Find the value x∗(t,w) for a given w > G(t) by applying the root-finding method to (11).
Step 3: Calculate the optimal strategy (c∗

s
,�∗

s
) and optimal wealth W∗

s
 , for s ∈ [0,T1] by simulating X∗

s

and applying the RIM to Theorem 1.
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use the result obtained by the BTM as a benchmark with which other methods 
can be compared. We use the binomial tree model with the number of time steps 
equal to 10, 000.

Since P(t, x) = V̂(t, x) − V̂(t, x) , P(t,  x) can be represented as the following 
optimal stopping problem:

Here, the value of part (A) in (19) can be obtained through the BTM.
Table  2 gives comparison between our numerical results obtained by the 

RIM and those by the BTM. The differences are small, the maximum relative 
error being 0.42% . We can conclude from the comparison that the RIM is fairly 
accurate.

(19)

P(t, x) = sup
�∈Ut,T

�t

[
∫

�

t

e−�(s−t)(�Xs − l)ds

]

= sup
�∈Ut,T

�t

[
∫

T

�

e−�(s−t)(l − �Xs)ds

]
+ �t

[
∫

T

t

e−�(s−t)(�Xs − l)ds

]

= sup
�∈Ut,T

�t

[
∫

T

�

e−�(s−t)(l − �Xs)ds

]
+

(
1 − e−r(T−t)

r
�x −

1 − e−�(T−t)

�
l

)

= sup
�∈Ut,T

�t

[
e−�(�−t)

(
1 − e−�(T−�)

�
l −

1 − e−r(T−�)

r
�X�

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(A)

+

(
1 − e−r(T−t)

r
�x −

1 − e−�(T−t)

�
l

)
.

Table 2  Comparison of Binomial Tree Model and Recursive Integration Method

T � r � � � l x RIM BTM Relative 
Error(%)

20 0.04 0.0086 0.0784 0.2016 0.5 0.5 0.5 0.3776 0.3773 0.07
0.04 0.0086 0.0784 0.2016 0.5 0.5 0.6 0.8801 0.8779 0.25
0.04 0.0086 0.0784 0.2016 0.5 0.5 0.7 1.4840 1.4863 0.15

30 0.04 0.0086 0.0784 0.2016 0.5 0.5 0.5 1.1244 1.1197 0.42
0.04 0.0086 0.0784 0.2016 0.5 0.5 0.6 2.0052 2.0057 0.02
0.04 0.0086 0.0784 0.2016 0.5 0.5 0.7 2.9943 2.9988 0.15

40 0.04 0.0086 0.0784 0.2016 0.5 0.5 0.5 2.0666 2.0579 0.42
0.04 0.0086 0.0784 0.2016 0.5 0.5 0.6 3.3129 3.3146 0.05
0.04 0.0086 0.0784 0.2016 0.5 0.5 0.7 4.6702 4.6756 0.11

40 0.04 0.0086 0.0784 0.2016 0.5 0.4 0.5 2.7985 2.7967 0.06
0.04 0.0086 0.0784 0.2016 0.4 0.5 0.5 6.6938 6.6927 0.01
0.02 0.0086 0.0784 0.2016 0.4 0.5 0.5 1.4281 1.4263 0.12



 J. Jeon et al.

1 3

5.3  Implications

In this subsection we explain behavior of solutions to the model by using numerical 
solutions obtained by the RIM. We choose the values of market parameters follow-
ing the empirical work by Bansal et al. (2012) and use the following parameter val-
ues as benchmark to obtain the numerical solutions:

Figure 1 illustrates the optimal retirement boundary Rx(t) in the (t, x)- domain 
and the optimal retirement threshold Rw(t) in the (t, w)-domain, respectively. Rx(t) 
is strictly increasing in t consistent with the theoretical results in Lemma 6 in 

� = 0.04, r = 0.0086, � = 0.0784, � = 0.2016, T = 30, T1 = 70, � = 3,

l = 0.5 and � = 0.5.

Fig. 1  The free boundaries R
x
(t) 

and R
w
(t)
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Fig. 2  The behavior of the opti-
mal retirement threshold R

w
(t) 

with respect to A 
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Yang and Koo (2018). However, the monotonicity of Rw(t) has been unknown 
(see Remark 12 in Yang and Koo 2018).

In the case of the CRRA felicity functions, the relationship between the opti-
mal retirement boundary Rx(t) and the optimal retirement threshold Rw(t) is given 
in (13). If A, the constant denoting the bequest motive in (9), is large enough, we 
can observe that Rw(t) is not monotone from (13) (see Fig. 2c).

Figure 2 shows the optimal retirement threshold Rw(t) for three different val-
ues of A, and we can see that Rw(t) is not monotone for A = 200 . Namely, if the 
agent’s bequest motive is very strong, the threshold level of wealth for early 
retirement increases when the agent is young, however, it declines after the agent 
has become sufficiently old. If the agent has a very strong bequest motive the 
agent would like to accumulate a large amount wealth to bequeath and thus would 
like to work longer, and this explains the increasing behavior of the threshold 
when the agent is young; the threshold reverts to the declining pattern as those 
of agents with modest bequest motive only when the agent is old enough and the 
mandatory retirement is near.

Figure  3 shows the effect of the final time T1 to the optimal retirement thresh-
old Rw(t) . Depending on the agent’s bequest motive, the effect of final time T1 on 
the retirement strategies are different. In Fig. 3a, since the agent’s bequest motive 
is weak, the agent’s retirement decision is more affected by the wealth required for 
her/his consumption until the final time T1 than her/his bequest motive. This implies 
that the optimal retirement threshold Rw(t) increases as the final time T1 increases. 
In Fig. 3c, since the agent’s bequest motive is very strong, more wealth is required 
at retirement as the final time T1 decreases. Thus, the optimal retirement thresh-
old Rw(t) increases as the final time T1 decreases. These results are consistent with 
Theorem 2.

Figure 4 shows simulation results of dual process X∗
s
 , the optimal wealth W∗

s
 and 

optimal strategies (c∗,�∗) , using Algorithm in Table 1. As shown in Fig. 4a, b, if 
the dual process x∗

s
 stays in the working region ��x , then the optimal wealth pro-

cess W∗
s
 also stays in the working region ��w . However, if the dual process X∗

s
 hits 

the optimal retirement boundary Rx(⋅) , then the wealth process W∗
s
 hits the optimal 

retirement threshold Rw(⋅) and the agent chooses to retire early. Figure 4c shows that 
the agent tends to invest in the risky asset aggressively just before the early retire-
ment time. This is because the agent would like to increase the expected growth rate 
of wealth to approach the optimal retirement threshold fast enough to retire early.

The behavior shown by the simulation path is consistent with the optimal con-
sumption and portfolio shown in Fig.  5. The figure shows that the marginal pro-
pensity to consume tends to decline as wealth reaches the retirement threshold and 
increases to a constant level after retirement. Optimal investment in the risky asset 
sharply increases before retirement and jumps downward after retirement. The 
behavior of optimal consumption is consistent with a theoretical result in Yang and 
Koo (2018) which says that optimal consumption in the presence of early retirement 
option is smaller than it would in the absence of the option (Theorem 8). The behav-
ior of the optimal portfolio is consistent with a theoretical result by Choi and Shim 
(2006) in an infinite horizon model which states that an agent takes higher risk in 
the presence of retirement option than in its absence. We partially extend their result 
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Fig. 3  The behavior of the opti-
mal retirement threshold R

w
(t) 

with respect to T1 when T = 30
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and show that optimal portfolio jumps downward at the time of retirement in the fol-
lowing proposition.

Proposition 4 If 𝜇 − r > 0 , the optimal investment �∗ jumps downward after 
retirement.

Proof See Appendix H.   ◻

6  Concluding Remarks

In this paper we have investigated an optimal consumption/investment problem 
with mandatory retirement date and early retirement option. By applying the Mel-
lin transform to the variational inequality derived in Yang and Koo (2018), we have 
obtained the integral equation representation for optimal retirement boundary. We 
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have numerically solved the integral equation by using the recursive integration 
method and discussed economic implications for optimal retirement strategies.

We have assumed that the utility cost of labor and wage rate are constant. Relaxa-
tion of this assumption to reflect the dependence of these on productivity, labor sup-
ply and health condition is an interesting direction of future research.

Fig. 5  Optimal consumption, 
portfolio and wealth
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Appendix

Admissible Strategies

We require that the consumption rate cs and the amount invested in the risky asset �s be 
{Fs}s≥t-adapted and the early retirement time � be an F-stopping time. We will denote 
the set of all F-stopping times taking values in [t, T] by Ut,T.

We also require the following integrability condition:

and for � ∈ Ut,T

We denote the set of all strategies (�, c,�) satisfying the conditions stated above by 
A(t,w) . We define the set A1(t,w) of admissible controls as follows:

 with U−
i
= max{0,−Ui}, i = 1, 2 . Thus, the objective function takes a value greater 

than −∞ with an admissible strategy.
We will use the following notations:

Derivation of the Dual Value Function

Martingale method For any (t,w) ∈ M̃T1
 and the value function V(t, w) defined in (5) 

satisfies the following inequality:

where V(t,w) is the agent’s value function after retirement defined by

with the admissible set A1
t
≜ {(c,�) ∶ (t, c,�) ∈ A1(t,w)}.

�
T1

t

(cs + 𝜋2
s
)ds < ∞, a.s. subject to c ≥ 0,

Ws > G(s)�{s<𝜏}, ∀s ∈ [t, T1].

A1(t,w) ≜
{

(𝜏, c,𝜋) ∈ A(t,w)
|||||
�t

[
�

T1

t

e−𝛽(s−t)U−
1
(s, cs)ds + e−𝛽(T1−t)U−

2
(T1,WT1

)

]
< ∞

}
,

MT ≜ {(t,w) ∣ w > G(t), t ∈ [0, T)}, MT1
≜ {(t,w) ∣ w > G(t), t ∈ [0, T1)},

�MT ≜ {(t,w) ∣ w > G(t), t ∈ [0, T]}, �MT1
≜ {(t,w) ∣ w > G(t), t ∈ [0, T1]}.

(20)V(t,w) ≤ sup
(�,c,�)∈A1(t,w)

�t

[
�

�

t

e−�(s−t)(U1(s, cs) − l)ds + e−�(�−t)V(�,W�)

]
,

V(t,w) = sup
(c,�)∈A1

t
(t,w)

�t

[
∫

T1

t

e−�(s−t)U1(s, cs)ds + e−�(T1−t)U2(T1,WT1
)

]



1 3

An Integral Equation Representation for Optimal Retirement…

From the budget constraint (3) we can deduce that for any t ∈ [0, T1] , 
x > 0, w > 0

where Xs = xe�(s−t)Hs and, for i = 1, 2,

Here, JUi
(t, ⋅) is the inverse function of �xUi(t, ⋅), i = 1, 2.

The function Ṽ(t, x) is called the dual value function of the agent’s problem after 
retirement. According to Karatzas and Shreve (1998) or Yang and Koo (2018), for 
any x > 0 , there exists a unique w > 0 such that the inequalities in (21) hold as 
equalities, and V(t,w) and Ṽ(t, x) satisfy the following duality relationship: for any 
t ∈ [0, T1] , x > 0 , w > 0,

Since the process Xs follows

the Feynman-Kac formula implies that Ṽ  satisfies the following partial differential 
equation (PDE):

where

and

For any (t,w) ∈ M̃T , x > 0 , inequalities (3) and (20) imply that

(21)

V(t,w) − xw ≤ sup
(c,�)∈A1

t
(t,w)

�t

[
�

T1

t

e−�(s−t)U1(s, cs)ds + e−�(T1−t)U2(T1,WT1
)

]

− x�t

[
HT1

WT1
+ �

T1

t

Hscsds

]

≤ �t

[
�

T1

t

e−�(s−t)Ũ1(s,Xs)ds + e−�(T1−t)Ũ2(T1,XT1
)

]
≜ Ṽ(t, x),

�Ui(t, x) ≜ sup
c>0

[Ui(t, c) − xc] = Ui(t,JUi
(t, x)) − xJUi

(t, x).

�V(t, x) = sup
w>0

(
V(t,w) − xw

)
, V(t,w) = inf

x>0

(
�V(t, x) + xw

)
.

dXs = (� − r)Xsds − �XsdBs, ∀s ∈ [t, T1], Xt = x,

{
−�tṼ(t, x) − LṼ(t, x) = Ũ1(t, x) in NT1

,

Ṽ(T1, x) = Ũ2(T1, x), ∀x ∈ (0,+∞),

L ≜ 1

2
�2x2�xx + (� − r)x�x − �,

NT ≜ [0, T) × (0,+∞), ÑT ≜ [0, T] × (0,+∞),

NT1
≜ [0, T1) × (0,+∞), ÑT1

≜ [0, T1] × (0,+∞).
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where

Summary of Results in Yang and Koo (2018)

In this section, we summarize the theoretical results in Yang and Koo (2018). 
They have reformulated the agent’s optimization problem into a variational ine-
quality (VI) by using the martingale method.

By the budget constraint (3) and the martingale method, we can define the 
dual value functions Ṽ(t, x) and Ṽ(t, x) of the agent’s problem after retirement and 
before retirement, respectively, as follows (for details, see Appendix B):

where Ut,T is defined in Appendix A, Xs = xe�(s−t)Hs , and, for i = 1, 2,

JUi
(t, ⋅) is the inverse function of �xUi(t, ⋅), i = 1, 2 and

According to Yang and Koo (2018), the following duality relationship is established.

(22)

V(t,w) − x(w − G(t))

≤ sup
(�,c,�)∈A1(t,w)

�t

[
�

�

t

e−�(s−t)(U1(s, cs) − l) + e−�(�−t)V(�,W�)

]

− x�t

[
H� (W� − G(�)) + �

�

t

Hscsds

]

≤ sup
�∈Ut,T

�t

[
�

�

t

e−�(s−t)Û1(s,Xs)ds + e−�(�−t)(Ṽ(�,X�) + X�G(�))

]

= sup
�∈Ut,T

�t

[
�

�

t

e−�(s−t)Û1(s,Xs)ds + e−�(�−t)V̂(�,X�)

]
≜ V̂(t, x),

�U1(t, x) = sup
c>0

[
U1(t, c) − xc

]
− l = �U1(t, x) − l,

�V(t, x) = �V(t, x) + xG(t).

Ṽ(t, x) ≜ �t

[
�

T1

t

e−�(s−t)Ũ1(s,Xs)ds + e−�(T1−t)Ũ2(T1,XT1
)

]
,

V̂(t, x) ≜ sup
�∈Ut,T

�t

[
�

�

t

e−�(s−t)Û1(s,Xs)ds + e−�(�−t)V̂(�,X�)

]
,

�Ui(t, x) ≜ sup
c>0

[
Ui(t, c) − xc

]
= Ui(t,JUi

(t, x)) − xJUi
(t, x),

�U1(t, x) ≜ sup
c>0

[
U1(t, c) − xc

]
− l = �U1(t, x) − l,

V̂(t, x) = Ṽ(t, x) + xG(t).
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Theorem 3 [Theorem 1 in Yang and Koo (2018)] For any t ∈ [0, T] , x > 0 , w > G(t) , 
the following duality relationship holds:

They have also shown that the dual value function V̂(t, x) defined in (22) is the 
unique strong solution of the following variational inequality (VI): (we refer to Yang 
and Koo (2018) for details)

where the domain NT and the differential operator L are defined in Appendix  B. 
Moreover, V̂(t, x) is piecewise smooth.

Review of the Mellin Transformation

In this appendix we briefly review the definition and properties of the Mellin trans-
formation. The reader can refer to Sneddon (1972) for more details.

Definition 1 For a locally integrable function f(x) in (0,+∞) , the Mellin transform 
of M[f](y) of f(x) is defined by

and if this integral converges for a1 < R(y) < a2 , then the inverse Mellin transform 
is given by

Here, R(y) is the real part of complex number y.

Proposition 5 Let f(x) be a locally integrable function in (0,+∞) . Suppose that the 
Mellin transform M[f](y) of f(x) exists for a1 < R(y) < a2 . Then, for any positive 
integer n,

Proposition 6 For � ∈ ℂ with R(𝛼) > 0 and b ∈ ℝ , the inverse Mellin transform of 
f (y) = e�(y+b)

2 is given by

�V(t, x) = sup
w>G(t)

(V(t,w) − x(w − G(t)), V(t,w) = inf
x>0

(
�V(t, x) + x(w − G(t))

)
.

⎧
⎪⎨⎪⎩

−𝜕t�V(t, x) − L�V(t, x) = �U1(t, x), if �V(t, x) > �V(t, x) and (t, x) ∈ NT ,

partialt
�V(t, x) − L�V(t, x) ≥ �U1(t, x), if �V(t, x) = �V(t, x) and (t, x) ∈ NT ,

�V(T , x) = �V(T , x), ∀x ∈ (0,+∞),

M[f ](y) = ∫
∞

0

f (x)xy−1dx, y ∈ ℂ,

f (x) = M−1[M[f ]](x) =
1

2�i ∫
c+i∞

c−i∞

M[f ](y)x−ydy.

M

[(
x
�
�x

)n

f

]
(y) = (−y)nM[f ](y).
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Proof of Proposition 2

We consider the Mellin transform M[P](t, y) of P(t, x):

The inverse Mellin transform is given by

Then, we transform the non-homogeneous PDE (6) into the following ordinary dif-
ferential equation (ODE):

where k1 = 2�∕�2 , k2 = 2(� − r)∕�2.
Since M[P](T , y) = 0 , the non-homogeneous ODE (23) yields

and

Let us consider the following function

Then,

By Proposition 6 in Appendix D, we can obtain

M−1[f ](x) =
1

2
√
��

xbe
−

1

4�
(log x)2

.

M[P](t, y) = ∫
∞

0

P(t, x)xy−1dx.

P(t, x) =
1

2�i ∫
c+i∞

c−i∞

M[P](t, y)x−ydy.

(23)
dM[P]

dt
(t, y) +

1

2
�2Q(y)M[P](t, y) = M[F](t, y),

Q(y) = y2 + (1 − k2)y − k1,

M[P](t, y) = −∫
T

t

e
1

2
�2Q(y)(�−t)

M[F](�, y)d�

P(t, x) = −
1

2�i ∫
c+i∞

c−i∞ ∫
T

t

e
1

2
�2Q(y)(�−t)

M[F](�, y)x−yd�dy.

G(t, x) ≜ 1

2�i �
c+i∞

c−i∞

e
1

2
�2Q(y)t

x−ydy.

G(t, x) = e
−

1

2
�2
{(

1−k2
2

)2

+k1

}
t 1

2�i ∫
c+i∞

c−i∞

e
1

2
�2
(
y+

1−k2
2

)2

t
x−ydy.
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Since e
1

2
�2Q(y)t and M[F](t, y) are the Mellin transforms of G(t, x) and F(t, x), respec-

tively, the Mellin convolution theorem in Proposition 1 implies

For any � ∈ ℝ and b > 0 , by direct computation we can obtain

Thus we have

  ◻

Proof of Proposition 3

By Theorem  1 in Yang and Koo (2018) and the first-order condition, for w > G(t) , 
there exists a unique x∗ = x∗(t,w) such that

and

that is,

where J
V̂
(t, ⋅) is the inverse function of �xV̂(t, ⋅).

Since V̂(t, x) = Ṽ(t, x) + xG(t) + P(t, x) and −w + G(t) = �xV̂(t, x
∗(t,w)),

By the explicit form of Ṽ(t, x) in (10),

G(t, x) = e
−

1

2
�2
��

1−k2
2

�2

+k1

�
t x

1−k2
2

�
√
2�t

exp

�
−
1

2

(log x)2

�2t

�
.

P(t, x) = −∫
T

t ∫
∞

0

F(�, u)G(� − t,
x

u
)
1

u
dud�.

∫
∞

b

u−�G(t,
x

u
)
1

u
du = x−�e

−
1

2
�2{k1−(1−k2)�−�2}tN

⎛
⎜⎜⎜⎝

log
x

b
− �2

�
1−k2

2
+ �

�
t

�
√
t

⎞
⎟⎟⎟⎠
.

P(t, x) = �x∫
T

t

e−r(�−t)N

(
d+(� − t,

x

Rx(�)
)

)
d�

− l∫
T

t

e−�(�−t)N

(
d−(� − t,

x

Rx(�)
)

)
d�.

V(t,w) = inf
x>0

[
�V(t, x) + x(w − G(t))

]
= �V(t, x∗(t,w)) + x∗(t,w)(w − G(t)).

(24)w − G(t) = −�xV̂(t, x
∗(t,w)),

x∗(t,w) = J
V̂
(t,−w + G(t)),

(25)w(t, x∗) = −�xV̂(t, x
∗) + G(t) = −�xṼ(t, x

∗) − �xP(t, x
∗).
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From (7), (24), (25), and (26), we can see that x∗ = x∗(t,w) is a unique solution to 
the following integral equation:

Also, we obtain the value function V as follows:

  ◻

Proof of Theorem 1

From Theorem 1 in Yang and Koo (2018), the optimal consumption c∗
s
 is given by

(26)�xṼ = −x
−

1

�

(
A ⋅ e−K(T1−t) +

1 − e−K(T1−t)

K

)
.

w = (x∗)
−

1

�

�
A ⋅ e−K(T1−t) +

1 − e−K(T1−t)

K

�

+
l

�x∗
√
2� ∫

T

t

exp

⎧
⎪⎨⎪⎩
−�(� − t) −

d−(� − t,
x∗

Rx(�)
)2

2

⎫
⎪⎬⎪⎭

1√
� − t

d�

−
�

�
√
2� ∫

T

t

exp

⎧⎪⎨⎪⎩
−r(� − t) −

d+(� − t,
x∗

Rx(�)
)2

2

⎫⎪⎬⎪⎭
1√
� − t

d�

− �∫
T

t

e−r(�−t)N

�
d+

�
� − t,

x∗

Rx(�)

��
d�.

V(t,w) = V̂(t, x∗) − x∗�xV̂(t, x
∗)

=
�
Ṽ(t, x∗) − x∗�xṼ(t, x

∗)
�
+
�
P(t, x∗) − x∗�xP(t, x

∗)
�

=
1

1 − �
(x∗)

−
1−�

�

�
A ⋅ e−K(T1−t) +

1 − e−K(T1−t)

K

�

−
� x∗

�
√
2� ∫

T

t

exp

⎧⎪⎨⎪⎩
−r(� − t) −

d+(� − t,
x∗

Rx(�)
)2

2

⎫⎪⎬⎪⎭
1√
� − t

d�

+
l

�
√
2� ∫

T

t

exp

⎧⎪⎨⎪⎩
−�(� − t) −

d−(� − t,
x∗

Rx(�)
)2

2

⎫⎪⎬⎪⎭
1√
� − t

d�

− l∫
T

t

e−�(�−t)N

�
d−

�
� − t,

x∗

Rx(�)

��
d�.
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By Proposition 3 and time-consistency of Problem 1, we can easily derive

From (25) we know that

and the dynamic of X∗
s
 is given by

Thus, by Itô’s formula, the local martingale term5 of dW∗
s
 is given by

Comparing (27) with the wealth evolution Eq. (2) via stopping times, we deduce 
that the optimal portfolio process �∗

s
 is given by

  ◻

Proof of Proposition 4

It follows from (28) that the optimal portfolio for w < Rw(t) (x > Rx(t)) is given by

c∗
s
= JU1

(s,X∗
s
) = (X∗

s
)
−

1

� with X∗
s
= x∗(t,w)e�(s−t)Hs.

W∗
s
= (X∗

s
)
−

1

�

�
A ⋅ e−K(T1−s) +

1 − e−K(T1−s)

K

�

+
l

�X∗
s

√
2� ∫

T

s

exp

⎧
⎪⎨⎪⎩
−�(� − s) −

d−(� − s,
X∗
s

Rx(�)
)2

2

⎫
⎪⎬⎪⎭

1√
� − s

d�

−
�

�
√
2� ∫

T

s

exp

⎧⎪⎨⎪⎩
−r(� − s) −

d+(� − s,
X∗
s

Rx(�)
)2

2

⎫⎪⎬⎪⎭
1√
� − s

d�

− �∫
T

s

e−r(�−s)N

�
d+

�
� − s,

X∗
s

Rx(�)

��
d�.

W∗
s
= −�xṼ(s,X

∗
s
) − �xP(s,X

∗
s
),

dX∗
s
= (� − r)X∗

s
ds − �X∗

s
dBs.

(27)�X∗
s

(
�xxṼ(s,X

∗
s
) + �xxP(s,X

∗
s
)
)
dBs.

(28)�∗
s
=

�
�
X∗
s

(
�xxṼ(s,X

∗
s
) + �xxP(s,X

∗
s
)
)
= −

�
�
X∗
s
⋅ �xW

∗
s
.

5 The term in (27) is indeed a martingale, which is implied in the proof of the verification theorem (The-
orem 1 and Lemma 2) in Yang and Koo (2018).
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On the other hand, the optimal portfolio �∗
t
 for w ≥ Rw(t) (x ≤ Rx(t)) is given by

Clearly,

Note that for (t, x) ∈ ��x,

Since P ∈ C∞(
{
(t, x) ∣ x ≥ Rx(t), t ∈ [0, T]

}
) and 

P(t,Rx(t)) = �tP(t,Rx(t)) = �xP(t,Rx(t)) = 0 (see Lemma 4 in Yang and Koo 2018), 
we deduce that

Since Rx(t) < l∕𝜌 for (t, x) ∈ ��x (see Lemmas 5 and 6 in Yang and Koo 2018), we 
have

  ◻
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