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Abstract
We study an optimal retirement, consumption/portfolio selection problem of an eco-
nomic agent in a non-Markovian environment.We show that under a suitable condition
the optimal retirement decision is to retire when the individual’s wealth reaches a
threshold level. We express the value and the optimal strategy by using the strong
solution of the backward stochastic partial differential variational inequality (BSPDVI)
associated with the dual problem. We derive properties of the value function and the
optimal strategy by analyzing the strong solution and the free boundary of theBSPDVI.
We also make a methodological contribution by proposing an approach to investigate
properties of the strong solution and the stochastic free boundary of BSPDVI by com-
bining a probabilistic method and the theory of backward stochastic partial differential
equations (BSPDEs).
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1 Introduction

There is a surging interest in an individual’s optimization problemwhich combines the
choice of voluntary retirement and the choices of optimal consumption and an optimal
investment portfolio (Choi and Shim [4], Fahri and Panageas [11], Choi, Shim and
Shin [5], Dybvig and Liu [9], Yang and Koo [30]). Most of the research in this field,
however, has been focused on deriving and studying optimal policies in an environment
where the investment opportunity is constant, and thus Markovian, and composed of
two assets, a riskless bond and a risky stock. The financial market we observe does
not satisfy these simplifying assumptions. The interest rate changes stochastically
and there exist a large number of assets whose returns exhibit covariances which
change randomly over time (see e.g., Ball and Torous [1]). Furthermore, the changes
do not necessarily satisfy theMarkovian assumption. For example, the Heath–Jarrow–
Morton model (Heath et al. [13]), one of the most commonly used models of the term
structure of interest rates, is typically implementedwith parameterswhich do not allow
a simple transformation to a Markovian model. Another example is provided by the
momentum effect in asset returns (see e.g., Li and Liu [22]).

In this paper we study the problem in a general financial market where there are
many assets and the returns of the assets are not necessarilyMarkovian.We employ the
flexible labor supplymodel ofBodie et al. [3] andChoi et al. [5].Wemake the following
contributions in this paper. Firstly, we provide a complete theoretical treatment of the
optimal consumption and investment problem with an early retirement option in a
non-Markovianmarket environmentwith a verification theorem. Specifically, we show
that the optimal retirement decision is to retire when the individual’s wealth reaches a
threshold level under a suitable condition.Weexpress the value and the optimal strategy
by using the strong solution to the backward stochastic partial differential variational
inequality (BSPDVI) associatedwith the dual problem. Secondly, we derive properties
of the value function and the optimal strategy by analyzing the strong solution and
the free boundary of the BSPDVI. Thirdly, we make a methodological contribution by
proposing an approach to investigate properties of the strong solution and the stochastic
free boundary of BSPDVI.

Three commonmethods have been used to analyze the properties of the value func-
tion and optimal strategy of a pure optimal control problem (without a choice of a
stopping time): first, the martingale method with a dual transformation (see e.g., Cox
and Huang [6], Karatzas et al. [18], Karatzas and Shreve [19]), second, the transforma-
tion of the associated Hamilton-Jacobi-Bellman (HJB) equation into a linear partial
differential equation (PDE) through the Legendre transformation (see e.g., Karatzas et
al. [17]), third, the stochastic maximum principle (see e.g., Yong and Zhou [32]). As
explained in Yang and Koo [30], however, all the methods cannot be directly applied
to our problem, since the state equations before and after the retirement date are not the
same, and the dual transformations and the Legendre transformations in the two stages
are different. Moreover, the stopping time is unknown and interacts with the optimal
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control, and the associated HJB equation of the problem is a backward stochastic
partial differential equation (BSPDE), not a PDE.

For an optimal stopping problem, three methods have been commonly used: the
martingale and probabilistic method (see e.g., Karatzas and Shreve [19], Karatzas and
Wang [20], Nutz and Zhang [24], Peskir and Shiryaev [25]), the backward stochastic
differential equation method (see e.g., El Karoui et al. [10]) and the PDE method with
analysis of the variational inequality (VI) associated with the problem (see e.g., Fride-
man [12], Bensoussan and Frideman [2]). But it is difficult to discover the properties
of the value function and the optimal strategy only by the martingale method or by the
probabilistic method, since the optimal stopping time discovered with these methods
is abstract. The PDE method attempts to identify the optimal stopping boundary for a
Markovian optimal stopping problem, but cannot be directly applied to our problem,
because the problem is a non-Markovian optimal stopping problem including portfo-
lio selection, and the HJB equation associated with the problem is a fully nonlinear
BSPDVI. Due to the highly non-linear nature, it is difficult to discover the character-
istics of the HJB equation even in the simple Markovian case when the investment
opportunity is constant and comprised of two assets (see Yang and Koo [30]).

Yang and Koo [30] study a similar optimal retirement and portfolio selection
problem in a Markovian market environment. They propose an approach involving
successive transformations and recast the problem into that of a variational inequality
satisfied by the dual value function. They derive properties of the value function and
the optimal strategy by analyzing the VI and the dual value function, by applying the
theory of PDEs. Since the HJB equation associated with our problem is a BSPDE,
the methods in Yang and Koo [30] are not directly applicable to the non-Markovian
problem.

In this paper we propose a new approach to the optimal retirement and portfolio
choice problem in a non-Markovian environment. First, we recast the problem into
that of a linear BSPDVI by successive transformations similar to those in Yang and
Koo [30], in an attempt to overcome the difficulty associated with the combination
of control and optimal stopping problems and the non-linearity of the HJB equation
of the primal problem. Next, we provide a verification theorem which provides a
connection between the solution to the BSPDVI and the value of the original problem.
The theorem also provides a characterization of an optimal strategy by using the
solution to the BSPDVI. We then apply the theory of quasilinear BSPDVIs developed
in Yang and Tang [31] to show the existence and uniqueness of a strong solution.
We verify the assumptions of the verification theorem by combining analysis of the
BSPDVI and a probabilistic approach. Finally, we discover properties of the value and
the optimal retirement boundary by means of the comparison theory for BSPDVIs. It
is worth mentioning that the optimal retirement boundary is random and has no closed
form, and hence, analysis of its properties is substantially challenging.

Despite the remarkable achievement in the theory of backward stochastic partial
differential equations (BSPDEs, see Hu and Peng [14], Hu et al. [15], Du and Tang
[8], and Qiu and Wei [26], etc.),1 it is still not as mature as that of partial differential
equations (PDEs), most of the existing results are about the existence and uniqueness

1 See also Yang and Tang [31] and Koo et al. [21] for more development on BSPDEs and their applications.
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of the strong or weak solutions, and investigation of properties of solutions are yet to
come. We overcome the difficulty by combining a probabilistic method and the theory
of BSPDEs.

The paper is organized as follows. In Sect. 2 we present the model and the opti-
mization problem. In Sect. 3 we transform the original problem into a BSPDVI and
provide the verification problem and in Sect. 4 we verify the assumptions of the veri-
fication theorem. In Sect. 5 we study properties of the optimal boundary and in Sect. 6
we conclude. The Appendix gives existing results on BSPDVI and derive technical
lemmas, which are necessary to provide a characterization of the optimal retirement
boundary.

2 TheModel

We consider an agent whose objective is to maximize the following time-separable
von Neumann–Morgenstern utility function by choosing her consumption/leisure, the
portfolio of investments and the retirement time:

E

[∫ τ

0
e−βtU1(ct , lt )dt +

∫ T

τ

e−βtU1(ct , Lt )dt + e−βTU2(YT )

]
, (2.1)

where τ ∈ [0, T ] is the time of the agent’s retirement, and the constant T denotes the
fixed mandatory retirement date, and β is her subjective constant discount rate, and
YT is her wealth at time T . There exists a single consumption good and ct denotes the
agent’s rate of consumption at time t . The agent derives utility from enjoying leisure,
and lt denotes the rate of her taking leisure at t satisfying the condition 0 ≤ lt ≤ Lt <

Lt , where L and L are two positive stochastic processes satisfying Assumption 2 in
Sect. 2.1. The model is that of a flexible labor supply similar to Bodie et al. [3], i.e.,
the agent’s labor supply is not fixed, but can change over time according to her choice:
L denotes the total leisure endowed to the agent, and L − l is the rate at which she
supplies labor, i.e., by sacrificing part of the endowed leisure, the agent supplies her
labor. There is a minimum work requirement before retirement, i.e., she is required to
work at a rate greater than or equal to L − L .

The function U2(·) is the utility function of wealth after retirement. The agent has
an option to retire earlier than the mandatory retirement date T , and the retirement
decision is irreversible, i.e., the agent does not have an option to go back to work once
she chooses to retire. The agent receives income at a rate equal towt > 0 for labor she
supplies, and thus the rate of her labor income is equal to wt (Lt − lt ) at time t . After
retirement, the agent enjoys her full endowed leisure but does not earn labor income.
Thus, the choice of the optimal retirement time τ hinges on the trade-off between the
pecuniary benefit of labor income and the marginal utility of enjoying leisure fully
after retirement. Choi et al. [5] have considered a similar problem in a Markovian
model with an infinite horizon.
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For simplicity of our analysis we assume that U1(·, ·) is the following constant
elasticity of substitution (CES) utility function as in Choi et al. [5]:

U1(c, l) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[αcρ+(1−α)lρ ]
1−γ

ρ

1−γ
, 0 < γ �= 1, 0 < α < 1, 0 �= ρ < 1;

1
ρ
log [αcρ + (1 − α)lρ ] , γ = 1, 0 < α < 1, 0 �= ρ < 1;

[ cαl1−α ]1−γ

1−γ
0 < γ �= 1, 0 < α < 1, ρ = 0;

log ( cαl1−α ) γ = 1, 0 < α < 1, ρ = 0,

where γ, α and ρ are constants. Here γ is the coefficient of relative risk aversion or
the reciprocal of the elasticity of intertemporal substitution, 1/(1−ρ) is the elasticity
of substitution between consumption and leisure, α is the share of contribution of
consumption to utility.

We also make the following assumption about U2(·).
Assumption 1 The utility function U2(y) ∈ C2(0,+∞) taking values in R

+ �
(0,+∞), is strictly increasing and strictly concave with respect to y and satisfies
that there exist two positive constants C and k such that2

lim
y→0+ U

′
2(y) = +∞, lim

y→+∞U ′
2(y) = 0, lim sup

y→+∞
U ′
2(y) y

k ≤ C .

The first two conditions in Assumption 1 are called Inada conditions, which are
commonly employed in models of economic growth and consumption/savings (see
e.g., Uzawa [29], Inada [16] etc.). The last inequality in Assumption 1 is a technical
assumption, which is satisfied bymany commonly used utility functions. For example,
it is satisfied by the following constant relative risk aversion (CRRA) utility function
and constant absolute risk aversion (CARA) utility function, i.e.,

U2(y) = y1−γ

1 − γ
(0 < γ �= 1) or U2(y) = log y or U2(y) = 1 − e−αy (α > 0).

Remark 1 From Assumption 1, we can deduce that

0 ≤ J U2(x) ≤ C(1 + x−1/k), ∀ x ∈ (0,+∞), (2.2)

where JU2(·) is the inverse function of U ′
2(·), and C is a positive constant.

Yang and Koo [30] and Koo et al. [21] considered a felicity function of the form
U (c) − l where l is disutility of labor, and their work is different from the model in
this paper since they do not allow flexible labor supply.

2 In order to save notation wewill use the same notationC (and K ) to denote different large enough positive
constants. Their meanings, however, will be clear from the context in which they appear.

123

Author's personal copy



Applied Mathematics & Optimization

2.1 Financial Market

There are one riskless asset and (N1 + N2) risky assets in the financial market of the
economy. The price P0 of the riskless asset and the price Pi of the i−th risky asset are
governed by the following stochastic differential equation (SDE)3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P0,t = P0 +
∫ t

0
ru P0,udu;

Pi,t = Pi +
∫ t

0
μi,u Pi,udu +

∫ t

0

N1∑
j=1

σ 1
i j,u Pi,u dW j,u +

∫ t

0

N2∑
j=1

σ 2
i j,u Pi,u dB j,u,

where i = 1, 2, · · · , N1 + N2. The sources of risk are described by two inde-
pendent Brownian motions: N1−dimensional standard Brownian motion, W =
(W1, . . . ,WN1)

	 and N2−dimensional standard Brownian motion, B = (B1, . . . ,

BN2)
	, where A	 denotes the transpose of matrix A. The prices of the risky assets are

described by the (N1+N2)−dimensional stochastic process P = (P1, ···, PN1+N2)
	.

In the SDE for P0, r represents the risk-free interest rate. And in the SDE for
P, μ = (μ1, · · ·, μN1+N2)

	, Σ = (Σ1,Σ2) represent the means and the sensi-
tivity of the returns on the risky assets to risk sources, respectively, where Σ1 =
( σ 1

i j )(N1+N2)×N1, Σ2 = ( σ 2
i j )(N1+N2)×N2 . We assume that Σ is strongly non-

degenerate, i.e., there exists a positive constant κ such that ξ	Σ ξ ≥ κ|ξ |2 for any
ξ ∈ R

N1+N2 . The assumption implies, in particular, that the financial market is com-
plete.

The Brownian motion (B	,W	)	 is defined on a filtered probability space
(Ω,F , F � (Ft )

T
t=0, P). Moreover, let us denote by F

W � {FW
t }Tt=0 and F

B �
{F B

t }Tt=0, respectively, the natural filtrations generated by W and B containing all
P-null sets inF . Without loss of generality, we assume that F � F

W ∨F
B . We denote

by P and P B the σ - algebras of predictable sets in Ω × [ 0, T ] associated with F and
F
B , respectively.
Let us define the market price of risk θ by

θ � (Σ)−1
(
μ − r1N1+N2

)
, i = 1, 2,

where 1N1+N2 is the (N1 + N2)−dimensional column vector of 1’s. Let us write
θ = ((θ1)	, (θ2)	)	, where θ1 and θ2 are the first N1−subvector and the last
N2−subvector of θ , respectively. Then, we can define the state price density process
H by

Ht � exp

{
−
∫ t

0
ru du − 1

2

∫ t

0
|θu |2 du −

∫ t

0
(θ1u )	 dWu −

∫ t

0
(θ2u )	 dBu

}
. (2.3)

3 In this model, we suppose that the risky assets are driven by two independent BrownianmotionsW and B,
and the coefficient r , μ, Σ are onlyPB−measurable (PB is the σ -algebra of predictable sets generated by
B). We make this assumption to ensure that the differential operator in the associated BSPDE and BSPDVI
is non-degenerate, and the BSPDE and BSPDVI have strong solutions. In fact, our model includes such
commonly used models as some stochastic interest rate models and stochastic volatility models.
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Throughout this paper, we suppose that the stochastic processes L, L and the coef-
ficients r , θ1, θ2 satisfy the following Assumptions 2 and 3:

Assumption 2 (Measurability and Boundedness) The stochastic processes L, L and
the coefficient processes r , θ1, θ2, the volatility processΣ , and the income rate process
w are P B-measurable with values in R

+, R
+, R

1, R
N1 , R

N2 ,
R

(N1+N2)×(N1+N2), and R
+, respectively. Moreover, there exists a positive constant C

such that

L + 1

L
+ 1

L − L
+| r | + | θ1 | + | θ2 | + |Σ | + w + 1

w
≤ C a.e. in Ω × [ 0, T ].

According to Assumption 2 the risk-free rate r and the market price of risk θ are P B-
measurable, and thus, change stochastically according to the movement of Brownian
motion B. Thus, the Brownian motion B can be regarded as sources of risk which
cause changes in the investment opportunity. Notice that we do not imposeMarkovian
restrictions on the changes.

Assumption 3 (Nondegeneracy) There exists a positive constant κ such that |θ1| ≥ κ

a.e. in Ω × [ 0, T ].
From the expression of H in (2.3), we know that H ∈ S p for any p ≥ 1 under

Assumption 2 ( see Subsection 2.3 for the definition of S p).

2.2 Optimization Problem

Let us denote the agent’s monetary amounts of investment in the risky assets by
π = (π1, · · ·, πN1+N2)

	. Suppose that the current time is t ∈ [0, T ] and the agent
has not yet retired. Let U t,T be the class of all F-stopping times which take values in
[ t, T ]. The agent’s wealth process Y is governed by

Y t,y;τ,c,l,π
s = y +

∫ s

t

[
π	
u

(
μu − ru1N1+N2

)
+ ruY

t,y;τ,c,l,π
u − cu

+ wu(Lu − lu)I{u≤τ }
]
du +

∫ s

t
π	
u

[
Σ1

u dWu + Σ2
u dBu

]
, (2.4)

where y is a F B
t −measurable4 random variable, and IA is the characteristic function

of a set A ⊂ Ω .

4 The negative of the present value −Yt is the initial level of wealth such that Y t,−Yt ;T ,0,0,πY
T = 0 with

an appropriate investment strategy πY . So, if we let Y = −Y t,−Yt ;T ,0,0,πY
, ZY = −Σ	πY , then

(Y, ZY ) is the unique solution of the following backward stochastic differential equation (BSDE)

Ys = −
∫ T

s

[
(ZYu )	θu + ruYu − Luwu

]
du −

∫ T

s
(ZYu )	 (dW	

u , dB	
u )	. (2.5)

Note that L, θ, r , w are PB−measurable. Hence, Y, ZY are PB−measurable, and ZYi = 0 for i =
1, · · · , N1.
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Since the number of risky assets is equal to the number of sources of risk, the
financial market is complete and the present value Yt of cash flows can be calculated
by using the state price density (see e.g., Karatzas et al. [18], Cox and Huang [6]). We
define the present value Yt of labor income at t under the assumption that the agent
provides a maximum possible supply of labor, L , and does not retire until T as in the
following,

Yt = E

[ ∫ T

t
Ht
s Lswsds

∣∣∣∣Ft

]
, Ht

s � Hs

Ht
> 0 for s ≥ t . (2.6)

It is clear that Ht
s satisfies the following SDE,

Ht
s = 1 −

∫ s

t
ru H

t
u du −

∫ s

t
H t
u(θ

1
u )	 dWu −

∫ s

t
H t
u(θ

2
u )	 dBu . (2.7)

From Assumption 2, we see that r , θ, w are bounded. Recalling L, w ≥ 0 and (2.6)
and (2.7), by the theory of SDEs (see e.g., Mao [23]), we derive the following estima-
tion:

0 ≤ Yt ≤ ‖Lw‖∞ E

[ ∫ T

t
Ht
s ds
∣∣∣Ft

]
≤ C, (2.8)

where C is a constant independent of t , and we have used the notation

‖Lw‖∞ � ess.sup{|Luwu | : (ω, u) ∈ Ω × [ 0, T ]},

which will be used throughout this paper.
A policy, (τ, c, l, π), is admissible if τ ∈ U t,T , the set of all F−stopping times

taking values in [ t, T ], and c, l, π are P−measurable, and it satisfies c > 0; 0 <

ls ≤ Ls for any t ≤ s ≤ τ , ls = Ls for any τ < s ≤ T , and

∫ T

t
(cs + |πs |2)ds < ∞ subject to Y t,y;τ,c,l,π

s > −Ys I{s<τ } a.s. in Ω.

We will denote the set of all admissible policies by A(t, y).
The agent’s problem at time t is to maximize

J (t, y; τ, c, l, π) � E

[ ∫ τ

t
e−β(u−t)U1(cu, lu)du +

∫ T

τ

e−β(u−t)U1(cu, Lu)du

+ e−β(T−t)U2(Y
t,y;τ,c,l,π
T )

∣∣∣∣Ft

]
,

where y > −Yt . That is, the agent would like to find an optimal strategy
(τ ∗, c∗, l∗, π∗) ∈ A1(t, y) such that,

J (t, y; τ ∗, c∗, l∗, π∗) = Vt (y) � ess.sup
{
J (t, y; τ, c, l, π) : (τ, c, l, π) ∈ A1(t, y)

}
,
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where

A1(t, y) �
{

(τ, c, l, π) ∈ A(t, y) : E

[ ∫ τ

t
e−β(u−t)U−

1 (cu, lu)du

+
∫ T

τ

e−β(u−t)U−
1 (cu, Lu)du + e−β(T−t)U−

2 (Y t,y;τ,c,l,π
T )

∣∣∣∣Ft

]
< +∞

}

with U− � max{0,−U }. And V is called the value of the optimization problem.

2.3 Notation for Spaces of Stochastic Processes and Functions

In order to facilitate exposition of the paper, we introduce notation for spaces of
stochastic processes and function spaces. We refer to [7,8] for more details of the
function spaces.

For an integer m ∈ N, p ∈ [1,+∞), λ ∈ [ 0,+∞), a smooth domain D in R, we
introduce the following spaces:
•C m(D), the set of all functions η : D → E such that η and η′, η′′, · · · , η(m) are
continuous, where E is R or R

N2 ;
•C m

0 (D), the set of all functions in C m(D) with compact supports in D;
• Hm, p

λ (D), the completion of C m(D) under the norm

| η | m, p; λ �
(∫

D
| η | p e−λ|x | dx +

m∑
i=1

∫
R

| η(i) | p e−λ|x | dx
) 1

p

;

• L
m,p
λ (D), the set of all Hm, p

λ (D)-valued andF B
T -measurable random variables such

that

E

[
| ϕ| pm,p; λ

]
< ∞;

•L p, the set of all P-predictable stochastic processes taking values in R with norm

‖X‖p �
{

E

[∫ T

0
| Xt |p dt

]} 1
p

;

•S p, the set of all path continuous processes in L p with norm

|‖X |‖p �
{

E

[
sup

t∈[ 0, T ]
| Xt |p

]} 1
p

;

• L p(FT ), the space of FT−measurable random variables with norm {E[|XT |p]}1/p
for random variable XT .
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• H
m, p
λ (D), the set of allP B-predictable stochastic processeswith values in Hm, p

λ (D)

with norm

‖V ‖m, p; λ �
{

E

[∫ T

0
| Vt |pm, p; λ

dt

]} 1
p

;

• S
m, p
λ (D), the set of all path continuous stochastic processes in H

m, p
λ (D) equipped

with norm

|‖V |‖ m, p; λ �
{

E

[
sup

t∈[ 0, T ]
| Vt | pm, p; λ

]} 1
p

;

The notation for spaces Hm, p
0 (D), L

m,p
0 (D), H

m, p
0 (D) and S

m, p
0 (D) will be

abbreviated as Hm, p(D), L
m,p(D), H

m, p(D) and S
m, p(D) if there is no confusion.

Moreover, we will omit (D) if D = R.

3 Transformation of the Original Problem into a BSPDVI and
Verification Theorem

In this section we will recast the original optimal stochastic control problem into
a BSPDVI by making three successive transformations.5 Next we will present the
verification theorem (Theorem 1), which provides a connection to all transformations.
The verification theorem states that the value and the optimal strategy of the original
optimization problem can be described by the unique solution to BSPDVI (3.16).

3.1 Static Budget Constraints and Convex Dual Functions

From the SDE (2.7) for the state-price-density H and SDEs (2.4), (2.5), we deduce
the static budget constraint as follows:

E

[
Ht
s (Y

t,y;τ,c,l,π
s + Ys) +

∫ s

t
H t
u(cu + wulu)du

∣∣∣∣Ft

]
≤ y + Yt if 0 ≤ t ≤ s ≤ τ ;

(3.1)

E

[
Ht
s Y

t,y;τ,c,l,π
s +

∫ s

t
H t
u cudu

∣∣∣∣Ft

]
≤ y if τ ≤ t ≤ s ≤ T . (3.2)

As a preparation for the transformationswe first introduce the convex dual functions
of U1(·, ·), U2(·) such that

Ũ1,t (x) = sup
c≥0

{U1(c, Lt ) − xc } = U1(JU1(x; Lt ), Lt ) − xJU1(x; Lt ); (3.3)

5 See Yang and Koo [30] for similar transformations in a simpler context in a Markovian model with
constant coefficients.

123

Author's personal copy



Applied Mathematics & Optimization

Ũ2(x) = sup
y≥0

{U2(y) − xy } = U2(JU2(x)) − xJU2(x); (3.4)

Û1,t (x) = sup
c≥0,0≤l≤Lt

{U1(c, l) − x(c + wt l) }

= At (x)I{x≥xt }
+
[
U1(JU1(x; Lt ), Lt ) − x(JU1(x; Lt ) + Ltwt )

]
I{0<x<xt }, (3.5)

where JU1(·; l) is the inverse function of ∂cU1(·, l), JU2(·) is the inverse function of
U ′
2(·), and

At (x) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ
1−γ

α
1−γ
ργ x

γ−1
γ

×
[
1 + wt

(
αwt
1−α

) 1
ρ−1
] (1−ρ)(1−γ )

ργ

, 0 < γ �= 1, 0 < α < 1, 0 �= ρ < 1;

log

{
α

1
ρ

x

[
1 + wt

×
(

αwt
1−α

) 1
ρ−1
] 1−ρ

ρ
}

− 1, γ = 1, 0 < α < 1, 0 �= ρ < 1;
γ

1−γ
α

1−γ
γ

(
αwt
1−α

)−(1−γ )(1−α)
γ

x
γ−1
γ , 0 < γ �= 1, 0 < α < 1, ρ = 0;

log
[

αα(1−α)1−α

w1−α
t x

]
− 1, γ = 1, 0 < α < 1, ρ = 0,

and

xt �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α
1−γ

ρ

(
αwt
1−α

) γ
ρ−1

Lt
−γ

×
[
1 + wt

(
αwt
1−α

) 1
ρ−1
] 1−ρ−γ

ρ

, γ > 0, 0 < α < 1, 0 �= ρ < 1;

α
(

αwt
1−α

)α(1−γ )−1
Lt

−γ
, γ > 0, 0 < α < 1, ρ = 0.

(3.6)

Moreover, from the expression of U1, Assumption 1, Assumption 2 and (2.2) we can
derive the following properties of Ũ1, Û1, Ũ2.

Lemma 1 1. Ũ1, Û1, Ũ2 are strictly decreasing and convex with respect to x. And
Ũ2 ∈ C2(0,+∞), and Ũ1,Û1 ∈ C(0,+∞) a.e in Ω × [ 0, T ].

2. There exist positive constants C and K such that

|Ũ1,t (x)| + |∂xŨ1,t (x)| + |Ũ2(x)| + |Ũ ′
2(x)| + |Û1,t (x)|

+|∂xÛ1,t (x)| ≤ C
(
xK + x−K

)
(3.7)

for any x > 0 a.e. in Ω × [ 0, T ].
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3. ess.sup{∂xŨ1,t (x) : (ω, t) ∈ Ω × [ 0, T ]}, Ũ ′
2(x), ess.sup{∂xÛ1,t (x) : (ω, t) ∈

Ω × [ 0, T ]} → −∞ as x → 0+, and ess.inf{∂xŨ1,t (x) : (ω, t) ∈ Ω × [ 0, T ]}, Ũ ′
2

(x), ess.inf{∂xÛ1,t (x) : (ω, t) ∈ Ω × [ 0, T ]} → 0− as x → +∞.

3.2 Optimization Problem after Retirement

In this subsection we will consider the agent’s optimization problem after retirement.
After retirement, the agent does not face any choice of a stopping time. Thus, the
control does not involve stopping time τ . Then, the admissible set is A1

t (t, y) �
{ (c, l, π) : (t, c, l, π) ∈ A1(t, y) }, where the admissible set is dependent on the
initial time t and the initial wealth y. Let us denote the agent’s value after retirement
by V , i.e.,

V t (y) = ess.sup
(c,l,π)∈A1

t (t,y)

E

[∫ T

t
e−β(s−t)U1(cs, Ls)ds + e−β(T−t)U2(Y

t,y;t,c,l,π
T )

∣∣∣∣Ft

]
.

Now (3.2) implies that for any t ∈ [ 0, T ], x > 0, y > 0,

V t (y) − xy ≤ ess.sup
(c,l,π)∈A1

t (t,y)

E

[ ∫ T

t

[
e−β(s−t)U1(cs, Ls) − xHt

s cs
]
ds

+
[
e−β(T−t)U2

(
Y t,y;t,c,l,π
T

)
− xHt

T Y
t,y;t,c,l,π
T

] ∣∣∣∣Ft

]

≤ E

[ ∫ T

t
e−β(s−t) Ũ1,s(Xs)ds + e−β(T−t) Ũ2 (XT )

∣∣∣∣Ft

]

� Ṽ t (x) (3.8)

with Xs = x eβ(s−t)Ht
s ∈ S p for any p ≥ 1.

Remark 2 The Lagrangemultiplier, x , and the dual variable at time s, Xs , represent the
agent’s marginal utility of wealth at time t and at time s ∈ [t, T ], respectively. Ṽ t (x)
is called the dual value of the agent’s optimization problem after retirement. From the
verification theorem (Theorem 1 below), we know that under suitable conditions, for
any y > 0, there exists a unique Ft−measurable random variable x > 0 such that the
inequalities in the above hold as equalities, and Ṽ is the convex dual function of the
concave function V , i.e.,6

Ṽ t (x) = sup
y>0

[
V t (y) − xy

]
,

V t (y) = inf
x>0

[
Ṽ t (x) + xy

]
,

∀ t ∈ [0, T ], x > 0, y > 0.

6 In fact, we will show that V and Ṽ are continuous with respect to y and x a.e. inΩ ×[ 0, T ] in Theorem 1,
respectively. So, we use sup, inf rather than ess.sup, ess.inf here.
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Thus, it is possible to deduce properties of V through those of Ṽ .

Itô’s formula implies that X is governed by the following SDE

Xs = x +
∫ s

t
(β − ru)Xu du −

∫ s

t
Xu(θ

1
u )	 dWu −

∫ s

t
Xu(θ

2
u )	 dBu . (3.9)

Since the risk-free rate r and the market price of risk θ are P B-measurable by
Assumption2, i.e., change stochastically, driven by the Brownian motion B, Ṽ is
expected to satisfy the following BSPDE7

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dṼ t = −
(
LṼ t +

N2∑
i=1

Mi Z̃ i,t + Ũ1,t

)
dt

+
N2∑
i=1

Z̃ i,t d Bi,t in Ω × [ 0, T ] × R
+;

Ṽ T (x) = U2(x) for any x ∈ R
+ a.s in Ω,

(3.10)

where we have used the following notation, which we will use throughout the paper,

L � 1

2
|θ |2x2∂xx + (β − r)x∂x − β, Mi � −θ2i x∂x , i = 1, · · · , N2. (3.11)

3.3 Transformations

In this subsection we make successive transformations to change the original problem
into a BSPDVI.
Transformation 1.

In the first step we apply the dynamic programming principle to transform the
problem into an optimal consumption, investment/retirement problemwhere the utility
function after retirement is given by V the value of the agent after retirement, which
has been discovered in the previous subsection.

From the original problem we can deduce that

Vt (y) ≤ ess.sup
(τ,c,l,π)∈A1(t,y)

E

[ ∫ τ

t
e−β(s−t)U1(cs , ls)ds + e−β(τ−t)V τ

(
Y t,y;τ,c,l,π

τ

)∣∣∣∣Ft

]

(3.12)

subject to (2.4).

Remark 3 In fact, from the verification theorem (Theorem 1) below, we know that the
inequality can be replaced by equality.

7 By [27] Ṽ and V̂ defined in (3.15) are the viscosity solutions of BSPDE (3.10) and BSPDVI (3.16),
respectively. In this paper, however, we do not need this result. We only focus on the verification theorem,
i.e., we will construct the value V and the optimal strategies by means of the strong solutions of BSPDE
(3.10) and BSPDVI (3.16) via Theorem 1 in Sect. 3.5.
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Transformation 2.
In the second stepwe transform the original problem,which involves both stochastic

control and optimal stopping, into a standard optimal stopping problem which does
not involve stochastic control. We use the martingale and dual method, following the
idea in Karatzas and Shreve [19] and Karatzas and Wang [20].

For a Lagrange multiplier x > 0, we define V̂ as

V̂ t (x) = Ṽ t (x) − xYt in Ω × [ 0, T ] × R
+. (3.13)

Remark 4 There is a difference in income before and after retirement, and the term
−xYt is necessary to adjust the dual value after retirement to take into account the
difference as will be shown below in (3.14).

So (3.1), (3.5), (3.8), (3.12) and (3.13) imply that

Vt (y) − x (y + Yt ) (3.14)

≤ ess.sup
(τ,c,l,π)∈A1(t,y)

E

[ ∫ τ

t
e−β(s−t)U1(cs, ls) ds + e−β(τ−t)V τ

(
Y t,y;τ,c,l,π

τ

)

− x
[ ∫ τ

t
H t
s (cs + wsls) ds + Ht

τ

(
Y t,y;τ,c,l,π

τ + Yτ

) ] ∣∣∣∣Ft

]

= ess.sup
(τ,c,l,π)∈A1(t,y)

E

[ ∫ τ

t

[
e−β(s−t)U1(cs, ls) − xHt

s (cs + wsls)
]
ds

+
[
e−β(τ−t)V τ

(
Y t,y;τ,c,l,π

τ

)
− xHt

τ

(
Y t,y;τ,c,l,π

τ + Yτ

) ] ∣∣∣∣Ft

]

≤ ess.sup
τ∈Ut,T

E

[ ∫ τ

t
e−β(s−t) Û1,s (Xs)ds + e−β(τ−t) (Ṽ τ (Xτ ) − XτYτ

) ∣∣∣∣Ft

]

= ess.sup
τ∈Ut,T

E

[ ∫ τ

t
e−β(s−t) Û1,s (Xs)ds + e−β(τ−t) V̂ τ (Xτ )

∣∣∣∣Ft

]

� V̂t (x), (3.15)

where we recall Xs = x eβ(s−t)Ht
s .

Remark 5 In fact, for any y > −Yt , we conjecture that the inequalities in the above
hold as equalities for a unique Ft−measurable random variable x > 0. And

V̂t (x) = sup
y>−Yt

[
Vt (y) − x(y + Yt )

]
, Vt (y) = inf

x>0

[
V̂t (x) + x(y + Yt )

]

for any t ∈ [ 0, T ], x > 0, y > −Yt a.s. in Ω . If the conjecture is true, then we can
derive properties of V through those of V̂ . Moreover, we will show that the conjecture
is true in the verification theorem (Theorem 1).
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Transformation 3.
The optimization problem represented by the right-hand side of the last equality

in (3.14) is a standard optimal stopping problem for t ∈ [ 0, T ]. Thus, in this last
step we can use the relationship between optimal stopping problems and BSPDVIs to
transform the original problem into a BSPDVI (see e.g., [21,31]):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV̂t = −
(
LV̂ t +

N2∑
i=1

Mi Ẑ i,t + Û1,t

)
dt +

N2∑
i=1

Ẑ i,t d Bi,t if V̂ > V̂ ;

dV̂t ≤ −
(
LV̂ t +

N2∑
i=1

Mi Ẑ i,t + Û1,t

)
dt +

N2∑
i=1

Ẑ i,t d Bi,t if V̂ = V̂ ;

V̂T (x) = V̂ T (x) for any x ∈ R
+ a.s in Ω.

(3.16)

3.4 Strong Solution to BSPDE or BSPDVI

In this subsection, we introduce the definition of the strong solution to BSPDE or
BSPDVI, the details can be found in [8,21,31].

Definition 1 If the two-tuple (Ṽ , Z̃ ) ∈ H
2, 2(D) × H

1, 2(D) for any compact subset
D of R

+, and satisfies

Ṽ t = Ũ2 +
∫ T

t

(
LṼ s +

N2∑
i=1

Mi Z̃ i,s + Ũ1,s

)
ds −

N2∑
i=1

∫ T

t
Z̃i,s dBi,s, (3.17)

a.e. x ∈ R
+ for all t ∈ [0, T ] and a.s. in Ω . Then (Ṽ , Z̃ ) is called a strong solution

of BSPDE (3.10).

Definition 2 If the triplet (V̂ , Ẑ , k̂+) ∈ H
2, 2(D) × H

1, 2(D) × H
0, 2(D) for any

compact subset D of R
+, and satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̂t = V T +
∫ T

t

(
LV̂s +

N2∑
i=1

Mi Ẑi,s + Û1,s + k̂+
s

)
ds

−
N2∑
i=1

∫ T

t
Ẑi,s dBi,s, a.e. x ∈ R

+ for all t ∈ [0, T ], a.s. in Ω;
V̂ ≥ V̂ , k̂+ ≥ 0 a.e. in Ω × [0, T ] × R

+;∫ T

0
(V̂t − V̂ t ) k̂

+ dt = 0 a.e. in Ω × R
+.

(3.18)

Then (V̂ , Ẑ , k̂+) is called a strong solution to BSPDVI (3.16).

Remark 1 We have modified slightly the definition of the strong solution from that
in [21,31], where the strong solutions (V̂ , Ẑ , k̂+) ∈ H

2, 2
λ (R) × H

1, 2
λ (R) × H

0, 2
λ (R).
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The modification is not essential as we can transform the domain from R
+ into R via

x̃ = log x in (4.1), and utilize a sequence of intervals to {Dn}∞n=1, approximate toR
+,

where Dn = [ 1/n, n ].
Moreover, by the theory for BSPDEs or BSPDVIs (refer to Lemmas 4 and 6,

or [8,28,31]), we see that Ṽ , V̂ ∈ S
1, 2(D) for any compact subset D of R

+. So,
Ṽ t (ω, ·), V̂t (ω, ·) ∈ H1,2(D) for any t ∈ [ 0, T ] a.s. in Ω . Thus the Sobolev embed-
ding theory implies that Ṽ , V̂ are continuous with respect to x for any t ∈ [ 0, T ] a.s.
in Ω . Repeating a similar argument, by the fact that Ṽ , V̂ ∈ H

2, 2(D), we can show
that ∂x Ṽ t (ω, x), ∂x V̂t (ω, x) are continuous with respect to x a.s. in Ω × [ 0, T ].

3.5 Verification Theorem

In this subsection we will state and prove the verification theorem, which provides
the value V and the optimal strategy (τ ∗, c∗, l∗, π∗) by using the strong solutions to
BSPDVI (3.16) and BSPDE (3.10).

Theorem 1 Suppose that (̃v, z̃) is the strong solution to BSPDE (3.10), and denote
v̂ = ṽ−xY . Assume that (̂v, ẑ, k̂+) is the strong solution to BSPDVI (3.16), where the
lower obstacle V̂ is replaced by v̂. Suppose that v̂, v̂ have the following properties:

1. ∂xx v̂ > 0 a.e. in Ω × [ 0, T ] × R
+.

2. ∂x v̂t (x) → −∞ as x → 0+, ∂x v̂t (x) → 0 as x → +∞ a.e. in Ω × [ 0, T ].
3. There exist positive constants C, K such that

|̂vt (x)| + |̂v t (x)| ≤ C(xK + x−K ) a.e in Ω × [ 0, T ] × R
+.

Then, the value V takes the form of

Vt (y) = inf
x>0

[
v̂t (x) + x(y + Yt )

]
= v̂t (x

∗
t (y)) + x∗

t (y)(y + Yt ), (3.19)

where x∗
t (y) = Jv̂,t (−y−Yt ) > 0 a.e. in {(ω, t, y) : y > −Yt , (ω, t) ∈ Ω×[ 0, T ]},

and Jv̂,t (·) is the inverse function of ∂x v̂t (·).
The value V and ∂yV = x∗ are continuous with respect to y a.e. in Ω × [ 0, T ],

and ∂yyV < 0 a.e. in Ω × [ 0, T ] × R
+.

Moreover, x∗ is strictly decreasing with respect to y a.e. inΩ ×[ 0, T ], and has the
asymptotic properties: x∗

t (y) → +∞ as y → −Yt , and x∗
t (y) → 0+ as y → +∞

a.e. in Ω × [ 0, T ].
The optimal retirement strategy can be described as

τ ∗ = inf{s ∈ [ t, T ] : v̂s(X
∗
s ) = v̂ s(X

∗
s )}, X∗

s � x∗
t (y)e

β(s−t)Ht
s

and the optimal leisure rate, the optimal consumption rate can be described as

l∗s = Ls min

{
1,

(
xt
X∗
s

) 1
γ

}
I{t≤s≤τ∗} + Ls I{τ∗<s≤T }, c∗

s = JU1(X
∗
s ; l∗s )
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where xt is defined in (3.6). Moreover, the optimal investment strategy π∗ is governed
by the following BSDE

Y ∗
s = Y ∗

T −
∫ T

s

[
(π∗

u )	Σuθu + ruY
∗
u − c∗

u + wu(Lu − l∗u )I{u≤τ∗}
]
du

−
∫ T

s
(π∗

u )T
[
Σ1

u dWu + Σ2
u dBu

]
, ∀ s ∈ [ t, T ], Y ∗

T = JU2(X
∗
T ). (3.20)

Proof First, we show that x∗
t (y) is well-defined and x∗

t (y) > 0. We also show that
x∗
t (y) has the monotonicity and asymptotic properties as in the conclusion of the
theorem.

Since ∂xx v̂ > 0 a.e. in Ω × [ 0, T ] × R
+ and v̂, ∂x v̂ are continuous with respect

to x a.e. in Ω × [ 0, T ] (refer to Remark 1), we deduce that ∂x v̂ is strictly increasing
with respect to x a.e. in Ω × [ 0, T ]. And assumption 2 in this theorem implies
that ∂x v̂ t (ω, ·) : (0,+∞) → (−∞, 0) a.e. in Ω × [ 0, T ]. Hence, we deduce that
x∗
t (y) = Jv̂,t (−y−Yt ) exists, takes values on (0,+∞), and is continuous and strictly
decreasingwith respect to y a.e. inΩ×[ 0, T ]. And the asymptotic properties of x∗

t (y)
come from those of ∂x v̂t (x).

Second, we show that that l∗, c∗, Y ∗
T and τ ∗ are well-defined. In fact, U1(·, l), U2

are strictly concave, and thus, JU1(·; l),JU2 are well-defined, and hence, l∗, c∗ and
Y ∗
T are well-defined. From Remark 6, we deduce that v̂s(X∗

s ) − v̂ s(X∗
s ) is continuous

with respect to s. Thus, we know that τ ∗ is a F−stopping time. Moreover, the terminal
value condition of BSPDVI (3.16) implies that τ ∗ ≤ T and τ ∗ ∈ Ut, T .

We will show in Lemma 2 that π∗ can be constructed from the solution of BSDE
(3.20) and (τ ∗, c∗, l∗, π∗) ∈ A1(t,Y ∗

t ). Based on the lemma we continue the proof of
the theorem. The optimal investment strategy π∗ comes from BSDE (3.20) rather than
SDE (2.4), and thus it is necessary to prove Y ∗ = Y t,y;τ∗,c∗,l∗,π∗

. For this purpose,
we compare SDE (2.4) with BSDE (3.20). We find that

d Y t,y;τ∗,c∗,l∗,π∗
s = d Y ∗

s , ∀ t ≤ s ≤ T .

Hence, the uniqueness of the solution of the SDE implies that it is sufficient to prove
that Y ∗

t = y a.s. in Ω .
Applying Itô’s formula, and recalling (3.20) and (3.9), we have

x∗
t (y)Y

∗
t = e−β(T−t)X∗

T Y
∗
T +
∫ T

t
e−β(u−t)X∗

u

[
c∗
u − wu(Lu − l∗u )I{u≤τ∗}

]
du

−
∫ T

t
e−β(u−t)X∗

u

[
(π∗

u )	Σu − θ	
u Y ∗

u

]
(dW	

u , dB	
u )	.

Taking Ft−conditional expectation in this equality, and combining this with the
fact that X∗, Y ∗ ∈ S p, π∗ ∈ Lp for any p ≥ 1 (refer to the proof of Lemma 2 below),
we have

x∗
t (y)Y

∗
t
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= E

[
e−β(T−t)X∗

T Y
∗
T +
∫ T

t
e−β(u−t)X∗

u

[
c∗
u − wu(Lu − l∗u )I{u≤τ∗}

]
du
∣∣∣Ft

]

= E

[
e−β(T−t)

[
U2(Y

∗
T ) − Ũ2(X

∗
T )
]

+
∫ T

t
e−β(u−t)

[ (
U1(c

∗
u, l

∗
u ) − Û1,u(X

∗
u)
)
I{u≤τ∗}

− Lu X
∗
uwu I{u≤τ∗} +

(
U1(c

∗
u, Lu) − Ũ1,u(X

∗
u)
)
I{τ∗<u≤T }

]
du

∣∣∣∣Ft

]

= J (t,Y ∗
t ; τ ∗, c∗, l∗, π∗) − E

[
e−β(T−t)ṽ T (X∗

T ) + K1 + K2
∣∣∣∣Ft

]
. (3.21)

Here we have used the definitions of c∗, l∗, Y ∗
T in the second equality, and used the

terminal condition ofBSPDE (3.10) in the third equality, andwehave used the notation

K1 �
∫ τ∗

t
e−β(u−t)

[
Û1,u(X

∗
u) + Lu X

∗
uwu

]
du, K2 �

∫ T

τ∗
e−β(u−t) Ũ1,u(X

∗
u) du.

Since v̂·(X∗· ) and v̂ ·(X∗· ) are continuous stochastic processes by Remark 6 in
Appendix, we have

v̂T (X∗
T ) = v̂ T (X∗

T ) = ṽ T (X∗
T ) − xYT , v̂τ∗(X∗

τ∗) = v̂ τ∗(X∗
τ∗).

Let us denote

Dn = [ 1/n, n ], n ∈ Z
+, τn = {s ≥ τ ∗, |∂x ṽ u(X

∗
u)| + |̃z i,u(X∗

u)| ≤ n} ∧ T .

Since (̃v, z̃) ∈ H
2, 2(Dn) × H

1, 2(Dn) for any n ∈ Z
+, we claim that τn → T a.s.

in Ω . Moreover, applying the generalized Itô-Kunita-Wentzell’s formula to ṽ·(X∗· ) in
Lemma 3, we have

E

[
e−β(τn−t)ṽ τn (X

∗
τn

) +
∫ τn

τ∗
e−β(u−t) Ũ1,u(X

∗
u) du

∣∣∣∣Ft

]

= E

[
e−β(τ∗−t)ṽ τ∗(X∗

τ∗) +
∫ τn

τ∗
e−β(u−t)

[
−
(
L̃v u(x) +

N2∑
i=1

Mi z̃ i,u(x) + Ũ1,u(x)

)

+ L̃v u(x) +
N2∑
i=1

Mi z̃ i,u(x)

]

x=X∗
u

+ K3 +
∫ τn

τ∗
e−β(u−t)Ũ1,u(X

∗
u) du

∣∣∣∣Ft

]

= E

[
e−β(τ∗−t)ṽ τ∗(X∗

τ∗) + K3
∣∣∣∣Ft

]
,
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where we have used BSPDE (3.10) in the first equality, and the notation

K3 �
∫ τn

τ∗
e−β(u−t)

{
−∂x ṽ u(X

∗
u)X

∗
u

[
(θ1u )	dWu + (θ2u )	dBu

]
+ (̃z i,u(X

∗
u))

	dBu

}
.

Recalling the definition of τn , and X∗ ∈ S p for any p ≥ 1, θ is bounded by the
constant C , we deduce that E[K3|Ft ] = 0, and

E

[
e−β(τn−t)ṽ τn (X

∗
τn

) +
∫ τn

τ∗
e−β(u−t)Ũ1,u(X

∗
u)du

∣∣∣∣Ft

]
= E

[
e−β(τ∗−t)ṽ τ∗(X∗

τ∗)
∣∣∣Ft

]
.

From (3.7), (2.8) and Assumption 3 in this theorem, we deduce that

|̃v τn (X
∗
τn

)| + |Ũ1,u(X
∗
u)| ≤ 2C sup

u∈[ t,T ]
(|X∗

u |K + |X∗
u |−K ),

where C and K are independent of n. Recalling the fact that X∗, 1/X∗ ∈ S p for any
p ≥ 1 (refer to the proof of Lemma 2 below), by the domain convergence theorem,
we conclude that

E

[
e−β(T−t)ṽ T (X∗

T ) + K2
∣∣∣∣Ft

]
= E

[
e−β(τ∗−t)ṽ τ∗(X∗

τ∗)
∣∣∣Ft

]
.

Substituting the above equality into (3.21), we obtain

J (t,Y ∗
t ; τ ∗, c∗, l∗, π∗) − x∗

t (y)Y
∗
t = E

[
e−β(τ∗−t)ṽ τ∗(X∗

τ∗) + K1
∣∣∣∣Ft

]
.

Moreover, applying Itô’s formula to e−β(·−t)X∗Y and recalling (2.5), we have

x∗
t (y)Yt = e−β(τ∗−t)X∗

τ∗Yτ∗ +
∫ τ∗

t
e−β(u−t)Lu X

∗
uwu du

+
∫ τ∗

t
e−β(u−t)X∗

u

[
θ	
u Yu + (πY

u )	Σu

]
(dW	

u , dB	
u )	.

Hence, we have

J (t,Y ∗
t ; τ ∗, c∗, l∗, π∗) − x∗

t (y)
(
Y ∗
t + Yt

)

= E

[
e−β(τ∗−t)ṽ τ∗(X∗

τ∗) + K1 − e−β(τ∗−t)X∗
τ∗Yτ∗

−
∫ τ∗

t
e−β(u−t)Lu X

∗
uwu du

∣∣∣∣Ft

]

= E

[
e−β(τ∗−t)v̂τ∗(X∗

τ∗) +
∫ τ∗

t
e−β(u−t) Û1,u(X

∗
u) du

∣∣∣∣Ft

]
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= v̂t (x
∗
t (y)),

where we have used v̂ = ṽ − xY in the second equality. And in the third equality, we
have used the method similar to that in the above and the following equality

v̂t = v τ∗ +
∫ τ∗

t

(
Lv̂s +

N2∑
i=1

Mi ẑi,s + Û1,s

)
ds −

N2∑
i=1

∫ τ∗

t
ẑi,s dBi,s,

which follows from the fact that v̂ is the strong solution to BSPDVI (3.16) and the
definition of τ ∗.

Until now, we have proved that

J (t,Y ∗
t ; τ ∗, c∗, l∗, π∗) = v̂t (x

∗
t (y)) + x∗

t (y)
(
Y ∗
t + Yt

)

≥ inf
x>0

{
v̂t (x) + x

(
Y ∗
t + Yt

) }

= v̂t (̂x
∗) + x̂∗( Y ∗

t + Yt

)
, (3.22)

where x̂∗ = Jv̂,t (−Y ∗
t − Yt ).

On the other hand, recalling (3.13), (3.8) and (3.10), and applying Lemma 3, we
have

V̂ t (x) = E

[ ∫ T

t
e−β(s−t) Ũ1,s(Xs)ds + e−β(T−t) ṽ T (XT )

∣∣∣∣Ft

]
− xYt

= E

[
ṽ t (x) + K4

∣∣∣Ft

]
− xYt = v̂ t (x), (3.23)

where

K4 �
∫ T

t
e−β(s−t)

{
−∂x ṽ s(Xs)Xs

[
(θ1s )	dWs + (θ2s )	dBs

]
+ (̃z i,s(Xs))

	dBs

}
.

Combining (3.14), (3.23) and BSPDVI (3.16), and applying Lemma 3, we deduce that
for any ỹ > 0, x > 0, (τ, c, l, π) ∈ A1(t, ỹ),

J (t, ỹ; τ, c, l, π) ≤ Vt (ỹ) ≤ V̂t (x) + x(ỹ + Yt )

≤ ess.sup
τ∈Ut,T

E

[ ∫ τ

t
e−β(s−t) Û1,s(Xs)ds + e−β(τ−t) v̂τ (Xτ )

∣∣∣∣Ft

]

+ x (ỹ + Yt )

≤ ess.sup
τ∈Ut,T

E

[
v̂t (x) + K5

∣∣∣Ft

]
+ x(ỹ + Yt ) = v̂t (x) + x(ỹ + Yt ),
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where

K5 �
∫ τ

t
e−β(s−t)

{
−∂x v̂s(Xs)Xs

[
(θ1s )	dWs + (θ2s )	dBs

]
+ (̂z i,s(Xs))

	dBs

}
.

Setting ỹ = Y ∗
t , x = x̂∗, (τ, c, l, π) = (τ ∗, c∗, l∗, π∗) in the inequality, and

recalling (3.22), we deduce that

J (t,Y ∗
t ; τ ∗, c∗, l∗, π∗) = v̂t (x

∗
t (y)) + x∗

t (y)
(
Y ∗
t + Yt

)

= inf
x>0

{
v̂t (x) + x

(
Y ∗
t + Yt

) }

= v̂t (̂x
∗) + x̂∗[ Y ∗

t + Yt

]

= V̂t (̂x
∗) + x̂∗( Y ∗

t + Yt

)
= Vt (Y

∗
t ). (3.24)

Since ∂xx v̂ > 0 a.e. in Ω × [0, T ] × R
+, we have

Jv̂,t (−y − Yt ) = x∗
t (y) = x̂∗ = Jv̂,t (−Y ∗

t − Yt ).

Since Jv̂,t (−y−Yt ) is strictly decreasing with respect to y, we conclude that y = Y ∗
t

and Y ∗ = Y t,y;τ∗,c∗,l∗,π∗
.

Finally, (3.23) and (3.24) imply that the value V takes the form of (3.19), and
(τ ∗, c∗, l∗, π∗) is the optimal strategy. Moreover, by the continuity of v̂t (x), x∗

t (y)
and (3.19), we derive V is continuous with respect to y, and

∂x v̂t (x
∗
t (y)) = −y − Yt ,

∂yVt (y) = ∂x v̂t (x
∗
t (y))∂yx

∗
t (y) + ∂yx

∗
t (y)(y + Yt ) + x∗

t (y)

= x∗
t (y),

which means that ∂yVt (y) is continuous with respect to y, too. And from (3.19), we
compute the following second order partial derivative,

∂yyVt (y) = ∂yx
∗
t (y) = −1

∂xx v̂t (x∗
t (y))

< 0

a.e. in {(ω, t, y) : y > −Yt (ω), t ∈ [ 0, T ], ω ∈ Ω}. This completes the proof. ��
Lemma 2 Suppose that the assumptions in Theorem 1 are satisfied. Then, the strategy
π∗ in Theorem 1 is well-defined and can be constructed from the solution to BSDE
(3.20), and (τ ∗, c∗, l∗, π∗) ∈ A1(t,Y ∗

t ).

Proof We prove the existence of π∗. In fact, SDE (3.9) implies that X∗ ∈ S p for any
p ≥ 1 (refer to [23]). Denote X̂∗ � 1/X∗, then it is not difficult to deduce that X̂∗ is
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governed by

X̂∗
s = 1

x∗ +
∫ s

t

(
ru − β + |θu |2

)
X̂∗
udu +

∫ s

t
X̂∗
uθ

	
u (dW	

u , dB	
u )	, ∀ s ∈ [ t, T ].

Thus, we can claim that (X∗)−1 = X̂∗ ∈ S p for any p ≥ 1. Hence, (2.2) implies that
Y ∗
T = JU2(X

∗
T ) ∈ L p(FT ) for any p ≥ 1. Repeating the same argument as in the

above, we derive that c∗, l∗ ∈ S p. Consider the following BSDE,

Y ∗
s = Y ∗

T −
∫ T

s

[
Z	
u θu + ruY

∗
u − c∗

u + wu(Lu − l∗u )I{u≤τ∗}
]
du

−
∫ T

s
Z	
u (dW	

u , dB	
u )	. (3.25)

It is clear that BSDE (3.25) has a unique solution (Y ∗, Z) ∈ S p × Lp for any p ≥ 1.
Since Σ is strongly non-degenerate, we can get π∗ = (Σ−1)TZ ∈ Lp for any p ≥ 1.

Next, we prove that (τ ∗, c∗, l∗, π∗) ∈ A1(t,Y ∗
t ). In fact, from c∗ ∈ S p, π∗ ∈ Lp

for any p ≥ 1, we know that

∫ T

t
(cs + |πs |2)ds < ∞.

Moreover, since the ranges of the functions JU1(·; l), JU2 are (0,+∞), we deduce
that Y ∗

T > 0, c∗ > 0. And the definition of l∗ implies that 0 < ls ≤ Ls ≤ C for any
t ≤ s ≤ τ ∗, and ls = Ls ≤ C for any τ ∗ < s ≤ T , where the constant C is the
constant in Assumption 2.

Recalling the definitions of c∗, l∗ and Y ∗
T and (3.3), (3.4), (3.5), we deduce that

U1(c
∗
s , l

∗
s ) =

[
X∗
s (c

∗
s + wsl

∗
s ) + Û1,s(X

∗
s )
]
I{t≤s≤τ∗}

+
[
X∗
s c

∗
s + Ũ1,s(X

∗
s )
]
I{τ∗<s≤T }

≥ −
[
X∗
s (c

∗
s + wsl

∗
s ) +U1(1, Ls) − X∗

s (1 + Lsws)
]−

−
[
X∗
s c

∗
s +U1(1, Ls) − X∗

s

]−;
U2(Y

∗
T ) = X∗

T Y
∗
T + Ũ2(X

∗
T ) ≥ X∗

T Y
∗
T +U2(1) − X∗

T .

Combining the above inequalities with the fact that X∗, Y ∗, c∗ ∈ S p for any p ≥ 1
and w and l∗ are bounded, we have

E

[ ∫ T

t
e−β(s−t)U−

1 (c∗
s , l

∗
s ) ds + e−β(T−t)U−

2 (Y ∗
T )

]
< +∞.
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Moreover, it is not difficult to check that
(
Y ∗ + Y(·)I{s<τ∗},Σ	π

)
with π = π∗ −

πY I{s<τ∗} satisfies the following BSDE,

Y ∗
u + Yu I{s<τ∗} = Y ∗

T −
∫ T

u

[
π	

ξ Σξ θξ + rξ (Y
∗
ξ + Yξ I{ξ<τ∗})

+ Lξwξ

(
I{ξ≤τ∗} − I{s<τ∗}

)− c∗
ξ − wξ l

∗
ξ I{ξ≤τ∗}

]
dξ

−
∫ T

u
π	

ξ Σξ (dW	
ξ , dB	

ξ )	

for any t ≤ s ≤ u ≤ T . Since

Y ∗
T > 0, −Lξwξ

(
I{ξ≤τ∗} − I{s<τ∗}

)+ c∗
ξ + wξ l

∗
ξ I{ξ≤τ∗} > 0,

applying the comparison theory for BSDEs, we deduce that Y ∗
u + Yu I{s<τ∗} > 0 for

any t ≤ s ≤ u ≤ T . Particularly, setting u = s, we have that Y ∗
s + Ys I{s<τ∗} > 0 for

any s ∈ [ t, T ]. Hence, we have proved that (τ ∗, c∗, l∗, π∗) ∈ A1(t,Y ∗
t ). ��

4 Verification of the Assumptions in Theorem 1

In this section, we establish the existence and uniqueness of the strong solutions to
BSPDE (3.10) andBSPDVI (3.16), and showvalidity of the assumptions inTheorem1.

4.1 Transformation for Removing the Degenerateness

In order to remove the degenerateness of the operator L, we introduce the following
transformations

x̃ = log x, P̂t (̃x) = V̂t (x), Q̂t (̃x) = Ẑt (x), P̂ t (̃x) = V̂ t (x), P̃ t (̃x) = Ṽ t (x),

Q̃ t (̃x) = Z̃ t (x), R̃1,t (̃x) = Ũ1,t (x), R̃2(̃x) = Ũ2(x), R̂1,t (̃x) = Û1,t (x). (4.1)

It is clear that BSPDE (3.10) is equivalent to the following BSPDE,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d P̃ t = −
(
L̃P̃ t +

N2∑
i=1

M̃i Q̃ i,t + R̃1,t

)
dt

+
N2∑
i=1

Q̃ i,t d Bi,t in Ω × [ 0, T ] × R;
P̃ T (̃x) = R̃2(̃x) for any x̃ ∈ R a.s in Ω,

(4.2)

where

L̃ � 1

2
|θ |2∂x̃ x̃ +

(
β − r − 1

2
|θ |2
)

∂x̃ − β, M̃i � −θ2i ∂x̃ , i = 1, · · · , N2. (4.3)
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And BSPDVI (3.16) is equivalent to the following BSPDVI,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d P̂ t = −
(
L̃P̂ t +

N2∑
i=1

M̃i Q̂i,t + R̂1,t

)
dt

+
N2∑
i=1

Q̂i,t d Bi,t if P̂ > P̂ ;

d P̂ t ≤ −
(
L̃P̂ t +

N2∑
i=1

M̃i Q̂i,t + R̂1,t

)
dt

+
N2∑
i=1

Q̂i,t d Bi,t if P̂ = P̂ ;
P̂T (̃x) = P̂T (̃x) for any x̃ ∈ R a.s in Ω,

(4.4)

where

P̂ t (̃x) = V̂ t (x) = Ṽ t (x) − xYt = P̃ t (̃x) − ex̃Yt .

4.2 Existence and Uniqueness of the Strong Solution to BSPDVI (3.16)

From (3.7), we know that there exist positive constants C and K such that

|R̃1,t (̃x)| + |R̃2(̃x)| + |R̃′
2(̃x)| + |R̂1,t (̃x)|

≤ C e(K+1)|̃x |, ∀ x̃ ∈ R a.e. in Ω × [ 0, T ]. (4.5)

Hence, we deduce that R̃1, R̂1 ∈ H
0,2
K+2, and R̃2 ∈ L

1,2
K+2. Applying Lemmas 6 and 4,

we can show the existence and uniqueness of the strong solutions to BSPDE (4.2) and
BSPDVI (4.4).

Theorem 2 BSPDE (4.2) has a unique strong solution (P̃, Q̃) ∈ H
2, 2
K+2 × H

1, 2
K+2, and

BSPDVI (4.4) has a unique strong solution (P̂, Q̂, k̂+) ∈ H
2, 2
K+2 × H

1, 2
K+2 × H

0, 2
K+2.

Moreover, P̃, P̂ ∈ S
1, 2
K+2.

Proof First, since R̃1 ∈ H
0,2
K+2, and R̃2 ∈ L

1,2
K+2, BSPDE (4.2) has a unique strong

solution (P̃, Q̃) ∈ H
2, 2
K+2 × H

1, 2
K+2, and P̃ ∈ S

1, 2
K+2.

Next, we consider the properties of P̂ , which is the lower obstacle of BSPDVI (4.4).
Since P̂ t (̃x) = P̃ t (̃x) − ex̃Yt , Y ∈ S2 and Y is P B− measurable, we know that
P̂ ∈ H

2, 2
K+2 ∩ S

1, 2
K+2, and P̂ T ∈ L

1, 2
K+2. Moreover, by BSPDE (4.2) and (2.5) 8, we see

that P̂ is a continuous semimartingale satisfying d P̂ t = g
t
dt +

N2∑
i=1

w i,t d Bi,t , where

g = −
[
L̃P̃ +

N2∑
i=1

M̃i Q̃ i + R̃ 1 + ex̃
(

N2∑
i=1

ZY
i+N1

θ2i + rY − L w

)]
,

8 Note that ZYi = 0, i = 1, · · · , N1.
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w i = Q̃ i − ex̃ ZY
i+N1

.

Since ZY ∈ L2, we deduce that g ∈ H
0, 2
K+2 and w ∈ H

1, 2
K+2. Combining R̂1 ∈ H

0,2
K+2,

and applying Lemma 4, we derive that BSPDVI (4.4) has a unique strong solution
(P̂, Q̂, K̂+) ∈ H

2, 2
K+2 × H

1, 2
K+2 × H

0, 2
K+2, and P̂ ∈ S

1, 2
K+2. ��

From transformation (4.1), it is easy to deduce the following results.

Theorem 3 BSPDE (3.10) has a unique strong solution (Ṽ , Z̃), and BSPDVI (3.16)
has a unique strong solution (V̂ , Ẑ , k̂+). Moreover, Ṽ , V̂ ∈ S

1, 2
1 (D) for any compact

set D of R
+.

4.3 Properties of the Strong Solution to BSPDVI (4.4)

In this subsection, we consider the properties of the strong solution to BSPDVI (3.16)
via BSPDE (4.2) and BSPDVI (4.4), which constitute the assumptions in Theorem 1.
First, we consider the growth properties of Ṽ and V̂ .

Theorem 4 There exists a constant C such that

|P̃ t (̃x)|, |P̂t (̃x)| ≤ C e(K+1)|̃x |, ∀ x̃ ∈ R a.e. in Ω × [ 0, T ]. (4.6)

Hence, Ṽ and V̂ have the following growth properties

|Ṽ t (̃x)| + |V̂t (̃x)| ≤ C
(
xK+1 + x−(K+1)

)
, ∀ x ∈ R

+ a.e. in Ω × [ 0, T ].

Proof It is sufficient to prove (4.6), and the estimates about Ṽ and V̂ follow from
transformation (4.1). In order to prove (4.6), we first introduce an auxiliary function,
which will be used repeatedly below,

φ(t, x̃; k1, k2) = e2k1(T−t)
(
ek2 |̃x | − k2 |̃x | − 1

)
≥ 0, (4.7)

where k1, k2 are non-negative numbers. Since ex − x > ex/2, we can show that
φ ∈ C2, and

φ(t, 0; k1, k2) = ∂x̃φ(t, 0; k1, k2) = 0;
−∂tφ = 2k1φ ≥ k1e

2k1(T−t)
(
ek2 |̃x | − 2

)
;

|∂x̃φ| = k2e
2k1(T−t)

(
ek2 |̃x | − 1

)
≤ k2e

2k1(T−t)ek2 |̃x |;
∂x̃ x̃φ = k22e

2k1(T−t)ek2 |̃x |;

−∂tφ − L̃φ ≥ e2k1(T−t)
{
ek2 |̃x |
[
k1 − k22 |θt |2

2

−
(

β + |rt | + |θt |2
2

)
k2

]
− 2k1

}
. (4.8)
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Construct a super-solution to BSPDE (4.2) as the following,

Pt (̃x) = 2Cφ(t, x̃; M, K + 1) + 2Ce2M(T−t), Q = 0, (4.9)

where C, K are the constants in (4.5), and M is a positive constant which will be
determined later. From (4.8), (4.5) and Assumption 2, we deduce that

Rt � −∂t Pt − L̃Pt

≥ 2Ce2M(T−t)+(K+1)|̃x |
[
M − (K + 1)2|θt |2

2
−
(

β + |rt | + |θt |2
2

)
(K + 1)

]

≥ C e(K+1)|̃x |

≥ R̃1,

provided M is large enough. It is clear that (P, Q) satisfies the following BSPDE

⎧⎪⎨
⎪⎩
dPt = −

(
L̃Pt +

N2∑
i=1

M̃i Qi,t + Rt

)
dt +

N2∑
i=1

Qi,t d Bi,t in Ω × [ 0, T ] × R;
Pt (̃x) > Ce(K+1)|̃x | ≥ R2(̃x) for any x̃ ∈ R a.s. in Ω.

Recalling Lemma 7, we deduce that

P̃ ≤ P ≤ 2Ce2M(T−t)
(
e(K+1)|̃x | − (K + 1)|̃x |

)
.

Repeating the same argument as above, we can prove that

P̃ ≥ −P ≥ −2Ce2M(T−t)
(
e(K+1)|̃x | − (K + 1)|̃x |

)
.

Then the conclusion about P̃ is obvious if we change the constant C .
Recalling (2.8), we have the following estimate about the lower obstacle P̂ ,

|P̂ t (̃x)| = ∣∣ P̃ t (̃x) − ex̃Yt
∣∣ ≤ Ce(K+1)|̃x |, (4.10)

where we have changed the constantC . Construct an auxiliary function as (4.9), where
C is large enough such that P > P̂ . Then (P, Q, 0), Q = 0 satisfies the following
BSPDVI,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dPt = −
(
L̃Pt +

N2∑
i=1

˜Mi Qi,t + Rt

)
dt +

N2∑
i=1

Qi,t d Bi,t if P > P̂ ;

dPt ≤ −
(
L̃Pt +

N2∑
i=1

M̃i Qi,t + Rt

)
dt +

N2∑
i=1

Qi,t d Bi,t if P = P̂ ;

PT (̃x) > P̂T (̃x).
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Since R ≥ R̂1, we see that P̂ ≤ P by Lemma 5. So, we can deduce that

−Ce(K+1)|̃x | ≤ P̂ ≤ P̂ ≤ P ≤ Ce(K+1)|̃x |.

Until now, we have proved all conclusions in this theorem. ��
Since the theory of BSPDEs is not as mature as the theory of PDEs, we need to

utilize the corresponding optimal stopping problem to analyze the other properties
of V̂ . We first give the relationship between BSPDVI (3.16) and the corresponding
optimal stopping problem by the following theorem.

Theorem 5 Let (Ṽ , Z̃) and (V̂ , Ẑ , k̂+) be the strong solutions to BSPDE (3.10) and
BSPDVI (3.16), respectively. Then

Ṽ t (x) = E

[ ∫ T

t
e−β(s−t)Ũ1(X

t,x
s )ds + e−β(T−t)Ũ2(X

t,x
T )

∣∣∣Ft

]
, (4.11)

and V̂t (x) is the value of the following optimal stopping problem,

V̂t (x) = ess.sup
τ∈Ut,T

E

[ ∫ τ∧T

t
e−β(s−t)Û1,s(X

t,x
s )ds + e−β(τ−t)V̂ τ∧T (Xt,x

τ∧T )

∣∣∣Ft

]
,

(4.12)

and its optimal stopping time τ ∗ can be described as

τ ∗ � inf
{
s ∈ [ t, T ] : V̂s(Xt,x

s ) = V̂ s(X
t,x
s )
} ∧ T .

Proof From (4.6) and X̃ = log X , we deduce that

∣∣ P̃ (X̃ t ,̃x )∣∣ , ∣∣ P̂ (X̃ t ,̃x )∣∣ ≤ C e(K+1)|X̃ t ,̃x | ≤ C
( ∣∣ Xt,x

∣∣K+1 + ∣∣ Xt,x
∣∣−K−1

)
.

Recalling (4.5), and X−1, X ∈ S p for any p > 1, we know that

R̂1(X̃
t ,̃x ), P̂ (X̃ t ,̃x ), P̂ (X̃ t ,̃x ) ∈ S2.

So, we have shown all assumptions in Lemma 8 are valid, and we can derive the
conclusions in Lemma 8. Then the conclusions in this theorem follow from transfor-
mation (4.1). ��

Next, we utilize (4.11) and (4.12) to analyze the properties of V̂ .

Theorem 6 Let (Ṽ , Z̃) and (V̂ , Ẑ , k̂+) be the strong solutions to BSPDE (3.10) and
BSPDVI (3.16), respectively. Then Ṽ and V̂ are strictly concave, i.e., ∂xx Ṽ , ∂xx V̂ > 0
a.e. in Ω × [ 0, T ] × R

+.
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Proof Let x1, x2 ∈ R
+, 0 < λ < 1, xλ = λx1 + (1 − λ)x2. From (3.9), it is clear

that

Xt,xλ = λXt,x1 + (1 − λ)Xt,x2 .

Since Ũ1 and Ũ2 are strictly convex, we have

Ũ1(X
t,xλ) < λŨ1(X

t,x1) + (1 − λ)Ũ1(X
t,x2),

Ũ2(X
t,xλ

T ) < λŨ2(X
t,x1
T ) + (1 − λ)Ũ2(X

t,x2
T ).

So, (4.11) implies that Ṽ t (xλ) < λṼ t (x1)+(1−λ)Ṽ t (x2). Combining Ṽ ∈ H
2,2(D)

for any compact subset D of R, we see that ∂xx Ṽ t (x) > 0 a.e. in Ω × [ 0, T ] × R
+.

Since V̂ t (x) = Ṽ t (x) − xYt , we derive that

V̂ t (xλ) = Ṽ t (xλ) − xλYt

< λṼ t (x1) + (1 − λ)Ṽ t (x2) − xλYt

= λV̂ t (x1) + (1 − λ)V̂ t (x2).

Denote

τλ = inf
{
s ∈ [ t, T ] : V̂s(Xt,xλ

s ) = V̂ s(X
t,xλ
s )
} ∧ T , (4.13)

then we have

V̂t (xλ) = E

[∫ τλ

t
e−β(s−t)Û1,s(X

t,xλ
s )ds + e−β(τλ−t)V̂ τλ(Xt,xλ

τλ )

∣∣∣Ft

]

< E

[∫ τλ

t
e−β(s−t)

[
λÛ1,s(X

t,x1
s ) + (1 − λ)Û1,s(X

t,x2
s )
]
ds

+e−β(τλ−t)
[
λV̂ τλ(Xt,x1

τλ ) + (1 − λ)V̂ τλ(Xt,x2
τλ )
] ∣∣∣Ft

]

≤ λV̂t (x1) + (1 − λ)V̂t (x2).

Combining V̂ ∈ H
2,2(D) for any compact subset D ofR, we know that ∂xx V̂ t (x) > 0

a.e. in Ω × [ 0, T ] × R
+. ��

Theorem 7 ∂x Ṽ t (x), ∂x V̂t (x) → −∞ as x → 0+, and

∂x Ṽ t (x), ∂x V̂t (x) → 0 as x → +∞ a.e. in Ω × [ 0, T ].

Proof Denote H̃s = eβ(s−t)Ht
s ≥ Ht

s > 0, then Xt,x = x H̃ . Let x ∈ R
+ and

1/2 < λ < 1. Since Ũi is strictly convex and decreasing with respect to x , we have

∂xŨi
(
Xt,λx ) (1 − λ)x H̃ ≤ Ũi (X

t,x ) − Ũi (X
t,λx )
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≤ ∂xŨi (X
t,x )(1 − λ)x H̃

≤ 0, i = 1, 2. (4.14)

Then, by (4.11), we deduce that

0 ≥ Ṽ t (x) − Ṽ t (λx)

(1 − λ)x

≥ E

[ ∫ T

t
∂xŨ1,s

(
Xt,λx
s

)
Ht
s ds + Ũ ′

2

(
Xt,λx
T

)
Ht
T

∣∣∣∣Ft

]
. (4.15)

Next, we estimate the two terms inside the braces. From Lemma 1, we see that for any
positive number ε, there exists a positive constant Mε > 1 such that

∂xŨ1,s(z) > −ε, ∀ z ≥ Mε; ∂xŨ1,s(z) > ∂xŨ1,s(1) − C(z−K + 1), ∀ z > 0,

a.e. in Ω × [t, T ]. So, we have

E

[ ∫ T

t
∂xŨ1,s

(
Xt,λx
s

)
Ht
s ds

∣∣∣∣Ft

]

≥ E

[ ∫ T

t
∂xŨ1,s

(
1

2
x H̃s

)
Ht
s ds

∣∣∣∣Ft

]

≥ E

[
− ε

∫ T

t
Ht
s I{x H̃s>2Mε}ds

+
∫ T

t

[
∂xŨ1,s(1) − C − C

(
1

2
x H̃s

)−K ]
Ht
s I{x H̃s≤2Mε}ds

∣∣∣∣Ft

]

≥ −εE

[ ∫ T

t
Ht
s ds

∣∣∣∣Ft

]
+ ( ∂xŨ1,s(1) − C

)

× E

[ ∫ T

t
e−β(s−t) 2Mε

x
I{H̃s≤ 2Mε

x }ds
∣∣∣∣Ft

]
− C2K

xK
E

[ ∫ T

t
(Ht

s )
1−K ds

∣∣∣∣Ft

]
.

From (2.7) and Assumption 2, it is not difficult to deduce that

E

[
sup

s∈[ t,T ]
(Ht

s )
p
∣∣∣∣Ft

]
< Cp, ∀ p > 1. (4.16)

So, we can find a sufficiently large positive constant M̃ε independent of λ and t such
that

E

[ ∫ T

t
∂xŨ1,s

(
1

2
x H̃s

)
Ht
s ds

∣∣∣∣Ft

]
≥ −Cε, ∀ x ≥ M̃ε,
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whereC is another positive constant independent of ε, M̃ε, x, λ, t . Repeating the same
argument as above, we can deduce

E

[
Ũ ′
2

(
1

2
x H̃T

)
Ht
T

∣∣∣∣Ft

]
≥ −Cε, ∀ x ≥ M̃ε. (4.17)

Hence, by (4.15), we have proved that

0 ≥ Ṽ t (x) − Ṽ t (λx)

(1 − λ)x
≥ −2Cε, ∀ x ≥ M̃ε.

Let λ → 1−, then we derive that ∂x Ṽ ≤ 0, and ∂x Ṽ t (x) ≥ −2Cε for any x ≥ M̃ε,
where we have used the fact that Ṽ ∈ H

2,2(D) for any compact subset D of R
+. By

taking the limits x → +∞ and ε → 0+ sequentially,wededuce that ess.inf{∂x Ṽ t (x) :
(ω, t) ∈ Ω × [ 0, T ]} → 0 as x → +∞.

From Lemma 1, we see that, for any positive number M , there exists a positive
constant εM such that

Ũ ′
2(z) < −M, ∀ 0 < z ≤ εM .

So, by (4.14) and some computation we show that

Ṽ t (x) − Ṽ t (λx)

(1 − λ)x
≤ E

[ ∫ T

t
∂xŨ1,s

(
x H̃s
)
Ht
s ds + Ũ ′

2

(
x H̃T
)
Ht
T

∣∣∣∣Ft

]

≤ −ME

[
Ht
T I{0<x H̃T ≤εM }

∣∣∣∣Ft

]

≤ −ME

[
Ht
T I{0<Ht

T ≤ εM
x e−βT }ds

∣∣∣∣Ft

]

≤ −M

C
,

provided 0 < x < e−βT εM , where C is a positive constant independent of
M, εM , x, λ, t . By letting λ → 1−, we derive that ∂x Ṽ t (x) ≤ −M/C for any
0 < x < e−βT εM . By taking limits x → 0+ and M → +∞ sequentially, we
deduce that ess.sup{∂x Ṽ t (x) : (ω, t) ∈ Ω × [ 0, T ]} → −∞ as x → 0+.

Next, we prove that V̂ has the same asymptotic properties. As in the above, we
show by computation

0 ≥ V̂ t (x) − V̂ t (λx)

(1 − λ)x

≥ E

[∫ τλ

t
∂xÛ1,s

(
Xt,λx
s

)
Ht
s ds + ∂x V̂ τλ

(
Xt,λx

τλ

)
Ht

τλ

∣∣∣∣Ft

]
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≥ E

[ ∫ T

t
∂xÛ1,s

(
1

2
x H̃s

)
Ht
s ds + ∂x V̂ τλ

(
Xt,λx

τλ

)
Ht

τλ

∣∣∣∣Ft

]
, (4.18)

where τλ is the optimal stopping time with the initial state λx , defined in (4.13). Next,
we estimate the two terms inside the braces as in the above. It is clear that the first term
is similar to the first term inside the braces in (4.15). So we can obtain its estimate by
the same argument. Now, we focus on estimating the second term.

In fact, fromTheorem11,we conclude that V̂s(X
t,λx
s ) > V̂ s(X

t,λx
s ) for any Xt,λx

s >

X and 0 ≤ t < T , and V̂s(X
t,λx
s ) = V̂ s(X

t,λx
s ) for any Xt,λx

s ≤ X , where X and X are
positive constants. So we deduce that τλ = T in the event A = {ω : inf{Xt,λx

s (ω) :
s ∈ [ t, T ]} > X}, and Xt,λx

τλ ≥ X provided λx ≥ X . Thus, if λx ≥ X , we have

E

[
∂x V̂ τλ

(
Xt,λx

τλ

)
Ht

τλ

]

= E

[
∂x V̂ τλ

(
Xt,λx

τλ

)
Ht

τλ IΩ\A + ∂x V̂ T

(
Xt,λx
T

)
Ht
T IA
]

≥ E

[
inf

s∈[ t,T ] ∂x V̂ s

(
X
)

sup
s∈[ t,T ]

Ht
s IΩ\A + Ũ ′

2

(
1

2
x H̃T

)
Ht
T

]
, (4.19)

where we have used the facts that ∂x V̂ = ∂x Ṽ − Y is increasing with respect to x
and

Xt,λx ≥ Xt,x/2 = 1

2
x H̃ , V̂ T (x) = Ṽ T (x) − xYT = Ũ2(x) − xYT , YT = 0.

It is clear that the second term on the right-hand side of (4.19) is the same as that
in (4.15), and we can deduce the estimate (4.17).

Recalling (4.10) and Ṽ ∈ S
1,2(D) for any compact subset of R

+, we have

E

[
sup

s∈[ t,T ]
∣∣∂x V̂ s

(
X
)∣∣2
]

≤ 4

X
E

[
sup

s∈[ t,T ]

∫ X

X/2

∣∣∂x Ṽ s(x)
∣∣2
]

+ 2 E

[
sup

s∈[ t,T ]
Y2
s

]

≤ C,

where we have used the fact that ∂x Ṽ s(X) ≤ ∂x Ṽ s(x) ≤ 0 for any x ∈ [ X/2, X ].
Moreover,

Ω\A =
{

ω : sup
s∈[ t,T ]

1

λx H̃s(ω)
≥ 1

X

}
⊂
{

ω : sup
s∈[ t,T ]

1

Ht
s (ω)

≥ x

2X

}
.

Since 1/Ht ∈ S p for any p > 1, we derive that P(Ω\A) → 0 as x → +∞.
Combining (4.16), we have the following estimate of the first term on the right-hand
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side of (4.19),

0 ≥ E

[
inf

s∈[ t,T ] ∂x V̂ s

(
X
)

sup
s∈[ t,T ]

Ht
s IΩ\A

]

≥ −E

[
sup

s∈[ t,T ]
∣∣∂x V̂ s

(
X
)∣∣2 IΩ\A

]1/2
E

[
sup

s∈[ t,T ]
(Ht

s )
2 IΩ\A

]1/2
→ 0,

as x → +∞.

So, from (4.18), we have proved that for any ε, there exists a positive constants Mε

such that

V̂ t (x) − V̂ t (λx)

(1 − λ)x
≤ 0, E

(
V̂ t (x) − V̂ t (λx)

(1 − λ)x

)
≥ −2Cε, ∀ x ≥ Mε.

By lettingλ → 1−, we derive that ∂x V̂ ≤ 0 a.e. inΩ×[ 0, T ]×R
+, andE[∂x V̂t (x)] ≥

−2Cε for any x ≥ M̃ε, where we have used the fact that V̂ ∈ H
2,2(D) for any compact

subset D of R
+. By taking limits x → +∞ and ε → 0+ sequentially, we deduce that

E(∂x V̂t (x)) → 0 as x → +∞. Combining the fact ∂x V̂t (x) is convex and less than
zero, we conclue that ∂x V̂t (x) → 0 as x → +∞ a.e. in Ω × [ 0, T ].

The proof of ∂x V̂t (x) → −∞ as x → 0+ is similar to the one in the above. ��

Until now, we have showed all the assumptions in Theorem 1 are satisfied. So, we
have the following result.

Theorem 8 Theoptimal retirement problemhas a unique value V ,which takes the form
of (3.19). Moreover, the optimal investment, consumption and retirement strategy is
described by the strategy described in Theorem 1.

5 Properties of the Optimal Retirement Boundary

In this section, we utilize BSPDE (4.2) and BSPDVI (4.4) to study the properties of
the optimal retirement boundary. For this purpose, we first investigate properties of
the following functions,

ΔP = P̂ − P̂ = P̂ − P̃ + ex̃ Y,

ΔQi = Q̂ − Q̃
i
+ ex̃ ZY

N1+i , i = 1, 2, · · · , N2. (5.1)
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Recalling BSPDE (4.2), BSPDVI (4.4) and (2.5), we deduce ΔP and ΔQ satisfy
the following BSPDVI,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dΔPt = −
(
L̃ΔPt +

N2∑
i=1

M̃iΔQi,t + ΔRt

)
dt

+
N2∑
i=1

ΔQi,t d Bi,t if ΔP > 0 ;

dΔPt ≤ −
(
L̃ΔPt +

N2∑
i=1

M̃iΔQi,t + ΔRt

)
dt

+
N2∑
i=1

ΔQi,t d Bi,t if ΔP = 0 ;
ΔPT (̃x) = 0,

(5.2)

where

ΔRt (̃x) = R̂1,t (̃x) − R̃1,t (̃x) + Ltwt e
x̃ = Û1,t (x) − Ũ1,t (x) + Ltwt x . (5.3)

From (4.5), we deduce that

|ΔRt (̃x)| ≤ C e(K+1)|̃x |, ∀ x̃ ∈ R a.e. in Ω × [ 0, T ]. (5.4)

In BSPDVI (5.2), the lower obstacle and the terminal value become 0, thus we have
transformed the problem into a problem where the continuation value after retirement
is 0.

Theorem 9 There exist two constants X P , X P such that ΔPt (̃x) > 0 if x̃ > X P and
0 ≤ t < T , and ΔPt (̃x) = 0 if x̃ ≤ X P.

Proof We first prove that there exists X P such thatΔPt (̃x) > 0 if x̃ > X P and t < T .
In order to show this property, we construct a function ΔP such that ΔP ≤ ΔP and
ΔP t (̃x) > 0 if x̃ > X P and 0 ≤ t < T .

From Lemma 10, there exist two positive constants ε and X̃ P such that ΔRt (̃x) >

εex̃ for any x̃ ≥ X̃ P . Construct ΔP as the following,

ΔP t (̃x) = ε

1 + ‖r‖∞

(
1 − et−T

)
φ(t, x̃ − X P ; 0, 1)I{̃x>X P }

− Cφ(t, x̃ − X P ; M, K + 1)I{̃x≤X P },

where the definition of ‖r‖∞ is the same as in (2.8), and φ is defined in (4.7), C, K
are the constants in (5.4), and M > 0, X P > 2X̃ P will be determined later. Recalling
the properties of φ, we can check that ΔP T ≤ 0, and ∂x̃ΔP is locally Lipschitz-
continuous with respect to x and smooth with respect to t , and ΔP ∈ H

2,2
K+2. Let us

denote

ΔR = −∂tΔP − L̃ΔP .
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Then, we can check that if x̃ > X P ,

ΔR t (̃x) = ε

1 + ‖r‖∞

{
et−Tφ(t, x̃ − X P ; 0, 1) −

(
1 − et−T

) [
− rt e

x̃−X P

+ β(̃x − X P ) +
(
rt + |θt |2

2

) ]}

≤ ε

1 + ‖r‖∞

(
ex̃−X P + |rt |ex̃−X P

)

≤ εex̃−X P

≤ εex̃

< ΔRt (̃x).

If x̃ < X P , then by (4.8) we have

ΔR t (̃x) ≤ −Ce2M(T−t)
{
e(K+1)|̃x−X P |

[
M − (K + 1)2|θt |2

2

−
(

β + |rt | + |θt |2
2

)
(K + 1)

]
− 2M

}

≤ −Ce2M(T−t)
[
2e(K+1)|̃x−X P | − 2M

]
,

provided M is large enough. Fix M and choose X P > 2 log(2MC) + 2 + 2(log ε)−.
Then, we derive that

ΔR t (̃x) ≤ 2eMC ≤ εeX P/2

≤ εex̃

< ΔRt (̃x), if
X P

2
≤ x̃ < X P , T − 1

2M
≤ t ≤ T ;

ΔR t (̃x) ≤ −C
[
e(K+1)|̃x−X P | + eX P/2 − 2M

]
≤ −Ce(K+1)|̃x |

< ΔRt (̃x), if x̃ <
X P

2
.

Here we have assumed that C > 1. Until now, we have proved that (ΔP,ΔQ) with
ΔQ = 0 is the strong solution to the following BSPDE,

⎧⎪⎨
⎪⎩
dΔP t = −

(
L̃ΔP t +

N2∑
i=1

M̃iΔQ i,t + ΔR t

)
dt +

N2∑
i=1

ΔQ i,t d Bi,t ;
ΔP T (̃x) ≤ 0 = ΔPT (̃x),
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andΔR t < ΔRt if T −1/(2M) ≤ t ≤ T . Since the strong solution (ΔP,ΔQ,ΔK+)

to (5.2) can be written as a strong solution to the following BSPDE,

⎧⎪⎨
⎪⎩
dΔPt = −

(
L̃ΔPt +

N2∑
i=1

M̃iΔQi,t + ΔRt + ΔK+
t

)
dt +

N2∑
i=1

ΔQi,t d Bi,t

ΔPT (̃x) = 0,

where ΔK+ ≥ 0. From Lemma 7, we deduce that ΔPt ≥ ΔP t if T −1/(2M) ≤ t ≤
T . SinceΔP t (̃x) > 0 for any x̃ > X P and t < T , we have proved thatΔPt (̃x) > 0 for
any x̃ > X P and T −1/(2M) ≤ t < T . Repeating the same argument in the intervals
[ T − (i + 1)/(2M), T − i/(2M) ], i = 1, 2, · · · , we can deduce that ΔPt (̃x) > 0 for
any x̃ > X P and 0 ≤ t < T .

We will now prove that there exists X P such that ΔPt (̃x) = 0 if x̃ ≤ X P . In
order to show this property, we construct a function ΔP such that ΔP ≥ ΔP and
ΔPt (̃x) = 0 if x̃ ≤ X P .

From Lemma 9, there exists a negative constant X̂ P such that ΔRt (̃x) < −ex̃ for
any x̃ ≤ X̂ P . Construct ΔP as the following,

ΔP t (̃x) = 1

2M
e2X Pφ(t, x̃ − X P ; M, K + 1)I{̃x>X P } ≥ 0,

where φ is defined in (4.7), K is the constant in (5.4), and M > 0, X P < 3X̂ P will
be determined later. As in the above, we denote ΔR � −∂tΔP − L̃ΔP . Then we can
show that ΔP ∈ H

2,2
K+2 and

ΔRt (̃x) = 0 > ΔRt (̃x), ∀ x̃ < X P .

Moreover, by (4.8), we can check that if x̃ > X P ,

ΔRt (̃x) ≥ e2M(T−t)+2X P

2M

{
e(K+1)|̃x−X P |

[
M − (K + 1)2|θt |2

2

−
(

β + |rt | + |θt |2
2

)
(K + 1)

]
− 2M

}

≥ e2M(T−t)+2X P

2M

[
2e(K+1)|̃x−X P | − 2M

]
,

provided M is large enough. Fix M and choose X P < − log(2MC) − 2MT , where
C is the constant in (5.4). Then, we derive that if X P < x̃ < X P/3,

ΔRt (̃x) ≥ −e2M(T−t)+2X P ≥ −eX P ≥ −ex̃ ≥ ΔRt (̃x).

Moreover, if x̃ > X P/3, we have the following estimate,

ΔRt (̃x) ≥ e2M(T−t)+2X P

2M

[
e(K+1)(|̃x−X P |−|̃x |)e(K+1)|̃x |
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+
(
e(K+1)|̃x−X P | − 2M

) ]

≥ e
2X P
2M e−(K+1)X P/3e(K+1)|̃x |

= 1

2M
e−(K−5)X P/3e(K+1)|̃x |

≥ Ce(K+1)|̃x | ≥ ΔRt (̃x).

Here we have supposed that C, M > 1 and K > 8. Until now, we have proved that
(ΔP,ΔQ, 0) with ΔQ = 0 is the strong solution to the following BSPDVI,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dΔPt = −
(
L̃ΔPt +

N2∑
i=1

M̃iΔQi,t + ΔRt

)
dt

+
N2∑
i=1

ΔQi,t d Bi,t if ΔP > 0 ;

dΔPt ≤ −
(
L̃ΔPt +

N2∑
i=1

M̃iΔQi,t + ΔRt

)
dt

+
N2∑
i=1

ΔQi,t d Bi,t if ΔP = 0 ;
ΔPT (̃x) ≥ 0 ≥ PT (̃x),

and ΔR ≥ ΔR. Applying Lemma 5, we deduce that ΔP ≤ ΔP . Since ΔPt (̃x) = 0
for any x̃ ≤ X P , we have proved that ΔPt (̃x) = 0 if x̃ ≤ X P . ��

Theorem 10 If γ + ρ ≤ 1, then we have ΔP is increasing with respect to x̃ .

Proof Denote

ΔPλ
t (̃x) = ΔPt (̃x + λ), ΔQλ

t (̃x) = ΔQt (̃x + λ), ΔRλ
t (̃x) = ΔRt (̃x + λ),

where λ is an arbitrary positive number such that λ < 1. Then ΔPλ,ΔQλ satisfies
the following BSPDVI

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dΔPλ
t = −

(
L̃ΔPλ

t +
N2∑
i=1

M̃iΔQλ
i,t + ΔRλ

t

)
dt

+
N2∑
i=1

ΔQλ
i,t d Bi,t if ΔPλ > 0 ;

dΔPλ
t ≤ −

(
L̃ΔPλ

t +
N2∑
i=1

M̃iΔQλ
i,t + ΔRλ

t

)
dt

+
N2∑
i=1

ΔQλ
i,t d Bi,t if ΔPλ = 0 ;

ΔPλ
T (̃x) = 0.
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Since ΔR is increasing with respect to x̃ by Lemma 11, we have ΔRλ ≥ ΔR.
Recalling Lemma 5, we deduce that ΔPλ ≥ ΔP . Hence, we have shown that ΔP is
increasing with respect to x̃ . ��

From Theorem 9, Theorem 10 and (4.1), (5.1), we have the following properties of
the dual value V̂ .

Theorem 11 (1) There exist two positive constants X = eX P , X = eX P such that
V̂t (x) > V̂ t (x) if x > X and t < T , and V̂t (x) = V̂ t (x) if x ≤ X.

(2) If γ + ρ ≤ 1, then V̂ − V̂ is increasing with respect to x.

Define the optimal retirement boundary in t − x coordinate system as follows:

Rx
t � inf{x > 0 : V̂t (x) > V̂ t (x)}, t ∈ [ 0, T ).

Define the working region and the retirement region as follows:

WRx � {(ω, t, x) : V̂t (ω, x) > V̂ t (ω, x)},
RRx � {(ω, t, x) : V̂t (ω, x) = V̂ t (ω, x)}.

From Theorem 11, and we have the following properties of the optimal retirement
boundary in t − x coordinate system as the follows.

Theorem 12 (1) There exist two positive constants X , X such that X ≤ Rx ≤ X.
(2) If γ + ρ ≤ 1, then WRx = {(ω, t, x) : x > Rx

t (ω), t ∈ [ 0, T )} and RRx =
{(ω, t, x) : 0 < x ≤ Rx

t (ω)}.
If the initial (ω, t, x) ∈ WRx , then V̂ (ω, t, x) > V̂ (ω, t, x) a.s. inΩ . Thedefinition

of τ ∗ in Theorem 1 implies that τ ∗(ω) > t a.s. inΩ , i.e., the agent chooses to work. As
time passes, s > t , before the trajectory of the dual variable process X∗

s first hits the
optimal retirement boundaryRx

s , (ω, s, X∗
s (ω)) ∈ WRx and τ ∗(ω) > s, i.e., the agent

keeps working. If X∗
s hits Rx

s , then (ω, s, X∗
s (ω)) ∈ RRx , τ ∗(ω) = s and the agent

chooses to retire. If the initial (ω, t, x) ∈ RRx , however, then V̂ (ω, t, x) = V̂ (ω, t, x)
a.s. in Ω . The definition of τ ∗ in Theorem 1 implies that τ ∗(ω) = t a.s. in Ω , i.e., the
agent chooses to retire.

Theorem 12(a) provides constant bounds, namely, an upper bound X and a lower
bound X for the boundary. Theorem 12(b) provides a characterization of the working
region and the retirement region in terms of the optimal retirement boundary. In par-
ticular, it says that under the condition that γ +ρ ≤ 1 the agent retires at the first time
when the marginal utility of wealth Xs hits the optimal retirement boundary. That is,
under the condition that the coefficient of relative risk aversion is less than or equal
to the reciprocal of the elasticity of substitution between consumption and leisure
(γ + ρ ≤ 1), the agent retires when the agent’s marginal utility becomes sufficiently
small to hit the boundary.

Next, we will come back to study the optimal retirement threshold in the original
coordinate system (t, y), where y denotes the wealth of the agent. For this purpose, we
redefine the working domain, the retirement domain and define the optimal retirement
threshold in the (t, y)−coordinate system.
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Recalling Theorem 1, we know that x∗
t (y) = JV̂ ,t (−y − Yt ) is continuous and

strictly decreasing with respect to y a.s. in Ω × [ 0, T ], and is a bijection from
(−Yt (ω),+∞) to (0,+∞) a.s. in Ω × [ 0, T ]. So x∗

t (ω, ·) has an inverse function
y∗
t (ω, ·),which is continuous, strictly decreasing andmaps (0,+∞) to (−Yt (ω),+∞)

a.s. in Ω × [ 0, T ].
Let us define the optimal retirement threshold as Ry

t � y∗
t (Rx

t ), and the working
domain and the retirement domain in t − y as the following,

RRy � {(ω, t, y) : (ω, t, x∗
t (ω, y)) ∈ RRx },

WRy � {(ω, t, y) : (ω, t, x∗
t (ω, y)) ∈ WRx }.

Then we state the properties of the optimal retirement boundary Ry as the follows.

Theorem 13 (1) The optimal retirement threshold is given by y = Ry
t = −∂x Ṽ t (Rx

t )

a.e. in Ω × [ 0, T ]. And there exist two stochastic processes Y,Y such that 0 < Y ≤
Ry ≤ Y , where Y t = −∂x Ṽ t (X) and Y t = −∂x Ṽ t (X).

(2) If γ + ρ ≤ 1, then WRy = {(ω, t, y) : −Yt < y < Ry
t (ω), t ∈ [ 0, T )} and

RRy = {(ω, t, y) : y ≥ Ry
t (ω)}.

Proof It is sufficient to prove that Ry
t = −∂x Ṽ t (Rx

t ), and other statements come
from Theorem 12.

Recalling x∗
t (y) = JV̂ ,t (−y − Yt ), we have ∂x V̂t (x∗

t (y)) = −y − Yt . Taking
y = y∗

t (x), we can show by computation

∂x V̂t (x) = ∂x V̂t (x
∗
t (y

∗
t (x))) = −y∗

t (x) − Yt for any x > 0 a.e. in Ω × [ 0, T ].

Hence, we deduce that y∗
t (x) = −Yt − ∂x V̂t (x) for any x > 0 a.e. in Ω × [ 0, T ]. So

we have

Ry
t = y∗

t (Rx
t ) = −Yt − ∂x V̂t (Rx

t ) = −Yt − ∂x V̂ t (Rx
t )

= −Yt − ∂x

[
Ṽ t (x) − xYt

]
x=Rx

t

= −∂x Ṽ t (Rx
t ) a.e. in Ω × [ 0, T ],

where we have used the fact that ∂x V̂t (Rx
t ) = ∂x V̂ (Rx

t ) in the third equality, which
can be derived from the continuity of ∂x V̂ , ∂x V̂ with respect to x and V̂t (x) = V̂ t (x)
for any x ≤ Rx

t . And we have used the fact V̂ = Ṽ − xYt in the fourth equality. ��
If the trajectory of the wealth process Y ∗

s stays in WRy , then the trajectory of the
dual process X∗

s stays inWRx and the agent chooses towork. If, however, the trajectory
of the wealth process Y ∗

s reaches RRy , then the trajectory of the dual variable process
X∗
s reaches RR

x and the agent chooses to retire. Theorem 13(a) provides bounds for
the optimal retirement threshold. In contrast to the bounds for the optimal retirement
boundary in the dual space, the bounds are stochastic. Theorem 13(b) provides a
characterization of theworking region and the retirement region in terms of the optimal
retirement threshold. In particular, it says that under the condition that γ + ρ ≤ 1 the
agent retires at the first time when wealth Xs hits the level of the optimal retirement
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threshold. That is, under the condition that the coefficient of relative risk aversion is less
than or equal to the reciprocal of the elasticity of substitution between consumption
and leisure (γ +ρ ≤ 1), the agent retires when the agent’s wealth becomes sufficiently
large to reach the threshold level.

The optimal retirement threshold is such that the agent retires as soon as the wealth
process reaches the threshold.

6 Conclusion

We have studied an optimal retirement and consumption/portfolio selection problem
of an agent in a non-Markovian market environment. We have derived a BSPDVI
by applying successive transformations and provided a verification theorem that the
solution to the original optimization problem can be obtained by a strong solution to
the BSPDVI satisfying certain regularity conditions. We have also shown that there
exists a unique strong solution to the BSPDVI satisfying the conditions.

Since the theory of BSPDE is not mature, we have relied on a combination of
a probabilistic approach and the theory. Derivation of the result by using solely the
theory of BSPDE seems an interesting topic to pursue. We have not been able to a
full concrete characterization of the early retirement boundary, as is done in Yang and
Koo [30]. A full characterization of the boundary is left as future research.

A A Few Existing Results About BSPDVI

For convenience of the reader we state the generalized Itô-Kunita-Wentzell’s formula,
and results about BSPDE (refer to [8,31]) and BSPDVI (refer to [21]) which were
used in the paper.

We provide the generalized Itô–Kunita–Wentzell’s formula (refer to Theorem 3.1
in [31]) in the following9,

Lemma 3 Suppose that the random function v : Ω × [ 0, T ] × R → R satisfies the
following properties: v(x) is a continuous semimartingale and takes the following
form

vs(x) = vt (x) +
∫ s

t
fu(x) du +

N2∑
i=1

∫ s

t
wi,u(x) dBi,u

a.e. x ∈ R for every s ∈ [ t, T ] a.s. in Ω.

And v ∈ H
2, 2(D), w ∈ H

1, 2(D), f ∈ H
0, 2(D) for any compact subset D of R

+.
Let X be governed by (3.9), and Assumptions 2 and 3 be satisfied. Then we have

9 Though β = 0 in Theorem 3.1 in [31], it is clear that the corresponding result still holds in the case of
β �= 0. Moreover, v ∈ H

2, 2, w ∈ H
1, 2, and f ∈ H

0, 2 are assumed in Theorem 3.1 in [31]. We relax the
assumption, as we can construct a sequence of intervals {[ 1/n, n ] : n ∈ Z

+} which converges to R
+.
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e−β(s−t)vs(Xs) = vt (Xt ) +
∫ s

t
e−β(u−t)

(
Lvu +

N2∑
i=1

Miwi,u + fu

)
(Xu) du

+
∫ s

t
e−β(u−t)

[ N2∑
i=1

(wi,u + Mivu) (Xu) dBi,u

− ∂xvu(Xu)Xu

(
θ1u

)	
dWu

]
,

where the differential operator L and M are defined in (3.11).

Remark 6 From the above integral representation of e−β(·−t)v·(X ·), we know that the
stochastic process v·(X ·) has a continuous version.

We will now state results about a BSPDVI, which takes the following form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dvt = −
(
L̃vt +

N2∑
i=1

M̃iwi,t + ft

)
dt +

N2∑
i=1

wi,t d Bi,t if vt > v t ;

dvt ≤ −
(
L̃vt +

N2∑
i=1

M̃iwi,t + ft

)
dt +

N2∑
i=1

wi,t d Bi,t if vt = v t ;

vT (x) = ϕ(x) ,

(A.1)

where the differential operator L̃ and M̃ are defined in (4.3).
First, we state a result about the existence and uniqueness of the strong solution to

the BSPDVI (see Theorem 5.4 in [21]).

Lemma 4 Let Assumptions 2 and 3 be satisfied, f ∈ H
0, 2
λ , ϕ ∈ L

1, 2
λ , v ∈ H

2, 2
λ

with some nonnegative number λ. Moreover, the lower obstacle v is a continuous
semimartingale of the following form

dv t = −g t dt +
N2∑
i=1

w i,t d Bi,t

with some (w , g ) ∈ H
1, 2
λ × H

0, 2
λ , and v T ≤ ϕ. Then BSPDVI (A.1) has a unique

strong solution (v,w, k+) ∈ H
2, 2
λ × H

1, 2
λ × H

0, 2
λ . Moreover, v ∈ S

1, 2
λ .

Next, we provide a comparison theorem for BSPDVI (refer to Theorem 5.2 in [21]).

Lemma 5 Let the assumptions in Lemma 4 be satisfied. Let (vi , wi , k+
i ) be the strong

solution to BSPDVI (A.1) associated with ( fi , ϕi , v i ) for i = 1, 2. If f1 ≥ f2, ϕ1 ≥
ϕ2, and v 1 ≥ v 2, then v1 ≥ v2 a.e. in Ω × [ 0, T ] × R.
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Consider the following BSPDE,

⎧⎪⎨
⎪⎩
dvt = −

(
L̃vt +

N2∑
i=1

M̃iwi,t + ft

)
dt +

N2∑
i=1

wi,t d Bi,t ;
vT (x) = ϕ(x) .

(A.2)

In view of the results for BSPDE (refer to Lemmas 2.2 and 5.1 in [31], or Theorem
5.3 and Corollary 3.4 in [8]), we can conclude the following results for BSPDE10.

Lemma 6 Let Assumptions 2 and 3 be satisfied, f ∈ H
0, 2
λ , ϕ ∈ L

1, 2
λ with some

nonnegative number λ. Then BSPDE (A.2) has a unique strong solution (v,w) ∈
H

2, 2
λ × H

1, 2
λ . Moreover, v ∈ S

1, 2
λ .

Lemma 7 Let the assumptions in Lemma 6 be satisfied. Assume that (vi , w
i ) be the

strong solution to BSPDE (A.2) associated with ( fi , ϕi ) for i = 1, 2. If f1 ≥ f2 and
ϕ1 ≥ ϕ2, then v1 ≥ v2 a.e. in Ω × [ 0, T ] × R.

Finally, we give the result about the relationship between the strong solution P̂ of
BSPDVI (4.4) and the value of the corresponding optimal stopping problem (refer to
Theorem 5.4 in [21])11.

Lemma 8 Let Assumptions 2 and 3 be satisfied. Suppose that P̃ and P̂ are the
strong solutions to BSPDE (4.2) and BSPDVI (4.4), respectively. The terminal
value and lower obstacle in BSPDVI (4.4), P̂ t (̃x) = P̃ t (̃x) − ex̃Yt . Let R̃1, R̂1 ∈
H

0, 2
λ , R̃ 2 ∈ L

1, 2
λ be satisfied with some nonnegative number λ. Moreover, suppose

that P̂ (X̃ t ,̃x ), P̂ (X̃ t ,̃x ) ∈ S2, R̂1(X̃ t ,̃x ) ∈ L2, where X̃ t ,̃x = log Xt,x 12. Then

P̃ t (̃x) = E

[ ∫ T

t
e−β(s−t) R̃1(X̃

t ,̃x
s )ds + e−β(T−t) R̃2(X̃

t ,̃x
T )

∣∣∣Ft

]
,

and P̂t (̃x) is the value of the following optimal stopping problem,

P̂t (̃x) = ess.sup
τ∈Ut,T

E

[ ∫ τ∧T

t
e−β(s−t) R̂1,s(X̃

t ,̃x
s )ds + e−β(τ−t) P̂τ∧T (X̃ t ,̃x

τ∧T )

∣∣∣Ft

]
,

and its optimal stopping time τ ∗ can be described as

τ ∗ � inf
{
s ∈ [ t, T ] : P̂s(X̃ t ,̃x

s ) = P̂ s(X̃
t ,̃x
s )
} ∧ T .

10 In the Lemmas 2.2 and Lemma 5.1 in [31], the parameter λ in the random field space H
i, 2
λ , i = 0, 1, 2

is supposed to be zero. But we can utilize the transformation in the proof of Theorem 4.9 in [21] to relax the
condition. Moreover, we can obtain the results in Lemmas 6 and 7 by another method as follows. Applying
themethod in [21], we can construct a v such that v < v under the conditions in Lemma 4. So BSPDVI (A.1)
is equivalent to BSPDE (A.2), and Lemmas 6 and 7 follow from Lemmas 4 and 5, respectively.
11 Though we have proved the relationship between V̂ defined in (3.14) and the strong solution v̂ to
BSPDVI (3.16) in Theorem 1, the assumptions in Theorem 1 is too strong, we need the relationship under
more weaker assumptions.
12 In [21], R̂1(x) is supposed to be of polynomial growth with respect to x , which guarantees that
R̂1(X̃

t ,̃x ) ∈ L2. Now, we relax this condition to R̂1(X̃
t ,̃x ) ∈ L2.
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B Properties of1R

In this section, we deduce properties about ΔR defined in (5.3), which is important to
derive the properties of the optimal retirement boundary.

Lemma 9 ess.sup{ΔRt (̃x) : (ω, t) ∈ Ω×[ 0, T ]} < −ex̃ provided x̃ is small enough.

Proof We prove the conclusion by considering the property of ΔRt (̃x) as x̃ → −∞
in six different cases.

1. Consider the case of 0 < ρ < 1 and 0 < γ �= 1. As x̃ → −∞, i.e., x → 0+,
then c∗ = JU1(x; l) → +∞, and

x = ∂cU1(c
∗, l)

= α(c∗)ρ−1[ α(c∗)ρ + (1 − α)lρ ] 1−γ−ρ
ρ

= α
1−γ

ρ (c∗)−γ

[
1 + 1 − α

α

lρ

(c∗)ρ

] 1−γ−ρ
ρ

= α
1−γ

ρ (c∗)−γ

[
1 + 1 − α

α

1 − γ − ρ

ρ
lρ(c∗)−ρ + o

(
(c∗)−ρ

) ]
.

So, we deduce that as x → 0+,

JU1(x; l) = c∗

= α
1−γ
ργ x

−1
γ

[
1 + 1 − α

α

1 − γ − ρ

ρ
lρ(c∗)−ρ + o

(
(c∗)−ρ

) ] 1
γ

= α
1−γ
ργ x

−1
γ

[
1 + 1 − α

α

1 − γ − ρ

ργ
lρ(c∗)−ρ + o

(
(c∗)−ρ

) ]

= α
1−γ
ργ x

−1
γ

[
1 + 1 − γ − ρ

ργ
(1 − α) lρα

−1
γ x

ρ
γ + o

(
x

ρ
γ

) ]
. (B.1)

And by computation we can show that as x → 0+,

U1(c
∗, l) − c∗x = α

1−γ
ρ (c∗)1−γ

1 − γ

[
1 + 1 − α

α

lρ

(c∗)ρ

] 1−γ
ρ − c∗x

= α
1−γ

ρ (c∗)1−γ

1 − γ

[
1 + 1 − α

α

1 − γ

ρ
lρ(c∗)−ρ + o

(
(c∗)−ρ

) ]

− c∗x

= α
1−γ

ρ

1 − γ
α

(1−γ )2

ργ x
γ−1
γ

[
1 + 1 − γ − ρ

ργ
(1 − α)(1 − γ ) lρα

−1
γ x

ρ
γ

+ o
(
x

ρ
γ

) ] [
1 + 1 − α

α

1 − γ

ρ
lρα

γ−1
γ x

ρ
γ + o

(
x

ρ
γ

) ]
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− α
1−γ
ργ x

γ−1
γ

[
1 + 1 − γ − ρ

ργ
(1 − α) lρα

−1
γ x

ρ
γ + o

(
x

ρ
γ

) ]

= α
1−γ
ργ x

γ−1
γ

[
γ

1 − γ
+ 1 − α

ρ
lρα

−1
γ x

ρ
γ + o

(
x

ρ
γ

) ]
.

Note that xt has a positive lower bound. Hence, we have that as x → 0+,

ΔRt (̃x) = Û1,t (x) − Ũ1,t (x) + Ltwt x

= U1(JU1(x; Lt ), Lt ) − x(JU1(x; Lt ) + Ltwt ) −U1(JU1(x; Lt ), Lt )

+ xJU1(x; Lt ) + Ltwt x

= 1 − α

ρ
α

1−γ−ρ
ργ x1−

1−ρ
γ

[
Lt

ρ − Lt
ρ + o (1)

]
+ (Lt − Lt )wt x

= 1 − α

ρ
α

1−γ−ρ
ργ x1−

1−ρ
γ

[
Lt

ρ − Lt
ρ + o (1)

]

< −x

= −ex̃

provided x is enough near zero, i.e., x̃ is small enough, where we have used Assump-
tion 2.

2. In the case of 0 < ρ < 1 and γ = 1, (B.1) still holds. And by computation we
can show that as x → 0+,

U1(c
∗, l) − c∗x = logα

ρ
+ log c∗ + 1

ρ
log

[
1 + 1 − α

α

lρ

(c∗)ρ

]
− c∗x

= logα

ρ
− log x − 1 − α

α
lρxρ + 1 − α

ρα
lρxρ

−
[
1 − 1 − α

α
lρxρ

]
+ o
(
xρ
)

= logα

ρ
− log x − 1 + 1 − α

ρα
lρxρ + o

(
xρ
)
,

and

ΔRt (̃x) = 1 − α

ρα
xρ
[
Lt

ρ − Lt
ρ + o (1)

]
+ (Lt − Lt )wt x < −x = −ex̃

provided x is enough near zero, i.e., x̃ is small enough.
3. In the case of ρ = 0 and 0 < γ �= 1, the proof proceeds similarly to the above.

Since

x = ∂cU1(c
∗, l) = α(c∗)α(1−γ )−1l(1−α)(1−γ ),
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we have that

JU1(x; l) = c∗ = α
1

1−α(1−γ ) l
(1−α)(1−γ )
1−α(1−γ ) x

1
α(1−γ )−1 . (B.2)

And by computation we can show that

U1(c
∗, l) − c∗x =

[
1

1 − γ
α

α(1−γ )
1−α(1−γ ) − α

α
1−α(1−γ )

]
l

(1−α)(1−γ )
1−α(1−γ ) x

α(1−γ )
α(1−γ )−1 .

Note that if γ > 1, then

0 <
α(1 − γ )

α(1 − γ ) − 1
< 1,

1

1 − γ
α

α(1−γ )
1−α(1−γ ) − α

α
1−α(1−γ ) < 0,

(1 − α)(1 − γ )

1 − α(1 − γ )
< 0,

and if 0 < γ < 1, then

α(1 − γ )

α(1 − γ ) − 1
< 0,

1

1 − γ

(
α

α
1−α(1−γ )

)1−γ − α
α

1−α(1−γ ) > 0,
(1 − α)(1 − γ )

1 − α(1 − γ )
> 0.

We can conclude that U1(c∗, l) − c∗x is strictly increasing with respect to l, and

ΔRt (̃x) =
[

1

1 − γ
α

α(1−γ )
1−α(1−γ ) − α

α
1−α(1−γ )

] [
Lt

(1−α)(1−γ )
1−α(1−γ ) − Lt

(1−α)(1−γ )
1−α(1−γ ) + o (1)

]

× x
α(1−γ )

α(1−γ )−1

< −x

= −ex̃

provided x is enough near zero, i.e., x̃ is small enough.
4. In the case of ρ = 0 and γ = 1, (B.2) still holds and similarly to the above we

have

U1(c
∗, l) − c∗x = α logα − α log x + (1 − α) log l − α,

ΔRt (̃x) = (1 − α)(log Lt − log Lt ) + (Lt − Lt )wt x < −x = −ex̃

provided x is enough near zero, i.e., x̃ is small enough.
5. In the case of ρ < 0 and 0 < γ �= 1, similarly to the above, as x̃ → −∞, i.e.,

x → 0+, c∗ = JU1(x; l) → +∞, and

x = ∂cU1(c
∗, l)

= α(c∗)ρ−1[ α(c∗)ρ + (1 − α)lρ ] 1−γ−ρ
ρ

= α(c∗)ρ−1[ o(1) + (1 − α)lρ ] 1−γ−ρ
ρ

= α(1 − α)
1−γ−ρ

ρ l1−γ−ρ(c∗)ρ−1[ 1 + o(1) ].
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So we deduce that as x → 0+,

JU1(x; l) = c∗ = α
1

1−ρ (1 − α)
1−γ−ρ
ρ(1−ρ) l

1−γ−ρ
1−ρ x

1
ρ−1 [ 1 + o(1) ]. (B.3)

And by computation we can show that as x → 0+,

U1(c
∗, l) − c∗x = (1 − α)

1−γ
ρ l1−γ

1 − γ
[ 1 + o(1) ]

1−γ
ρ

− α
1

1−ρ (1 − α)
1−γ−ρ
ρ(1−ρ) l

1−γ−ρ
1−ρ x

ρ
ρ−1 [ 1 + o(1) ]

= (1 − α)
1−γ

ρ l1−γ

1 − γ
[ 1 + o(1) ] .

Hence, we know that as x → 0+,

ΔRt (̃x) =
(1 − α)

1−γ
ρ

(
Lt

1−γ − Lt
1−γ
)

1 − γ
[ 1 + o(1) ] + (Lt − Lt )wt x

< −x

= −ex̃

provided x is enough near zero, i.e., x̃ is small enough.
6. In the case of ρ < 0 and γ = 1, (B.3) still holds. Similarly to the above, as

x → 0+,

U1(c
∗, l) − c∗x =

[
log(1 − α)

ρ
+ log l + o(1)

]

−
(

α

1 − α

) 1
1−ρ

l
ρ

ρ−1 x1+
1

ρ−1 [ 1 + o(1) ]

= log(1 − α)

ρ
+ log l + o(1),

and

ΔRt (̃x) = [ log Lt − log Lt + o (1)
]+ (Lt − Lt )wt x

< −(1 + Ltwt )x

= −(1 + Ltwt )e
x̃

provided x is enough near zero, i.e., x̃ is small enough. Then we have finished the
proof. ��
Lemma 10 ΔRt (̃x) > 0 for any x̃ > log xt .Moreover, ess.inf{ΔRt (̃x) : (ω, t) ∈ Ω×
[ 0, T ]} > εex̃ provided x̃ is large enough, where ε is a positive constant independent
of x̃ .
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Proof For any x̃ > log xt , we have that

ΔRt (̃x) = At (x) − sup
c≥0

{U1(c, Lt ) − xc } + Ltwt x

= sup
c≥0,l≥0

{U1(c, l) − x(c + wt l) } − sup
c≥0

{U1(c, Lt ) − xc } + Lwt x

> sup
c≥0

{U1(c, Lt ) − x(c + Ltwt ) } − sup
c≥0

{U1(c, Lt ) − xc } + Ltwt x

= 0.

Moreover, if x̃ is large enough, we know that

ΔRt (̃x) ≥ U1(c
∗
t , Lt ) −U1(c

∗
t , Lt ) + (Lt − Lt )wt x (B.4)

≥ (Lt − Lt )x

[
wt − ∂lU1(c∗

t , Lt )

x

]
,

where c∗
t = JU1(x; Lt ), and we have used the fact U1 is concave with respect to l.

Applying the samemethod as in the proof of Lemma 9, we can show that as x → +∞,

c∗
t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α
1

1−ρ (1 − α)
1−γ−ρ
ρ(1−ρ) Lt

1−γ−ρ
1−ρ x

1
ρ−1

[
1 + o(1)

]
, 0 < ρ < 1;

α
1

1−α(1−γ ) Lt
(1−α)(1−γ )
1−α(1−γ ) x

1
α(1−γ )−1 , ρ = 0;

α
1−γ
ργ x

−1
γ

[
1 + o(1)

]
, ρ < 0.

So we derive that as x → +∞,

∂lU1(c∗
t , Lt )

x
=

⎧⎪⎨
⎪⎩

(1 − α)Lt
ρ−1[ α(c∗

t )
ρ + (1 − α)Lt

ρ ] 1−γ−ρ
ρ x−1

= o(1), 1 > ρ �= 0;
(1 − α)(c∗

t )
α(1−γ )l(1−α)(1−γ )−1x−1 = o(1), ρ = 0.

Hence, by (B.4), we conclude that ΔRt (̃x) > εex̃ provided x̃ is large enough, where
ε is a positive constant. ��
Lemma 11 If γ + ρ ≤ 1, then ∂x̃ΔR ≥ 0.

Proof From the definition of ΔR, we can show that

e−x̃∂x̃ΔRt (̃x) = ∂xÛ1,t (x) − ∂xŨ1,t (x) + Ltwt

= (−JU1(x; l∗t ) − l∗t wt ) − (−JU1(x; Lt )) + Ltwt

= JU1(x; Lt ) − JU1(x; l∗t ) + (Lt − l∗t )wt ,

l∗t = Lt min

{
1,

(
xt
x

) 1
γ

}
∈ (0, Lt ].
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Moreover, it is easy to check that

∂clU1(c, l) =

⎧⎪⎨
⎪⎩

(1 − γ − ρ)α(1 − α)cρ−1lρ−1

×[ αcρ + (1 − α)lρ ] 1−γ−2ρ
ρ , 1 > ρ �= 0;

α(1 − α)(1 − γ )cα(1−γ )−1l(1−α)(1−γ )−1, ρ = 0.

Since 1 − γ − ρ ≥ 0, we have that ∂cU1(c, l) is increasing with respect to l, and
JU1(x; l) is increasing with respect to l by ∂ccU1(c, l) < 0. Hence, ∂x̃ΔR ≥ 0. ��
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