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Abstract—In this paper, the authors investigate zeros of difference polynomials of the form
J(2)"H(z. f) — s(2), where f(z) is a meromorphic function, H(z,,,f) difference p

f(z) and s(z) is a small function. The authors first obtain some equalities for the r
the zero counting function of f(2)"H(z, f) — s(z) and the char:
lunction of f(z). Based on the above inequalities,
analogues of a classical result of Hayman for meromorp
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with the basic notions of Nevanlinna’s theory (
f(z), o2( f) to denote the hyper order of f(z), a

assumes all finite values except poss'ibly;..ze;‘ i

The difference analogues of Nevanlinn
Using these theories, many authors con
functions. In particular, the following resul

Theorem C. (see [9—11]) Let f(a)MJ I
zero complex constant, Then forn 2
often.
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. : ooue of Theorem b canno
For meromorphic functions, it is easy to see that a direct difference analogue ©

hold. Indeed, take f(z) = tan z. Then
3 - - -tanzz
1% (2+5) |

never fakes the value 1. - i f(2) of Theorem B is

A natural question is: What can be said about the conclusion of Th i
replaced by f(z + n)(n € C/{0})? For this question, the following results are obtained in | I
n sueh that its order

tio
Theorem D. (sce [12]) Let f(z) be a transcendental meromorphic function =
o(f) < . let 7 be a non-zero complex number, and let n 2 1 be an integer. SUpp T OB
a polynomial. Then :

=5 1 .
~(r FE G+ - P(z))
> nT(r, f(2)) + m(r, £(2)) = 2N(r, £(2)) — 2]

Question 3. A
improvement of
improvement?
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Let the different 8y ; in H(z, f) be dy, -+ 8., and let

1, ifdg = Oforsome s € {1,:«. ,m},
\{ ome s € { m} (24)

0,ifd #0forallt =1,--- ,m

In this paper, we consider Questions 1=3 in the introduction section and obtain some results using
difierent methods th: 11|| 12=13]. Among our results, Theorem 2.1 and Corollary 2.1 answerQuestmns E
and 3, and Corollary 2.2, Theorems 2.2, 2.3 and their corollaries offer partial results concerning Question
] 1

Theorem 2.1. Let f(z) be a transcendental meromorphic function satisfying oa(f) < 1, let
H(z. f)(£ 0) beadifierence polynomial in £(z) of the form (2. 1) with m = 1 different Ojs l&dgﬁnﬂw

defined by (2.3) and (2.4) respectively, and let n > mdyy be an integer. lfs(z) E- Oisasmall meromorphi
function of f(z), then :

< 1
N =)
2 (n— 1)T(r, f(2)) — (m X)dHN(r1 (‘8)} (ﬁm#
For a difference monomial
Fzf) = fz+a)" f(z +e)?-

where m > 1is an integer, iy,49,«- - , iy, are posﬁiﬁiefih (
complex constants, we obtain the following corollary.

Corollary 2.1. Let f(z) be a transcendental merom
be a difference monomial in f(2) of the form (2.5), let
[T 5(z) # 0is a small meromorphic function of f(z), th

= 1 A

2 (r, T F(= ) -s(z)) sl
1

f@)"f(z+n) -

21_V(r, 8(3)) > (n—1)

Theorem 2.1 and Corollary 2.1 generalig:g*
improvements of Theorem C to meromorphic fu
Corollary 2.2, which is a version to reduc

Corollary 2.2, Let f(z) be a transc
8(oc. f(2)) > 3. let 5 be a non-zero col
meromorphic function of f(z), then f(z

For the difierence monomial (2.5), i
obtain a better estimate.

Theorem 2.2. Let f(z) be a tran:
be a difference monomial in f(z) of t
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Suppose that the poles z; and zeros z; of f(z) satisfy 2 — 2; # @ (=1, m)., except for finitely many
exceptional poles and zeros. If s(z) # 0 is a small meromorphic function of f(2), then

9N 1 —
V(. s o) (1= DTG () = (am 4 DN ) + 561

n satislying o2(f) < 1, let n be a
the poles z; and zeros z; ol f(z)

| poles and zeros. lis(z) Z0isa
many zeros.

Corollary 2.3. Let f(z) be a transcendental meromorphic functio
non-zero complex number, and let n > 5 be an integer. Suppose that
satisfy 2, — 2; # ¢ (I = 1,-++ ,m), except for finitely many exceptiona
small meromorphic function of f(z), then f(z)" f(z + n) — 8(2) has infinitely

At last, we estimate the zeros of f(2)"H(z, f) — s(z) under the assumption that f(z) has two Borel

exceptional values.

Theorem 2.3. Let f(z) be a finite order transcendental meromorphic function with two Borel
exceptional values a, b € CU {00}, let H(z, f)(z 0) be a dilference polynomial in f(z) of the form (2.1)
with m > 1 different 8y ;, let dy and dy be defined by (2.2) and (2.3) respectively, and let n be a positive
integer. Suppose that s(z) # 0 is a small meromorphic function of f(2).

(i)lia,beC,a" ZJa,\(z)a“* —5(2) 20, b ¥ ax(2)b™ — s(z) #0andn > mdy, then

AE o e B
1 N ] — > -
N(r. N o YT 2)) + S(r, f)-
(T =) > =T @) +56.)
(ii)Ifa € C,b= oo and a™ Eax(@)’a’ﬁm s(z) £ 0, then

From Theorem 23.wecaneasﬂyg@t?tﬁe“é llow

“n > 27 for meromorphic functions with two Bore
Corollary 2.4. Let f(z) be a finite order

exceptional values a,b € CU {oc}, let n be

Suppose that s(z) # 0 is a small me

conditions holds: _
(i)a,b € C,a"! — 5(z) #0and o™+ — s(2) #0;
(ii)a € C,b=ooand a"*! —5(z) £0.

Then f(z)" f(z +n) — 5(2) has infinitely many zeros.

3. PROOF OF THE

We need the followingle
Lemma 3.1. (see [7]) Let f(2) be a non-constant n
and £ > 0, then

m(r, / (;;)-c)i)}._.

jor all r outside of a set E of finite logarithmic m
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Lemma 3.2. Let f(z) be a non-constant meromorphic function of aa(f) < 1, and let ¢ # 0 be an
arbitrary complex number. Then

T(r 2t0)) = T(r f(2)) + 8(r. f).
f(x_ ¢)) = N(r, f(2)) + 8(r, f),
(r. f(z +¢)) f(2)) + 8(r. f).

Applying logarithmic derivative lemma and Lemma 3.1 to Theorem 2.3 of [8], we get the following

lemma. |

Lemma 3.3. Let f(2) be a transcendental meromorphic solution of hyper order oa(f) < 1 of a
dificrential-diffierence equation of the form

Uz, f)P(z, f) = Q(2, f),

where U(z, f) is a difference polynomial in f(z) with small meromorph
Q(z. f) are difierential-difierence polynomials in f(z) such that the prox
of P(z. f) and Q(z. f) are of the type S(r, f). Assume that
(=, f) contains just one term of maximal total degree in f(

Using a similar proof as in [16, Theorem 1. l-]__-or;_[-l.’i'.f,-- L eratha D

Lemma 3.4. Let f(z) be a transcendental meromor
0) be a difierence polynomial in f(z) of the form (2.1) with m
monomial in f(z) of the form (2.5), and let deg rH(z, f)

T(r.H(z, f)) < mduT(

T(r,F(z,f)) < dpT(r,,

From the proof of [17, Lemma 2], we get the following
Lemma 3.5. Let fh f2! Ci |fn be memmerphic El.ln@ﬁ
N (r, DI el s -

Ael
where I = {(iy 1,952, ,ixn)} is an index set, a'r_\l'ﬂffg'i“

Proof of Theorem 2.1. Set

Since n > mdyy, comparing the characteristic '
3.4, we get a contradiction. So ¢(z) # 0.

Difierentiating both sides of (3.3), we obtain
¥'(2) = nf@)"

CHINESE JOURNAL OF CONTEMPORARY MATHEM



120 ZHANG et al.

Since ¢(z) £ 0, multiplying both sides of (3.3) by 11((5% we get
( ) v ( )s( ). (3.6)

vi2) =T )f( 2)"H(= f) = 55y
Subtracting (3.5) from (3.6), we get
f(z)ﬂ-lE( ) = f(z) ) 'E((_-)ls(z) (3.7)
where
E(z) = nf'(2)H(z, f) - fp(()) f(2)H(z [) + () H (7 f)- &5}
We affirm that E(2) # 0. Otherwise, since s(z) # 0, it follows from (3.7) that
¥(z) _#@:)
Uz 8@’

ting (z) = C1(2) into (3.3),

which gives v/(z) = C;s(z), where C) is a non-zero constant. Subst
we get

H(:. f)= '1@’;""" R (39

Applying Lemma 3.3 to (3.

Next we &stlmatEN (
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i =g is not a pole of f(2) and 2o is a pole of H(z, f) with order I, then by (3.8) and the fact that %{-}

has at most simple poles, we see that k < [ 4 1.
We denote by N(r |H(z, f) = o0, f(2) # o0) the counting function of those poles of H(z, f) in
=[ <, where each such point is not a pole of f(z), and each such point is counted according to its
multiplicity in H(z, f), and denote by N(r.|H(z, f) = o0, f(2) # o0) the counting function of those
poles of H(z. f)in |z| < r, where each such point is not a pole of f(z), and each such point is counted
one time. Then
(r, |E(2) = H(z, f) = o0, f(2) # 00)
< ‘\'(:-.|H (2, f) = 0, f(z) # ) + N(r, |H(z, ) = 00, f(2) # o). (3.14)
We will prove that
N(r.|H(z, f) = 00, f(2) # 20) £

Let the difierent dy ; in H(z, f) be &y, -+
in H(z. f) and by (2.4) we have x = 0. Slnce the coe
the degree of H(z. f) is dyy, we deduce from Lemma .

(m x)dy,.N Gr, f(zj) +8(r, f).

N(r.|H(z. f) = o0, f(2) # 00) = N(r, H(z, f).

So by Lemma 3.2 and x = 0, we have
N(r,|H(z, f) = 00, f(2) #

I 6, = 0 for some s € {1,--- ,m}, then -(?a*«‘yr
coefficients of H(z, f) are small functions «
Lemma 3.5 that

N(r|H(z f) = 00, f(z) #00)

=1

So by Lemma 3.2, x = 1and f(z +6,) = z

If 2 is not a pole of f(z) and zq is not a pole
has at most simple poles, we deduce from
¢(z) and the zeros of ¥(z). If zg is a pole ¢

N(r, IE(z) = -
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N N -
< Mr,s(z))ﬂ“N(”’Ef(T))

=¥ 1 (3.17)
=N (r. t;’l(z)) + S(r, ).
We deduce from (3.11)—(3.17) that
(3.18)

T E(2)) < (m = )N (r, £(2)) + (m - NG £2) + N (7 555) + 50
By (3.7) and (3.10), we get
(0= 70 (6 < 70, B + 7 22 4 80.)
= T(r, E(2)) + ﬂ[ﬁfg )+ (1)

Since H(z, f) has m different 8y ; ar
that

N(nv(2)

We deduce from (3.18
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see that zq is a pole of £ .I' _"-,:' with order 1 and k = 1, or 25 is 2 pole of s(z) with order g and k<q+1l

| heretore,

N(r |E(z) = F(z, f) = 0, f(2) # %) € N(r, F(z, ) + N(r.5(z)) + N(r, 8(z)) + O(log ).

By Lemma 3.2, we have
m

N(r F(z. ) € Y _N(r. f(z 4+ ¢j)) = mN(r, f(2)) + 8(r, f): (42)

J=1

I zq is not a pole of f(z) and zq is not a pole of F(z, f), then 2 must beapaleoi%‘-f Asin(-'ilﬂ'

of Theorem 2.1, we get

= oV v'(2) N _ : _ 1 & @le BN (&
N(r|E(z) = o) = J(2) # 00, F(z, f) # o) <N.(r,m).+s&;;p (43 -_
By (3.11),(3.12) and (4.1)(4.3), we gel .

T(r. E(z)) émN(r,.f(z))+W(r,Nﬂ)+%ml .ol Rs g—

By (3.7)and (3.10) , we get
(n = DT(r. £(2) < T, E(2)) + N,

Since 2f)=flz+e) - fz + cm)'™,,
difierent non-zero complex constants, we deduce from |
N(r,4(2)) < N(r, f

< (1 +m)N(r,

We deduce from (4.4)~(4.6) that b

1 Al
2'57(1-. f(2)"F(z, f) — 5(2) )

=2 (57 > (0= DT f(2)) =

5. PROOF OF THI
We need the following lemma.
Lemma 5.1.(see|18]) Suppose that h is a non:
N(r,h) + N(r

Let f = agh” + ayh?™! + -+ + a4y, and g = bph?
cients ag,ay, -+ ,ap,bo, by, -+ ,_bq.-beingiamgfll'
S(r,h).

Proof of Theorem 2.3. Sel
v(z) = f(2)"F

First we assume that the condition (i) in Theorem 2

CHINESE JOURNAL OF CONTEMPO
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Then 0, oc are two Borel exceptional values of g(z). By Hadamard factorization theorem, g(z) takes the
form

9(2) = w(z)e"®),

Where w(z) is a meromorphic function such that o(w(z)) < o(g(2)), and h(2) is a polynomial such that
a(g(z)) = degh(2) > 1. So

H bw(z)e"m —-a - buw(z)nenh(z) SRR (—a)"' (5.2)
1) = aem— 1& = aper@t o (O

Denoting

Wa(2) = w(z + 8y )"0 - w(z + by 7, )27
and substituting (5.2) into H(z, f), we get

H(z, f) = Zaa(z)l—[ Pt aglese

\eJ j=1 w(z+ 8y 5)M

Denoting

we have

H{(z, fli=
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So
g !
U et =am) = V0 ) > 0= m TS 8 )

Now we assume that the condition (ii) in Theorem 2.3 holds. Then [(z) takes the form
f(z) = w(z)e"® 4 q, (5.5)

where w(z) is a meromorphic function such that a(w(2)) < a(f(z)), and h(z) is a polynomial such that
a(f(2)) = degh(z) > L. Substituting (5.5) into f(2)", we gef =

F)" = w(z)"e™3) 4 ... 4 g, - (56)
Pl T

Using the notations Wy(z) and sy(z) as above and substitutiug(ﬁﬁjmtomﬂaf),“m N et |

H(z.f) =) ax(z )H(w(z+6u)"‘”e”""h('+6**’)"‘ g P

Aed j=1

= Y ax(:)(Wa(Jemahletinalttimmhetbin) o g
Aed

—Zax(z)(s,\(z)ed"h(’)-i- +a“*) -
xeJ [

lfl 5, - 3

=l Y -y oY

Since H(z. f) # 0 and dy = maxd), we see that H(z, /)

H(z ) = 3 ax(z)a™ ¢
xes
or

H(z,.f) = lq-(z)e¢h(=) U 11(2)e"(’9 + .

where [;(z)(j = 1,--- ,q) are all small functions of e"() an
11(5.7) holds, by (5.1), (5.6) and Lemma 5.1, we get

N(r, - - )) = nT(r, f(

11 (5.8) holds, by (5.1), (5.6) and Lemma 5.1, we ge

N (r, = (n+q)T(r, f(z

1
@)

Therefore,

1 9
i ('"’ TG H(z ]) — s(z_)_) -
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