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Abstract
In this paper, we give the characteristic estimation of a meromorphic function f with
the differential polynomials f l(f (k))n and obtain that

T (r, f ) ≤MN
(
r,

1
f l(f (k))n – a

)
+ S(r, f )

holds forM =min{ 1
l–2 , 6}, integers l(≥ 2), n(≥ 1), k(≥ 1), and a non-zero constant a.

This quantitative estimate is an interesting and complete extension of earlier results.
The value distribution of a differential monomial of meromorphic functions is also
investigated.
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1 Introduction and main results
We assume that the reader is familiar with the fundamentals of Nevanlinna’s value distri-
bution theory of meromorphic functions (see e.g. [4, 10, 16]). Let f be a transcendental
meromorphic function in the complex plane C. We denote by S(r, f ) any quantity satisfy-
ing S(r, f ) = o(T(r, f )), as r → ∞, possibly outside of an exceptional set of finite logarith-
mic measure. A meromorphic function α defined in C is called a small function of f if
T(r,α) = S(r, f ).

We also introduce some other symbols (see [15]). Let a ∈C∪ {∞}, k be a positive inte-
ger. Let Nk)(r, 1

f –a ) denote the counting function of those a-points of f (counting multiplic-
ity) whose multiplicities are not greater than k, and let Nk)(r, 1

f –a ) denote the correspond-
ing reduced counting function. Similarly, let N(k(r, 1

f –a ) denote the counting function of
those a-points of f (counting multiplicity) whose multiplicities are not less than k, and let
N (k(r, 1

f –a ) denote the corresponding reduced counting function. And let Nk(r, 1
f –a ) denote

the counting function of those a-points of f with multiplicity k.
Hayman [5] proved the following well-known theorem.
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Theorem 1.1 ([5, Theorem 9]) Let f be a transcendental meromorphic function in the
complex plane, and let l be a positive integer. If l ≥ 3, then f lf ′ assumes every finite nonzero
value infinitely often.

Hayman also conjectured that Theorem 1.1 remained valid for l ≥ 1. Mues [12] proved
that f 2f ′ – 1 has infinitely many zeros. Later on, many researchers investigated the zeros
of differential monomial f l(f (k))n – a for positive integers l, n, k and a non-zero complex
number a, and obtained some qualitative results, see e.g. [2, 3, 11, 13, 14], and some quan-
titative results, see e.g. [1, 6–9, 17].

Zhang [17] proved that the inequality T(r, f ) < 6N(r, 1
f 2f ′–1 ) + S(r, f ) holds. Huang and

Gu [6] extended the inequality and proved the following.

Theorem 1.2 ([6, Theorem 1]) Let f be a transcendental meromorphic function in the
complex plane, and let k be a positive integer. Then

T(r, f ) < 6N
(

r,
1

f 2f (k) – 1

)
+ S(r, f ). (1)

Karmakar and Sahoo further [8] proved the following.

Theorem 1.3 ([8, Theorem 1.1]) Let f be a transcendental meromorphic function and
l(≥ 2), k(≥ 1) be any integers, then

T(r, f ) <
6

2l – 3
N

(
r,

1
f lf (k) – 1

)
+ S(r, f ). (2)

Lahiri and Dewan [9] obtained the following estimate.

Theorem 1.4 ([9, Theorem 3.2]) Let f be a transcendental meromorphic function, α(	≡
0,∞) be a small function of f . If ψ = αf l(f (k))n, where l(≥ 0), n(≥ 1), k(≥ 1) are integers,
then for any small function a(	≡ 0,∞) of ψ ,

(n + l)T(r, f ) ≤ N(r, f ) + N
(

r,
1
f

)
+ nN(k)

(
r,

1
f

)

+ N
(

r,
1

ψ – a

)
+ S(r, f ), (3)

where N(k)(r, 1
f ) denotes the counting function of zeros of f , a zero with multiplicity q is

counted q times if q ≤ k and is counted k times if q > k.

Remark 1.1 Estimate (3) implies that, for l ≥ 3, n ≥ 1, k ≥ 1,

T(r, f ) ≤ 1
l – 2

N
(

r,
1

f l(f (k))n – a

)
+ S(r, f ). (4)

Jiang and Huang [7] proved the following.
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Theorem 1.5 ([7, Theorem 1]) Let f be a transcendental meromorphic function in the
complex plane, l(≥ 2), n(≥ 2), k(≥ 2) be integers, and a be a non-zero constant. Then

T(r, f ) ≤ 1
l – 1

N
(

r,
1

f l(f (k))n – a

)
+ S∗(r, f ), (5)

where S∗(r, f ) denotes the quantity satisfying S∗(r, f ) = o(T(r, f )) for all r outside a possible
exceptional set E of logarithmic density 0.

We note that Theorem 1.3 does not hold for n ≥ 2, Theorem 1.4 is invalid for l = 2, and
Theorem 1.5 remains invalid for l = 2, n = 1, k = 1. Thus, by using a method different from
the previous proofs, we continue to consider the characteristic estimate of more general
forms f l(f (k))n – a for a non-zero constant a, integers l ≥ 2, n ≥ 1, and k ≥ 1, and obtain
its quantitative result as follows.

Theorem 1.6 Let f be a transcendental meromorphic function with finite order in the com-
plex plane, l(≥ 2), n(≥ 1), k(≥ 1) be integers, and a be a non-zero constant. Then

T(r, f ) ≤ MN
(

r,
1

f l(f (k))n – a

)
+ S(r, f ) (6)

for M = min{ 1
l–2 , 6}.

The quantity

�(a, f ) = 1 – lim sup
r→∞

N(r, 1
f –a )

T(r, f )

is called the deficiency of f at the point a. It is obvious that 0 ≤ �(a, f ) ≤ 1. Thus, we
present the value distribution of a differential monomial f l(f (k))n.

Corollary 1.1 Let f be a transcendental meromorphic function with finite order in the
complex plane, l(≥ 2), n(≥ 1), k(≥ 1) be integers, and a be a non-zero constant. Then

�
(
a, f l(f (k))n) ≤ 1 –

1
M(nk + n + l)

for M = min{ 1
l–2 , 6}.

2 Some lemmas
We now prepare some lemmas.

Lemma 2.1 Let f be a transcendental meromorphic function with finite order. Then
f l(f (k))n is not identically constant, where l(≥ 2), n(≥ 1), k(≥ 1) are integers.

Proof Contradicting to our assumption, we suppose that f l(f (k))n ≡ C. Clearly, C 	= 0. Then
1

f n+l = 1
C ( f (k)

f )n, and

(n + l)T(r, f ) = m
(

r,
1

f n+l

)
+ N

(
r,

1
f n+l

)
+ O(1)
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= m
(

r,
1
C

(
f (k)

f

)n)
+ O(1)

= nm
(

r,
f (k)

f

)
+ O(1) = S(r, f ),

a contradiction. �

Lemma 2.2 Let f be a transcendental meromorphic solution with finite order. Suppose that
g(z) = f 2(f (k))n – a, where n(≥ 1), k(≥ 1) are integers and a is a non-zero constant. Then

(n + 2)T(r, f ) ≤ N(r, f ) + N
(

r,
1
f

)
+ N

(
r,

1
g

)
+ nNk)

(
r,

1
f

)

+ nkN (k+1

(
r,

1
f

)
– N0

(
r,

1
g ′

)
+ S(r, f ) (7)

and

[
N(r, f ) – N(r, f )

]
+ m(r, f ) + (n + 1)m

(
r,

1
f

)
+ N0

(
r,

1
g ′

)

≤ N
(

r,
1
g

)
+ S(r, f ), (8)

where N0(r, 1
g′ ) denotes the counting function of those zeros of g ′, but not zeros of f or g .

Proof It follows from Lemma 2.1 that g is not identically constant. Thus

a
f n+2 =

(
f (k)

f

)n

–
g ′

f n+2
g
g ′ .

We conclude from the lemma of the logarithmic derivative that

(n + 2)m
(

r,
1
f

)
≤ m

(
r,

(
f (k)

f

)n)
+ m

(
r,

g ′

f n+2

)
+ m

(
r,

g
g ′

)
+ O(1)

= T
(

r,
g ′

g

)
– N

(
r,

g
g ′

)
+ S(r, f )

= N(r, g) + N
(

r,
1
g

)
– N

(
r,

1
g ′

)
+ S(r, f )

and

(n + 2)T(r, f ) ≤ (n + 2)N
(

r,
1
f

)
+ N(r, f ) + N

(
r,

1
g

)

– N
(

r,
1
g ′

)
+ S(r, f ). (9)

Denote

N
(

r,
1
g ′

)
= N000

(
r,

1
g ′

)
+ N00

(
r,

1
g ′

)
+ N0

(
r,

1
g ′

)
, (10)
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where N000(r, 1
g′ ) denotes the counting function of those zeros of g ′ which are from the

zeros of g , N00(r, 1
g′ ) denotes the counting function of those zeros of g ′ which are from the

zeros of f , N0(r, 1
g′ ) denotes the counting function of those zeros of g ′ which are not zeros

of f or g . So, we have

N
(

r,
1
g

)
– N000

(
r,

1
g ′

)
= N

(
r,

1
g

)
. (11)

Let z0 be a zero of f with multiplicity q. If q ≤ k, then z0 is a zero of g ′ with multiplicity
at least 2q – 1. If q ≥ k + 1, then z0 is a zero of g ′ with multiplicity (n + 2)q – (nk + 1). Thus,
by simple calculation, we have

N00

(
r,

1
g ′

)
≥ 2Nk)

(
r,

1
f

)
– Nk)

(
r,

1
f

)

+ (n + 2)N(k+1

(
r,

1
f

)
– (nk + 1)N (k+1

(
r,

1
f

)

= 2N
(

r,
1
f

)
– N

(
r,

1
f

)
+ nN(k+1

(
r,

1
f

)
– nkN (k+1

(
r,

1
f

)

and

(n + 2)N
(

r,
1
f

)
– N00

(
r,

1
g ′

)

≤ nN
(

r,
1
f

)
– nN(k+1

(
r,

1
f

)
+ N

(
r,

1
f

)
+ nkN (k+1

(
r,

1
f

)

= nNk)

(
r,

1
f

)
+ N

(
r,

1
f

)
+ nkN (k+1

(
r,

1
f

)
. (12)

Then we deduce from (9)–(12) that

(n + 2)T(r, f ) ≤ N(r, f ) + N
(

r,
1
g

)
+ N

(
r,

1
f

)

+ nNk)

(
r,

1
f

)
+ nkN (k+1

(
r,

1
f

)
– N0

(
r,

1
g ′

)
+ S(r, f ),

and so inequality (7) is proved.
We further get from (7) that

N(r, f ) + m(r, f ) + (n + 1)N
(

r,
1
f

)
+ (n + 1)m

(
r,

1
f

)
+ O(1)

= (n + 2)T(r, f )

≤ N(r, f ) + N
(

r,
1
f

)
+ N

(
r,

1
g

)
+ nNk)

(
r,

1
f

)
+ nkN (k+1

(
r,

1
f

)

– N0

(
r,

1
g ′

)
+ S(r, f )

≤ N(r, f ) + N
(

r,
1
f

)
+ N

(
r,

1
g

)
+ nNk)

(
r,

1
f

)
+ nN(k+1

(
r,

1
f

)
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– N0

(
r,

1
g ′

)
+ S(r, f )

≤ N(r, f ) + (n + 1)N
(

r,
1
f

)
+ N

(
r,

1
g

)
– N0

(
r,

1
g ′

)
+ S(r, f ),

that is,

[
N(r, f ) – N(r, f )

]
+ m(r, f ) + (n + 1)m

(
r,

1
f

)
+ N0

(
r,

1
g ′

)

≤ N
(

r,
1
g

)
+ S(r, f ),

and so inequality (8) is proved. �

Lemma 2.3 Let f be a transcendental meromorphic function with finite order. Suppose
that

g(z) = f 2(f (k))n – a, h(z) =
g ′(z)
f (z)

= 2f ′(f (k))n + nf
(
f (k))n–1f (k+1),

where n(≥ 1), k(≥ 1) are integers and a is a non-zero constant.

F(z) = a1

(
g ′(z)
g(z)

)2

+ a2

(
g ′(z)
g(z)

)′
+ a3

(
h′(z)
h(z)

)′
+ a4

(
h′(z)
h(z)

)2

+ a5

(
g ′(z)
g(z)

h′(z)
h(z)

)
, (13)

where a′
is are defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = –(2n4 + 4n3 + 2n2 + 3n + 2);

a2 = –2(n + 1)(n3 + n2 + n + 2);

a3 = 2n2(n + 1)2;

a4 = –2n2(n + 1)2;

a5 = 4(n + 1)(n3 + n2 + 1),

(14)

when k = 1, and are defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = 2(nk + n)2 – (3nk+3n+4)[(nk+n)2–6(nk+n)–24]
nk+n+2 ;

a2 = –(nk + n + 4)[(nk + n)2 – 6(nk + n) – 24];

a3 = 2(nk + n)(nk + n + 2)(nk + n + 4);

a4 = –4(nk + n)(nk + n + 2);

a5 = 4[(nk + n)2 – 6(nk + n) – 24],

(15)

when k ≥ 2. Then F(z) 	≡ 0.

Proof We use a similar method of Huang-Gu [6, Lemma 3]. Suppose that F(z) ≡ 0, we
claim that
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(i) g(z) 	= 0;
(ii) h(z) 	= 0;

(iii) all zeros of f (z) are simple.
Suppose that z1 is a zero of g(z) with multiplicity l(≥ 1). Then f (z1) 	= 0,∞, and z1 is a

zero of h(z) with multiplicity l – 1 since g ′ = fh. Using the Laurent series of F(z) at the point
z1, we can calculate that the coefficient A(l) of (z – z1)–2 is

A(l) = (a1 + a4 + a5)l2 – (a2 + a3 + 2a4 + a5)l + (a3 + a4).

Using (14) for k = 1, we have

A(l) = (n + 2)l2 + 2n(n + 1)l > 0.

This shows that z1 is a pole of F(z), which contradicts F(z) ≡ 0. Hence g(z) 	= 0 when
k = 1. Using (15) for k ≥ 2, we have

A(l) = –
(nk + n + 4)2(nk + n + 6)

nk + n + 2
l2 – (nk + n)(nk + n + 4)(nk + n + 6)l

+ 2(nk + n)(nk + n + 2)2.

Clearly, A(l) 	= 0 for all positive integers l. This shows that z1 is again a pole of F(z), which
contradicts F(z) ≡ 0. Hence g(z) 	= 0 when k ≥ 2.

Suppose that z2 is a zero of h(z) with multiplicity l(≥ 1). By (i) we have g(z2) 	= 0,∞.
Using the Laurent series of F(z) at the point z2, we can get the coefficient B(l) of (z – z1)–2

is

B(l) = a4l2 – a3l.

Using (14) for k = 1, we get

B(l) = –2n2(n + 1)2(l2 + l
)

< 0,

and so, the point z2 is again a pole of F(z), which contradicts F(z) ≡ 0.
Using (15) for k ≥ 2, we get

B(l) = –4(nk + n)(nk + n + 2)l2 – 2(nk + n)(nk + n + 2)(nk + n + 4)l < 0,

and so, the point z2 is a pole of F(z), which contradicts F(z) ≡ 0. Hence conclusion (ii)
h(z) 	= 0 holds when k ≥ 1.

Noting that h(z) = g′(z)
f (z) = 2f ′(f (k))n + nf (f (k))n–1f (k+1) and (ii) h(z) 	= 0, we can obtain (iii).

Setting φ(z) := h(z)
g(z) , we conclude that φ(z) is an entire function, all zeros of φ(z) can occur

only at multiple poles of f (z) and the following expressions hold:

g ′

g
=

fh
g

= f φ,
h′

h
=

g ′

g
+

φ′

φ
= f φ +

φ′

φ
.
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First, we consider the case k ≥ 2. Substituting the above two equalities into (13) yields

(a1 + a4 + a5)f 2φ2 + (a2 + a3 + 2a4 + a5)f φ′

+ (a2 + a3)f ′φ +
[

a3

(
φ′

φ

)′
+ a4

(
φ′

φ

)2]
≡ 0. (16)

Applying (15), we have a2 + a3 = (nk + n + 4)2(nk + n + 6) 	= 0. And so φ 	≡ 0, otherwise
g′
g = f φ ≡ 0, that is, g ≡ C, which contradicts Lemma 2.1. Thus, it follows from (16) that

f ′ =
1
φ

α11(z) + f α12(z) + f 2φα13(z), (17)

where α1i(z) (i = 1, 2, 3) are differential polynomials of φ′
φ

.
Differentiating both sides of (17) gives

f ′′ = –
1
φ

φ′

φ
α11(z) +

1
φ

α′
11(z) + f ′α12(z) + f α′

12(z)

+ 2ff ′φα13(z) + f 2φ

[
φ′

φ
α13(z) + α′

13(z)
]

.

Applying the above equality to (17), we have

f ′′ =
1
φ

α21(z) + f α22(z) + f 2φα23(z) + f 3φ2α24(z),

where α2i(z) (i = 1, 2, 3, 4) are differential polynomials of φ′
φ

. Continuing the above process,
we get

f (k) =
1
φ

αk1(z) + f αk2(z) + f 2φαk3(z) + · · · + f k+1φkαkk+2(z), (18)

where αki(z) (i = 1, 2, . . . , k + 2) are differential polynomials of φ′
φ

.
Suppose that z3 is a simple zero of f (z). Together with (17), (18) and noting that φ(z3) 	=

0,∞, we have

f ′(z3) =
1

φ(z3)
α11(z3), f (k)(z3) =

1
φ(z3)

αk1(z3).

Substituting the above two equalities into the expressions of g(z) and h(z) yields

g(z3) = –a, h(z3) = 2f ′(z3)
(
f (k)(z3)

)n =
2

φn+1(z3)
α11(z3)αn

k1(z3).

Combining the above two equalities and the expression of φ(z) := h(z)
g(z) , we get

aφn+2(z3) = –2α11(z3)αn
k1(z3). (19)

Set U(z) := aφn+2(z) + 2α11(z)αn
k1(z). We consider the following two cases.
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Case 1. U(z) 	≡ 0. It follows from (19) and (iii) that

N
(

r,
1
f

)
= N

(
r,

1
f

)
≤ N

(
r,

1
U

)
≤ T(r, U) + O(1)

≤ O
{

T(r,φ)
}

+ O(1). (20)

T(r,φ) = m(r,φ) = m
(

r,
h
g

)
= m

(
r,

g ′

g
1
f

)
≤ m

(
r,

1
f

)
+ S(r, f ). (21)

Using (8) and noting that N(r, 1
g ) = 0, we have

m
(

r,
1
f

)
= S(r, f ). (22)

It follows from (20)–(22) that

N
(

r,
1
f

)
= S(r, f ). (23)

Applying (22) and (23), we get

T(r, f ) = T
(

r,
1
f

)
+ O(1) = m

(
r,

1
f

)
+ N

(
r,

1
f

)
+ O(1) = S(r, f ),

a contradiction.
Case 2. U(z) ≡ 0. By the expression of U(z), and noting that α11(z),αk1(z) are differential

polynomials of φ′
φ

, we conclude that

T(r,φ) = m(r,φ) = S(r,φ) (24)

and

aφn+2(z) ≡ –2α11(z)αn
k1(z). (25)

Using (24), we conclude that φ(z) is a polynomial or a constant. If φ(z) is a polynomial,
the left-hand side of (25) is a polynomial, and the right-hand side of (25) is a constant or
rational function, a contradiction. So, φ(z) is a constant. If φ(z) ≡ 0, then g′

g = f φ ≡ 0, that
is, g is a constant, a contradiction. If φ(z) ≡ C(C 	= 0), then we substitute this equality into
(16) and get

(a1 + a4 + a5)C2f 2 + (a2 + a3)Cf ′ ≡ 0.

Using (25) for k ≥ 2, we have a1 + a4 + a5 = – (nk+n+4)2(nk+n+6)
nk+n+2 	= 0 and a2 + a3 = (nk + n +

4)2(nk + n + 6) 	= 0. Thus ( 1
f )′ = – f ′

f 2 ≡ – C
nk+n+2 	= 0, and f is a rational function, a contradic-

tion.
We now consider the case k = 1. Similar to the proof of the case k ≥ 2, we obtain a

contradiction. �
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Lemma 2.4 Let f (z), g(z), h(z), and F(z) be stated as in Lemma 2.3. Then all simple poles
of f (z) are zeros of F(z).

Proof Suppose that z0 is a simple pole of f (z), then

f (z) =
A

z – z0

{
1 + b(z – z0) + c(z – z0)2 + O

(
(z – z0)3)},

where A 	= 0, b, c are constants. We consider the following two cases.
Case 1. k = 1. We have

g(z) = f 2(f ′(z)
)n – a

=
(–1)nAn+2

(z – z0)2n+2

{
1 + 2b(z – z0) +

[
b2 – (n – 2)c

]
(z – z0)2 + O

(
(z – z0)3)},

h(z) =
g ′(z)
f (z)

=
(–1)n+12An+1

(z – z0)2n+2

× {
(n + 1) + nb(z – z0) –

(
n2 – n + 1

)
c(z – z0)2 + O

(
(z – z0)3)}.

By using the above two equalities, we have

g ′(z)
g(z)

=
–2

z – z0

{
(n + 1) – b(z – z0) +

[
b2 + (n – 2)c

]
(z – z0)2 + O

(
(z – z0)3)},

h′(z)
h(z)

=
–1

z – z0

{
2(n + 1) –

n
n + 1

b(z – z0)

+
n2b2 + 2(n + 1)(n2 – n + 1)c

(n + 1)2 (z – z0)2 + O
(
(z – z0)3)

}
,

(
g ′(z)
g(z)

)2

=
4

(z – z0)2

{
(n + 1)2 – 2(n + 1)b(z – z0)

+
[
(2n + 3)b2 + 2(n + 1)(n – 2)c

]
(z – z0)2 + O

(
(z – z0)3)},

(
g ′(z)
g(z)

)′
=

2
(z – z0)2

{
(n + 1) –

[
b2 + (n – 2)c

]
(z – z0)2 + O

(
(z – z0)3)},

(
h′(z)
h(z)

)′
=

1
(z – z0)2

{
2(n + 1) –

n2b2 + 2(n + 1)(n2 – n + 1)c
(n + 1)2 (z – z0)2

+ O
(
(z – z0)3)

}
,

(
h′(z)
h(z)

)2

=
1

(z – z0)2

{
4(n + 1)2 – 4nb(z – z0)

+
(4n + 5)n2b2 + 8(n + 1)2(n2 – n + 1)c

(n + 1)2 (z – z0)2 + O
(
(z – z0)3)

}
,

g ′(z)
g(z)

h′(z)
h(z)

=
2

(z – z0)2

{
2(n + 1)2 – (3n + 2)b(z – z0)
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+
[
(3n + 2)b2 + 2

(
2n2 – 2n – 1

)
c
]
(z – z0)2 + O

(
(z – z0)3)}.

By substituting the above equalities into (13) and performing some easy calculations, we
have F(z) = O((z – z0)), consequently, and so z0 is a zero of F(z).

Case 2. k ≥ 2. We have

g(z) = f 2(f (k))n – a

=
(–1)nk(k!)nAn+2

(z – z0)nk+n+2

{
1 + 2b(z – z0) +

(
b2 + 2c

)
(z – z0)2 + O

(
(z – z0)3)}

and

h(z) =
g ′(z)
f (z)

=
(–1)nk+1(k!)nAn+1

(z – z0)nk+n+2

{
(nk + n + 2)

+ (nk + n)b(z – z0) + (nk + n – 2)c(z – z0)2 + O
(
(z – z0)3)}.

Using the above two equalities, we get

g ′(z)
g(z)

=
–1

z – z0

{
(nk + n + 2) – 2b(z – z0) + 2

(
b2 – 2c

)
(z – z0)2 + O

(
(z – z0)3)},

h′(z)
h(z)

=
–1

z – z0

{
(nk + n + 2) –

nk + n
nk + n + 2

b(z – z0)

+
1

nk + n + 2

[
(nk + n)2b2

nk + n + 2
– 2(nk + n – 2)c

]
(z – z0)2 + O

(
(z – z0)3)

}
,

(
g ′(z)
g(z)

)2

=
1

(z – z0)2

{
(nk + n + 2)2 – 4(nk + n + 2)b(z – z0)

+
[
4(nk + n + 3)b2 – 8(nk + n + 2)c

]
(z – z0)2 + O

(
(z – z0)3)},

(
g ′(z)
g(z)

)′
=

1
(z – z0)2

{
(nk + n + 2) – 2

(
b2 – 2c

)
(z – z0)2 + O

(
(z – z0)3)},

(
h′(z)
h(z)

)′
=

1
(z – z0)2

{
(nk + n + 2)

–
1

nk + n + 2

[
(nk + n)2b2

nk + n + 2
– 2(nk + n – 2)c

]
(z – z0)2 + O

(
(z – z0)3)

}
,

(
h′(z)
h(z)

)2

=
1

(z – z0)2

{
(nk + n + 2)2 – 2(nk + n)b(z – z0)

+
[

(2nk + 2n + 5)(nk + n)2b2

(nk + n + 2)2 – 4(nk + n – 2)c
]

(z – z0)2 + O
(
(z – z0)3)

}
,

g ′(z)
g(z)

h′(z)
h(z)

=
1

(z – z0)2

{
(nk + n + 2)2 – (3nk + 3n + 4)b(z – z0)

+
[
(3nk + 3n + 4)b2 – 2(3nk + 3n + 2)c

]
(z – z0)2 + O

(
(z – z0)3)}.

By substituting the above equalities into (13) and performing some easy calculations, we
again get F(z) = O((z – z0)). It also shows that z0 is a zero of F(z). �
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Definition 2.1 ([3]) Let f be a nonconstant meromorphic function in the complex plane
and k be a positive integer. We call M[f ] = f n0 (f ′)n1 · · · (f (k))nk a differential monomial in f ,
where n0, n1, . . . , nk are nonnegative integers, and γM := n0 +n1 + · · ·+nk its degree. Further,
let Mj[f ] denote differential monomials in f of degree γMj for j = 1, 2, . . . , k, and let αj be
meromorphic functions satisfying T(r,αj) = S(r, f ) for j = 1, 2, . . . , k, then P[f ] = α1M1[f ] +
α2M2[f ]+ · · ·+αkMk[f ] is called a differential polynomial in f of degree γP := max1≤j≤k γMj .
If the coefficients αj only satisfy m(r,αj) = S(r, f ), then we call the function P[f ] a quasi-
differential polynomial in f .

Lemma 2.5 ([3]) Let f be a nonconstant meromorphic function and Q∗[f ], Q[f ] be quasi-
differential polynomials in f with Q[f ] 	≡ 0. Let n be a positive integer and f nQ∗[f ] = Q[f ].
If γQ ≤ n, then m(r, Q∗[f ]) = S(r, f ), where γQ is the degree of Q[f ].

3 Proofs of theorems
In this section, we mainly give complete proofs for our main results.

Proof of Theorem 1.6. In what follows, we consider two cases.
Case 1. When l ≥ 3, n ≥ 1, k ≥ 1, by inequality (4), we have

T(r, f ) ≤ 1
l – 2

N
(

r,
1

f l(f (k))n – a

)
+ S(r, f ).

Case 2. When l = 2, n ≥ 1, k ≥ 1, we consider two subcases.
Subcase 2.1. First we suppose that k ≥ 2. From Lemma 2.3 and Lemma 2.4, we see im-

mediately that F 	≡ 0 and simple poles of f (z) are the zeros of F(z). We also conclude that
the poles of F(z) are with multiplicities two at most, which come from the multiple poles
of f (z), or from the zeros of g(z), or from the zeros of h(z).

Set β = 2f ′(f (k))n + nf (f (k))n–1f (k+1) – f (f (k))n g′
g . Then f β = –a g′

g and h = – 1
aβg . We now

consider the poles of β2F . We note that the multiple poles of f with multiplicity q(≥ 2)
are the zeros of β with multiplicity q – 1, and the zeros of h are either the zeros of g or the
zeros of β . Thus,

N
(
r,β2F

) ≤ 4N
(

r,
1
g

)
,

since the poles of β2F come only from the zeros of g , and the multiplicity of poles of β2F
is 4 at most.

Noting that m(r, F) = S(r, f ) and m(r,β2) = S(r, f ) from Lemma 2.5, we have m(r,β2F) =
S(r, f ). Therefore,

T
(
r,β2F

) ≤ 4N
(

r,
1
g

)
.

Since the simple poles of f are the zeros of β2F , hence

N1(r, f ) ≤ N
(

1
β2F

)
≤ T

(
r,β2F

) ≤ 4N
(

r,
1
g

)
. (26)
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It follows from (7) and (26) that

2(n + 2)T(r, f ) + N1(r, f )

≤ 2N(r, f ) + 2N
(

r,
1
f

)
+ 6N

(
r,

1
g

)
+ 2nNk)

(
r,

1
f

)

+ 2nkN (k+1

(
r,

1
f

)
– 2N0

(
r,

1
g ′

)
+ S(r, f )

i.e.

2(n + 2)T(r, f ) + N1(r, f ) – 2N
(

r,
1
f

)

– 2nNk)

(
r,

1
f

)
– 2nkN (k+1

(
r,

1
f

)

≤ 2N(r, f ) + 6N
(

r,
1
g

)
– 2N0

(
r,

1
g ′

)
+ S(r, f ),

which leads to

T(r, f ) + m(r, f ) + 2(n + 1)m
(

r,
1
f

)
+

[
N(r, f ) + N1(r, f ) – 2N(r, f )

]

+ 2
[

N
(

r,
1
f

)
– N

(
r,

1
f

)]

+ 2n
[

N
(

r,
1
f

)
– Nk)

(
r,

1
f

)
– kN (k+1

(
r,

1
f

)]

≤ 6N
(

r,
1
g

)
– 2N0

(
r,

1
g ′

)
+ S(r, f ). (27)

We note that

N(r, f ) + N1(r, f ) – 2N(r, f )

= N1(r, f ) + N(2(r, f ) + N1(r, f ) – 2
[
N1(r, f ) + N (2(r, f )

]

= N(2(r, f ) – 2N (2(r, f ) ≥ 0

and

N
(

r,
1
f

)
– Nk)

(
r,

1
f

)
– kN (k+1

(
r,

1
f

)

= N(k+1

(
r,

1
f

)
– kN (k+1

(
r,

1
f

)

≥ N(k+1

(
r,

1
f

)
–

k
k + 1

N(k+1

(
r,

1
f

)
≥ 0.

By combining the above two inequalities and (27), we have

T(r, f ) ≤ 6N
(

r,
1
g

)
+ S(r, f ). (28)
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Subcase 2.2. Suppose that k = 1. Set β = 2(f ′)n+1 + nf (f ′)n–1f ′′ – f (f ′)n g′
g . Then f β = –a g′

g
and h = – 1

aβg . We again consider the poles of β2F .
Arguing similarly as in Subcase 2.1, we have

T
(
r,β2F

) ≤ 4N
(

r,
1
g

)
,

and (26) is still valid.
It follows from (7) and (26) that

2(n + 2)T(r, f ) + N1(r, f )

≤ 2N(r, f ) + 2N
(

r,
1
f

)
+ 6N

(
r,

1
g

)
+ 2nN1

(
r,

1
f

)

+ 2nN (2

(
r,

1
f

)
– 2N0

(
r,

1
g ′

)
+ S(r, f )

= 2N(r, f ) + 2(n + 1)N
(

r,
1
f

)
+ 6N

(
r,

1
g

)
– 2N0

(
r,

1
g ′

)
+ S(r, f ),

which yields

T(r, f ) + m(r, f ) + 2(n + 1)m
(

r,
1
f

)
+

[
N(r, f ) + N1(r, f ) – 2N(r, f )

]

+ 2(n + 1)
[

N
(

r,
1
f

)
– N

(
r,

1
f

)]
≤ 6N

(
r,

1
g

)
– 2N0

(
r,

1
g ′

)
+ S(r, f ).

Noting that N(r, f ) + N1(r, f ) – 2N(r, f ) ≥ 0 and N(r, 1
f ) – N(r, 1

f ) ≥ 0, we have

T(r, f ) ≤ 6N
(

r,
1
g

)
+ S(r, f ). (29)

Thus, from the above two cases, we have

T(r, f ) ≤ MN
(

r,
1

f l(f (k))n – a

)
+ S(r, f )

for M = min{ 1
l–2 , 6} and positive integers l(≥ 2), n(≥ 1), k(≥ 1). �

Proof of Corollary 1.1 Set ψ := f l(f (k))n, where l(≥ 2), n(≥ 1), k(≥ 1) are integers. It follows
from Lemma 2.1 that ψ 	≡ 0. By using Theorem 1.6, we have

T(r, f ) ≤ MN
(

r,
1

ψ – a

)
+ S(r, f ), (30)

where M = min{ 1
l–2 , 6}.

Applying the lemma of the logarithmic derivative, we get

T(r,ψ) = T
(
r, f l(f (k))n)

≤ lT(r, f ) + n
[

m
(

r,
f (k)

f

)
+ m(r, f ) + N(r, f ) + kN(r, f )

]
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≤ (nk + n + l)T(r, f ) + S(r, f ) (31)

and

(n + l)T(r, f ) = T
(

r,
1

f n+l

)
+ O(1) = T

(
r,

(
f (k)

f

)n 1
ψ

)
+ O(1)

≤ N
(

r,
(

f (k)

f

)n)
+ T(r,ψ) + S(r, f )

= nk
[

N(r, f ) + N
(

r,
1
f

)]
+ T(r,ψ) + S(r, f )

≤ (2nk + 1)T(r,ψ) + S(r, f ). (32)

It follows from (31) and (32) that

S(r, f ) = S(r,ψ). (33)

Combining (30), (31), and (33), we have

T(r,ψ) ≤ M(nk + n + l)N
(

r,
1

ψ – a

)
+ S(r,ψ), (34)

where M = min{ 1
l–2 , 6}. By the definition of the deficiency �(a,ψ) and (33), we have, for

M = min{ 1
l–2 , 6},

�(a,ψ) = 1 – lim sup
r→∞

N(r, 1
ψ–a )

T(r,ψ)

≤ 1 – lim sup
r→∞

1
M(nk+n+l) T(r,ψ) – S(r,ψ)

T(r,ψ)

= 1 –
1

M(nk + n + l)
. �
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