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Abstract
Aim: The Tibetan Plateau (TP) hosts many endemic species, but questions regard-
ing when and from where these species originated have not been comprehensively 
answered. Here, we provide a synthesis of the biogeographical history of terrestrial 
vertebrates endemic to the TP and investigate the potential drivers of their spatio- 
temporal origins.
Location: Tibetan Plateau and its surrounding regions.
Time period: Cenozoic.
Major taxa studied: Terrestrial vertebrates.
Methods: We used dispersal– extinction– cladogenesis models based on time- 
calibrated phylogenies to reconstruct the ancestral ranges of 174 endemic TP spe-
cies and compiled the ancestral ranges and age estimates of their dispersal events. 
We generated a possibility map of source areas for endemic TP species by counting 
the incidence of non- TP sister clades in 110 km × 110 km grid cells. We used general-
ized linear mixed models to assess the relative importance of historical processes and 
environmental factors in explaining the geographical variations in the source areas. 
We created subsets based on four vertebrate classes to test whether the dispersal 
events varied spatially and temporally among taxonomic groups.
Results: We found that the endemic species colonized the TP as early as 55 Ma, 
and that the main colonization phase started to increase around 15 Ma and peaked 
after 6 Ma. The major source areas of endemic TP species include the Hengduan 
Mountains, the Himalayas, and Central Asia. Elevation difference had the strongest 
effect on the source areas, followed by geographical distance. The spatio- temporal 
origins of species endemic to the TP and the potential drivers showed significant dif-
ferences among vertebrate classes.
Main conclusions: Our study supports the hypothesis that endemic TP species origi-
nated from various zoogeographical regions at different times and highlights the 
important roles of the TP uplift and past climatic changes for determining the spatio- 
temporal origins of endemic TP species.
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1  | INTRODUC TION

The Tibetan Plateau (TP) is a unique and fascinating region of the 
world and has long attracted the attention of evolutionary biol-
ogists and biogeographers (Deng et al., 2020; Favre et al., 2015; 
Mosbrugger et al., 2018). The TP extends across a vast area (c. 2.5 
million km2) with an average elevation exceeding 4,500 m and fea-
tures extreme coldness, severe aridity and oxygen deficiency (Wang 
et al., 2015). As a harsh highland region surrounded by warm and 
humid lowlands, the TP has been recognized as an island- like sys-
tem with highly endemic biodiversity, wherein many adaptive radi-
ations have occurred over geological time (Favre et al., 2015; Wen 
et al., 2014). Geologically, the TP was part of the Tethys Ocean by 
the Palaeocene and did not emerge above sea level until c. 55– 50 
million years ago (Ma) due to the Indo– Asian collision (Hu, Garzanti, 
et al., 2016; Royden et al., 2008). As such, species endemic to the TP 
are expected to have colonized from surrounding regions followed 
by vicariant speciation and diversification (Päckert et al., 2020; 
Wen et al., 2014). However, given that strong reconfiguration of the 
geographical setting and atmospheric circulation have profoundly 
altered the biota on the TP over the past 50 Myr (He et al., 2020; 
Mosbrugger et al., 2018), the origins of these species and their time 
of arrival on the TP remain unclear.

There are varying opinions on the temporal origins of TP species 
(Deng et al., 2019; Yang et al., 2009), in part due to the controversy 
over the plateau’s uplift history (Botsyun et al., 2019; Renner, 2016; 
Spicer et al., 2020). Based upon summaries of divergence time es-
timates, previous phylogenetic studies suggested that species en-
demic to the TP colonized the plateau no earlier than c. 9– 7 Ma 
(Päckert et al., 2015; Yang et al., 2009). More recently, however, 
studies have increasingly reported much earlier divergence times 
between endemic TP species and their sister clades, suggesting that 
colonization may have occurred as early as c. 50– 40 Ma (Agarwal 
et al., 2014; Pisano et al., 2015; Wu et al., 2019). Evidence from 
tectonics (Clark et al., 2004), geology (Wang et al., 2008), palaeo- 
altimetry (Rowley & Currie, 2006), sedimentology (Guo et al., 2002) 
and palaeontology (Su et al., 2018) has supported an earlier uplift 
of the TP, and combined with phylogenetic estimates, this evidence 
challenged the relationship between the young node ages of clades 
and the assertion of recent TP uplift (Renner, 2016).

Geographically, four potential colonization routes for species 
into the TP have been hypothesized based on fossil deposits and 
phylogeographical inference. The proposed northern route from 
Central Asia (Guo & Wang, 2007; Li & Wang, 2015; Li et al., 2018; 
Pisano et al., 2015) would suggest a similar environment and biome 
(i.e. desert and open steppe) to those on the TP. The southern route 
was proposed to have resulted from the Indo– Asian collision and 
emergence of lowland habitats along the southern margin of the TP 
during the Eocene, facilitating the dispersal of Indian and Southeast 
Asian organisms to the TP (Liu et al., 2019; Wu et al., 2019, 2020). 
In addition, several species were considered to have colonized the 
TP via a western route from West Asia (Hauenschild et al., 2017; 
Solovyeva et al., 2018) or an eastern route from South China  

(Lu et al., 2012). Notably, the four hypothesized routes were ob-
served to vary across taxa. For example, most reptiles and amphibi-
ans were considered to have colonized the TP via the southern route 
(Agarwal et al., 2014; Che et al., 2010; Wu et al., 2020), whereas 
mammals were more likely to have favoured the northern route (Li 
& Wang, 2015; Pisano et al., 2015). Since past biogeographical stud-
ies were typically analysed on a case- by- case basis, furthering our 
understanding of the spatio- temporal origins of the TP species and 
the variation among vertebrate classes has been hampered by the 
limited taxonomic coverage in previous studies.

Understanding the factors influencing the source regions of en-
demic TP species is challenging owing to the complex interactions 
between historical and ecological drivers (Mosbrugger et al., 2018; 
Päckert et al., 2020). In general, the colonization success of the dis-
perser strongly decreases with geographical distance based on the 
island biogeography theory (MacArthur & Wilson, 1967); briefly, 
more opportunities exist for species to colonize the TP from shorter 
distances. Similarly, areas with higher regional species richness are 
more likely to be source regions of TP species. In addition, TP species 
may have colonized from regions with similar environmental condi-
tions as those found on the TP, based on niche conservatism (Wiens 
et al., 2010), or they may exhibit the opposite pattern based on 
ecological speciation (Rundle & Nosil, 2005). However, few studies 
have examined the generality of each of these factors among taxa or 
simultaneously evaluated the relative strength of relationships be-
tween the geographical origin and these factors.

Here, we aimed to investigate the geographical and temporal 
origins of species endemic to the TP and explore the drivers un-
derlying these patterns. Although it is possible to reconstruct the 
origins of species using palaeontological data, the extreme scarcity 
and uneven distribution of fossil deposits on the TP limits our capac-
ity to constrain biogeographical scenarios within a spatio- temporal 
framework. Thus, we compiled a comprehensive dataset consisting 
of nearly all terrestrial vertebrates endemic to the TP to estimate 
their biogeographical origins. First, we assessed the ancestral range 
and age estimate of each independent species dispersal event based 
on ancestral range estimate models. We identified the source areas 
from where endemic TP species originated and tested whether 
these source areas varied among taxa or through different periods. 
Finally, we assessed the relative importance of historical processes 
and environmental factors in explaining these source areas.

2  | METHODS

2.1 | Species data

We compiled a checklist of terrestrial vertebrates endemic to the 
TP according to the species distribution data against the TP’s geo-
graphical range (see Supporting Information Appendix S1: Figure 
S1.1). The species geographical ranges were obtained from the 
International Union for Conservation of Nature (IUCN) Red List da-
tabase (http://www.iucnr edlist.org) for mammals and amphibians, 

http://www.iucnredlist.org
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BirdLife International and NatureServe (http://www.birdl ife.org) for 
birds, and Roll et al. (2017) for reptiles. We combined the geographi-
cal range data with data from the Global Biodiversity Information 
Facility (GBIF; http://www.gbif.org) and Fauna of China (see 
Supporting Information Appendix S2) to validate the checklist of en-
demic TP species. Finally, we identified 178 terrestrial vertebrates 
endemic to the TP, including 68 mammals, 57 birds, 23 reptiles and 
30 amphibians (see Supporting Information Appendix S3).

We obtained dated phylogenies from Upham et al. (2019) for 
mammals, Jetz et al. (2014) for birds, Tonini et al. (2016) for reptiles, 
and Jetz and Pyron (2018) for amphibians. These phylogenies are 
available online (http://vertl ife.org/phylo subsets) as the posterior 
distribution of trees (n = 1,000), and we built maximum clade cred-
ibility phylogenies using the ‘phangorn’ package (Schliep, 2011) in 
R version 3.6.0 (R Development Core Team, 2019). The number of 
endemic TP species that could be matched to the tips in the phylog-
enies was 174 (out of the 178 species). To conduct biogeographical 
analyses, we extracted clades from the maximum clade credibility 
phylogenies based on the presence of endemic TP species. This 
means a clade subset should have contained at least one species en-
demic to the TP and comprised all species belonging to the genus. 
For genera containing only a few species, we further extracted tips 
from their closest sister clades to ensure each phylogeny subset had 
a minimum of seven species (Antonelli et al., 2018). Finally, our data-
set resulted in 64 phylogeny subsets comprising a total of 2,156 spe-
cies (including 174 endemic TP species) to estimate ancestral area 
(Supporting Information Table S1.1).

2.2 | Ancestral range estimation

To explore the geographical and temporal origins of species en-
demic to the TP, we applied a dispersal– extinction– cladogenesis 
(DEC) model (Ree & Smith, 2008) in the R package ‘BioGeoBEARS’ 
(Matzke, 2014). This model can reconstruct temporal changes in 
the geographical range of a species within a likelihood framework 
(Ree et al., 2005), and thus, it can infer the ancestral ranges and bio-
geographical scenarios of certain species (Ree & Smith, 2008). We 
coded the geographical distributions of species as presence/absence 
in 11 zoogeographical regions, namely, Tibetan Plateau, South Asia, 
Southeast Asia, South China, North China & Korea, Central Asia, Euro- 
Siberia, West Asia, Africa, Australia and the Americas (Supporting 
Information Figure S1.2). To account for the changes in geographical 
setting among these regions over geological time, we incorporated 
time- stratified dispersal multiplier matrices (Supporting Information 
Figure S1.3) and adjacency matrices (Supporting Information Table 
S1.2) in the model fitting. The dispersal probability was assigned 
to one of three categories: p = .1 (non- neighbouring areas), p = .5 
(partly connected areas), and p = 1.0 (neighbouring areas) for four- 
time- slice matrices (120– 60, 60– 40, 40– 20 and 20– 0 Ma). We con-
strained the maximum range size to between two and seven areas 
according to the geographical distributions of species within spe-
cific phylogeny subsets. Notably, as some species in the phylogenies 

were interpolated without molecular data (Supporting Information 
Table S1.1), the placements and divergence times in a phylogeny 
might be biased to some degree. To verify our results, we repeated 
our analysis based on 47 relatively well- sampled phylogeny subsets 
in which > 60% of species had molecular data.

2.3 | Spatio- temporal analysis

To estimate the spatio- temporal origins of species endemic to the 
TP, we compiled the ancestral ranges and age estimates of disper-
sal events of TP species based on the DEC models. Although the 
dispersal events might have involved both ‘into TP’ dispersals and 
‘out of TP’ dispersals (Deng et al., 2020; Päckert et al., 2020), we 
only considered the ‘into TP’ dispersal events that represented the 
first establishment of a specific clade on the TP. Given that all of the 
terrestrial organisms here should have originated outside the TP, the 
‘into TP’ dispersal events could be expected to have occurred ear-
lier than the ‘out of TP’ dispersal events. We quantified the number 
of dispersal events within each 1- Myr time bin and constructed a 
cumulative frequency histogram. As the absolute number of diver-
gence events generally increased with time (Antonelli et al., 2018; 
Klaus et al., 2016), we assessed temporal shifts rather than the ab-
solute values of dispersal events using change point analysis in the R 
package ‘ecp’ (James & Matteson, 2014). In addition, we created sub-
sets based on four vertebrate classes (mammals, birds, reptiles and 
amphibians), and used the Wilcoxon rank sum test and chi- square 
test to explore whether the dispersal events varied spatially and 
temporally among taxonomic groups.

In addition, we projected the geographical ranges from where the 
endemic TP species originated on the map by counting the incidence 
of their sister clades identified from the DEC models (Supporting 
Information Figure S1.4). In brief, we first identified non- TP sister 
clades that diverged from a common ancestor and shared a common 
ancestral range with the endemic TP species in the DEC models. 
Then, we mapped the distribution of each sister clade by merging 
the geographical ranges of its descendants. Finally, we generated a 
possibility map of source areas for endemic TP species by counting 
the incidence of non- TP sister clades in an equal- area grid cell of 
110 km × 110 km in the Behrmann projection. To test whether the 
source areas of endemic TP species varied across taxonomic groups 
and differed in time, we created subsets based on (a) different ver-
tebrate classes (mammals, birds, reptiles and amphibians), and (b) 
different time intervals according to the time points at which the 
frequency of dispersal events changed.

2.4 | Potential drivers of the source area of endemic 
TP species

We explored the relative effects of geographical distance, el-
evation difference and climatic dissimilarity (temperature and pre-
cipitation) on the source area of endemic TP species (Supporting 

http://www.birdlife.org
http://www.gbif.org
http://vertlife.org/phylosubsets
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Information Figure S1.5a– d). Elevation data with a spatial reso-
lution of one arc minute were downloaded from the National 
Centers for Environmental Information (https://www.ngdc.noaa.
gov/mgg/globa l/relie f/ETOPO 1/data/). Climate data were derived 
from the WORLDCLIM dataset (c. 1 km × 1 km resolution; Hijmans 
et al., 2005). We analysed temperature- related variables (BIO 1– BIO 
11) and precipitation- related variables (BIO 12– BIO 19) in two princi-
pal component analyses. As the first three principal component axes 
accounted for 94.1% of the total variations in temperature- related 
variables, and 92.0% of variations in precipitation- related variables 
(Supporting Information Table S1.3), we calculated temperature dis-
similarity and precipitation dissimilarity using the Euclidean distance 
in the three- dimensional space. Since we assume that the endemic 
TP species originated from areas outside the TP, we considered the 
TP a homogeneous region and compared each grid cell outside the 
TP with the TP average to disentangle the factors underlying the 
origins of endemic TP species. This approach is feasible because 
the environmental conditions were largely consistent within the 
TP but remarkably different from surrounding regions (Supporting 
Information Figure S1.6). Thus, we calculated elevation difference 
and climatic dissimilarity between each grid cell outside the TP and 
the average values of grid cells within the TP. The geographical 
distance was calculated from the centre of each grid cell to the TP 
boundary using Euclidean distance.

2.5 | Statistical models

We used generalized linear mixed models (GLMMs) with a Poisson 
distribution to test the geographical and environmental effects on 
the source area of endemic TP species in the R package ‘lme4’ (Bates 
et al., 2015). We fit models for the source area of four individual 
vertebrate classes (amphibians, reptiles, birds and mammals) as well 
as for all the vertebrate species combined. The fixed effects were 
geographical distance, elevation difference, temperature dissimilar-
ity and precipitation dissimilarity. The random effects included the 
regional species richness (or species richness for each taxonomic 
group; Supporting Information Figure S1.5e– i) and zoogeographical 
regions (Supporting Information Figure S1.5j). The geographical dis-
tance was natural log- transformed, and the regional species richness 
was natural log (x + 1) transformed to improve linearity. All continu-
ous variables were standardized to a mean of 0 and SD of 1, allow-
ing direct comparison of the effect sizes. The Pearson correlation 
coefficients between all fixed factors were lower than .7 (Supporting 
Information Figure S1.7). Given that the endemic TP species were 
thought to originate from surrounding regions, we restricted the 
statistical analyses to the grid cells within a geographical distance 
of 3,000 km from the TP, which covered all source area hotspots 
of endemic TP species (Supporting Information Figure S1.8). To test 
whether the different inputs of grid cells affected our findings, we 
repeated our models using two alternative geographical distances of 
2,000 and 4,000 km (Supporting Information Figure S1.8). We con-
ducted GLMMs with all possible combinations of the variables in the 

R package ‘MuMIn’ (Bartoń, 2019), and used corrected Akaike’s in-
formation criterion (AICc) scores to determine the best model (with 
the lowest AICc values). We calculated marginal R2 (accounting for 
fixed effects) and conditional R2 (accounting for fixed and random ef-
fects) to assess the relative importance of fixed and random effects.

3  | RESULTS

3.1 | Spatio- temporal origins of endemic TP species

Our biogeographical analysis identified 128 independent dispersal 
events for species endemic to the TP in 48 mammal, 47 bird, 17 rep-
tile and 16 amphibian clades (Figure 1a). The most important source 
region was South China, from where 31 endemic TP clades origi-
nated (Figure 1b; Supporting Information Table S1.4). Southeast Asia 
and Central Asia emerged as the second most important regions with 
29 clades colonizing from these regions, followed by North China & 
Korea (16 clades), Euro- Siberia (14 clades) and West Asia (14 clades) 
(Supporting Information Table S1.4). According to the divergence 
time of endemic TP species from their sister clades, the earliest dis-
persal event occurred c. 55 Ma (Figure 1c), when Cyrtodactylus ti-
betanus diverged from its sister clade (Supporting Information Figure 
S1.9). Two sudden changes in the timing of dispersal events occurred 
15 and 6 Ma (Figure 1c). Between 55– 15 Ma, dispersal events were 
scarce (12 out of 128 cases, 9.4%). The main dispersal wave started 
15 Ma, and most dispersal events occurred from 6 Ma onwards (91 
cases, 71.1%).

3.2 | Cross- taxon comparison

The spatio- temporal origins of species endemic to the TP differed 
among vertebrate classes (Figure 1d,e). The earliest dispersal events 
were for reptiles (median = 8.1 Ma, Wilcoxon rank sum test, p < .05), 
followed by amphibians (4.5 Ma), birds (3.0 Ma) and mammals 
(1.7 Ma) (Figure 1d). Source regions for mammals were broadly con-
sistent with those for birds, but both were significantly different from 
those for reptiles and amphibians (chi- square test, p < .05; Figure 1e; 
Supporting Information Table S1.5). Southeast Asia was the most 
important source region for birds and reptiles endemic to the TP, 
whereas mammals and amphibians predominantly colonized from 
Central Asia and South China, respectively (Figure 1e; Supporting 
Information Table S1.4). These findings were broadly consistent with 
our analysis of only the phylogenetic subsets with > 60% of species 
having molecular data (Supporting Information Figure S1.10). For 
example, the change points of the main dispersal for all terrestrial 
vertebrates occurred 15 and 7 Ma (Supporting Information Figure 
S1.10a), and the dispersal events for reptiles were significantly ear-
lier than those for other taxa (Supporting Information Figure S1.10b). 
Similarly, source regions of species endemic to the TP showed signif-
icant differences among vertebrate classes (Supporting Information 
Figure S1.10c,d).

https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/
https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/
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F I G U R E  1   Dispersal events of terrestrial vertebrates endemic to the Tibetan Plateau (TP). (a) Black branches are clades endemic to the 
TP, and grey branches indicate their sister clades. Pli = Pliocene; Qu = Quaternary. Divergence events are highlighted at nodes with different 
colours representing different vertebrate classes. (b) Colour bars at tips indicate the ancestral range of endemic TP species and their sister 
clades. Colours denote 11 predefined zoogeographical regions consistent with the inset map (Eckert IV projection). (c) Histograms of total 
dispersal events within 1- Myr time bins. (d) Boxplots showing the temporal distribution of dispersal events across four vertebrate classes. 
Boxes show the median and 25th and 75th percentiles. Letters indicate significant differences among vertebrate classes (Wilcoxon rank sum 
test, p < .05). (e) Incidence of ancestral range of clades endemic to the TP among different vertebrate classes. Symbols are sized proportional 
to incidence and coloured as per panel (b) and the inset map. Letters indicate significant differences (chi- square test, p < .05). Abbreviations: 
TP = Tibetan Plateau; SA = South Asia; SEA = Southeast Asia; SC = South China; NCK = North China & Korea; CA = Central Asia; ES = Euro- 
Siberia; WA = West Asia; AF = Africa; AU = Australia; AM = the Americas [Colour figure can be viewed at wileyonlinelibrary.com]
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3.3 | Taxonomic variation in source areas of 
endemic TP species

When the source areas of endemic TP species were spatially mapped, 
the Hengduan Mountains, the Himalayas, and Central Asia were the 
most important source areas for all vertebrates (Figure 2a). However, 
some incongruence in the hotspots of source areas emerged among 
vertebrate classes (e.g. Central Asia for mammals, Hengduan 
Mountains and the Himalayas for birds, the west Himalayas for rep-
tiles and Hengduan Mountains for amphibians; Figure 2b– e). Overall, 
the spatial correlation between source areas for mammals and birds 
ranked the highest (Spearman’s r = .76), whereas those between en-
dotherms and ectotherms were relatively low (Spearman’s r ranged 
from .18 to .39; Supporting Information Figure S1.11).

3.4 | Temporal variation in source areas of endemic 
TP species

When the source areas of endemic TP species were mapped along 
different time intervals (55– 15, 15– 6 and 6– 0 Ma) according to the 
times of sudden change in dispersal events (Figure 1c), we found that 
the geographical origins of endemic TP species varied through time 
(Figure 3). Southeast Asia and the Himalayas were the most impor-
tant source areas earlier, from 55 to 15 Ma (Figure 3a), whereas the 
Hengduan Mountains and Central Asia were most important from 15 
to 6 Ma (Figure 3b). From 6 Ma onwards, the Hengduan Mountains 
acted as the primary source area of endemic TP species (Figure 3c).

3.5 | Potential drivers of source areas of endemic 
TP species

The fixed effects of the best GLMM explained 19% of the geographical 
variation in the source area of endemic TP species (R2

marginal), with eleva-
tion difference exhibiting the strongest effect, followed by geographi-
cal distance (Table 1). This result was robust despite differences in the 
spatial extent of grid cells (Supporting Information Figure S1.12). The 
combination of fixed effects and random effects explained 87% of the 
variation (R2

conditional), indicating that biological and geographical random 
effects also explain a substantial proportion (c. 68%) of the geographical 
variation in the source areas (Table 1). The relative effects of geographi-
cal factors and environmental dissimilarity varied among taxa. Elevation 
difference had the most important effect on the source area of mam-
mals, whereas geographical distance was more influential to birds, rep-
tiles and amphibians (Figure 4; Supporting Information Table S1.6).

4  | DISCUSSION

4.1 | Temporal origin of endemic TP species

We demonstrated that the dispersal events of endemic TP species 
occurred first at the beginning of the Eocene (c. 55 Ma) and started to 

increase around the middle Miocene (c. 15 Ma; Figure 1c). Previous 
reviews based on a biogeographical synthesis of multiple TP ver-
tebrates have proposed that the TP species diverged from their 
sister clades no earlier than c. 9– 7 Ma (Päckert et al., 2015; Yang 
et al., 2009). According to our results, although early colonization 
events (55– 15 Ma) were scarce (12 out of 128 cases), it is clear that 
the majority of ‘into TP’ dispersal events occurred at least by 15 Ma. 
Evidence supporting a much earlier origin for endemic TP species is 
accumulating (Mosbrugger et al., 2018 and references therein). Most 
recently, a synthesis of biogeographical histories of the alpine flora 
suggested that cold- adapted species had started to colonize the TP 
from neighbouring regions in the early Miocene (c. 23– 16 Ma; Ding 
et al., 2020), which corroborates our findings.

The temporal variation in dispersal events was probably influenced 
by differences in geological and climatic history. The earliest disper-
sal event of endemic TP species coincides roughly with the timing 
of the Indo– Asian collision and initial emergence of the TP (Botsyun 
et al., 2019; Royden et al., 2008) and is consistent with the previ-
ous phylogeography of the gekkonid genus Cyrtodactylus (Agarwal 
et al., 2014). Dispersal events continuously increased since the mid-
dle Miocene (c. 15 Ma). This timeline is almost concurrent with the 
enhancement of the monsoon system (Sun & Wang, 2005) and the 
onset of aridification of the Asian interior (Miao et al., 2012). These 
climatic changes likely restructured the habitats for species (e.g. the 
desert- to- steppe biome change in Central Asia; Barbolini et al., 2020) 
and thus, facilitated the dispersal events into the TP from surround-
ing regions (Ding et al., 2020; Pisano et al., 2015). Furthermore, we 
recorded a sharp increase in dispersal events from the late Miocene 
(c. 6 Ma) onwards, supporting the hypothesis that this was an import-
ant time for ‘into TP’ dispersal events. This trend has been previously 
demonstrated by phylogeographical (Päckert et al., 2015) and palaeon-
tological (Li et al., 2018; Li & Wang, 2015) studies and other evidence 
from fishes (Ma et al., 2015) and plants (Hauenschild et al., 2017). This 
timing highlights the importance of the latest uplift of the TP edge (e.g. 
the Hengduan Mountains and Qilian Mountains) and glaciation cycling 
in shaping the vicariance of clades between the TP and surrounding 
regions (Ding et al., 2020; Lei et al., 2014; Muellner- Riehl, 2019).

4.2 | Geographical origin of endemic TP species

Species endemic to the TP originated from various zoogeographical 
regions (Figure 1b,e), with the Hengduan Mountains, Himalayas, and 
Central Asia emerging as the most important source areas (Figure 2). 
The importance of the Hengduan Mountains and Himalayas was 
expected because these regions are closely connected to the TP 
and share the most similar environments and orogenetic histories 
(Favre et al., 2015). From an evolutionary perspective, the Hengduan 
Mountains and Himalayas acted as species pumps from which 
multiple lineages on the TP originated (Ding et al., 2020; Päckert 
et al., 2015) and, thus, share the majority of extant species with the 
TP (He et al., 2017). Unexpectedly, the relatively distant Central 
Asian region was also identified as a key source area of endemic 
TP species (Figures 1e and 2a), in particular for mammals and birds 
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F I G U R E  2   Geographical variation in the source area of endemic Tibetan Plateau (TP) species for (a) all terrestrial vertebrates, (b) 
mammals, (c) birds, (d) reptiles and (e) amphibians. The source area of endemic TP species was calculated by counting the incidence of non- 
TP sister clades in 110 km × 110 km grid cells. Grey areas within the land indicate the absence of species in a particular taxonomic group 
[Colour figure can be viewed at wileyonlinelibrary.com]
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(Figure 2b,c). Although several vertebrates (Guo & Wang, 2007; Li 
et al., 2018; Li & Wang, 2015) and plants (Hauenschild et al., 2017; 
Zhang et al., 2016) have been proposed to have originated from 
Central Asia, few previous studies considered this to be a common 
pattern (Wen et al., 2014). Our results, based on nearly all terrestrial 
vertebrates endemic to the TP, support the importance of Central 
Asia and highlight the role of the northern dispersal route for biotic 
interchange between the TP and temperate Asia.

Elevation and geographical distance have significant effects on 
the source areas of endemic TP species (Table 1), which corrobo-
rates previous findings that endemic TP species were likely to colo-
nize from neighbouring areas that were ecologically similar to the TP 

(Hu, Broennimann, et al., 2016; Wan et al., 2018). Notably, biological 
and geographical random effects explained a substantial proportion 
(c. 68%) of the variation in the source areas of endemic TP species, 
threefold higher than the variation explained by the fixed effects 
(Table 1). This finding indicated that the source areas of endemic TP 
species cannot be fully explained by the ecological factors measured in 
the analysis alone, but may also be significantly explained by biological 
and historical factors. For example, the importance of regional species 
richness in model fitting confirmed that endemic TP species are more 
likely to originate from areas with higher biodiversity (Table 1), such as 
the Hengduan Mountains and Himalayas (Figure 2). Furthermore, the 
strong predictive power of biogeographical regions corroborates our 
findings regarding geographical variation in source areas of endemic 
TP species and supports the key role of historical processes in shaping 
current biodiversity patterns (Hawkins et al., 2003).

4.3 | Historical effects on origins of endemic 
TP species

Our results demonstrated that the source areas of endemic TP spe-
cies varied through time (Figure 3). Specifically, the early coloniza-
tion events of endemic TP species predominately occurred from 
Southeast Asia and the Himalayas, and species colonizing from the 
Hengduan Mountains and Central Asia diverged more recently. 
These shifts strongly coincided both spatially and temporally with 
the TP uplift and regional climatic changes (Favre et al., 2015; Royden 
et al., 2008). Since the Eocene Indo– Asian collision (c. 55– 50 Ma), 
the initial emergence of the TP could have promoted the develop-
ment of new habitats characterized by warm and humid lowland 
environmental conditions (Deng et al., 2019), thus facilitating the 
colonization of Palaeogene- aged lineages into the TP via the south-
ern route (Liu et al., 2019; Wu et al., 2019). By the middle Miocene 
(15.9– 11.6 Ma), however, the Himalayas had nearly reached its pre-
sent height and acted as a barrier to biotic interchange between the 
TP and South Asia (Deng & Ding, 2015). In contrast, the progres-
sive uplift of the Tianshan Mountains (Charreau et al., 2009) and the 

TA B L E  1   Coefficient estimates from generalized linear mixed 
models explaining the geographical variation in the source area of 
terrestrial vertebrates endemic to the Tibetan Plateau (TP)

β (SE) 95% CI

Intercept 2.33 (.171) (1.997, 2.669)

Fixed effects

Geographical distance −.14 (.008) (−.152, −.12)

Elevation difference −.22 (.007) (−.232, −.203)

Temperature dissimilarity .05 (.015) (.022, .079)

Precipitation dissimilarity −.04 (.01) (−.06, −.022)

Random effects

Regional species richness .36

Zoogeographical regions .45

Goodness- of- fit statistics

Marginal R2 .19

Conditional R2 .87

Note: The source area of endemic TP species is calculated by counting 
the incidence of non- TP sister clades. Fixed effects are indicated by 
standardized coefficients with 95% confidence intervals (CI). Random 
effects are shown as one standard deviation. Marginal R2 indicates 
variation explained by fixed effects, and conditional R2 indicates 
variation explained by fixed and random effects. All estimates are 
significant (p < .01).

F I G U R E  3   Geographical variation in the source area of endemic Tibetan Plateau (TP) species during three time periods. The source area 
of endemic TP species was calculated by counting the incidence of non- TP sister clades in 110 km × 110 km grid cells. The periods were 
defined according to points of sudden change at 15 and 6 Ma [Colour figure can be viewed at wileyonlinelibrary.com]
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onset of aridification in the Asian interior (Miao et al., 2012) might 
have accelerated in situ speciation (Pisano et al., 2015; Solovyeva 
et al., 2018), which, coupled with the moderate topographical gradi-
ent of the northern route, could facilitate dispersal from Central Asia 
to the TP (Li & Wang, 2015). From the late Miocene onwards, the 
Hengduan Mountains became the only important source of endemic 
TP species (Figure 3). This timing corroborates a recent phylogenetic 
analysis of multiple clades of plants in the Hengduan Mountains, 
which showed that the Hengduan Mountains’ uplift has driven in situ 
diversification since the late Miocene (c. 8 Ma; Xing & Ree, 2017). 
To sum up, the uplift of the TP and subsequent climate change over 
the past 50 Myr created novel ecological opportunities for species 
to colonize the TP via a variety of dispersal routes during different 
periods, which in turn created orographic barriers and climatic het-
erogeneity that facilitated vicariance (Favre et al., 2015; Mosbrugger 
et al., 2018).

4.4 | Cross- taxon comparison

The spatio- temporal origins of endemic TP species differed signifi-
cantly among vertebrate classes. Geographically, most mammals and 
birds (endotherms) colonized the TP via the northern route, whereas 
reptiles and amphibians (ectotherms) rarely colonized from this 
route (Figure 1e). This incongruence can be explained by the endo-
therms having greater dispersal abilities (Stevens et al., 2014) and 
lower sensitivity to climatic conditions (Rolland & Salamin, 2016). 
A probable speciation mode for species colonizing via the northern 
route is that they reached the TP via long- distance dispersal and 
subsequently underwent vicariance owing to the climatic changes in 
the Asian interior. This mode was widely favoured by several mam-
mals (Bannikova et al., 2018; Li et al., 2018; Li & Wang, 2015). In 
contrast, for species originating from the Hengduan Mountains and 
Himalayas, the dominant speciation mode presumably occurred via 
ecological segregation or vicariance caused by the uneven uplift of 
the TP (Päckert et al., 2015). Most reptiles (Agarwal et al., 2014) and 
amphibians (Che et al., 2010; Hofmann et al., 2017; Wu et al., 2020), 

as well as many birds (Liu et al., 2016), might favour this speciation 
mode, which, along with high habitat heterogeneity in the Hengduan 
Mountains and the Himalayas, makes these regions important global 
biodiversity hotspots (Cai et al., 2020).

Another difference among taxa was that ectotherms colo-
nized the TP earlier than endotherms (Figure 1d). Such a discrep-
ancy was also found in the great American biotic interchange 
(Bacon et al., 2015) and Amazonian biotic interchange (Antonelli 
et al., 2018), and was explained by differences in biological fac-
tors among taxa, such as dispersal traits and life history strategies 
(Rolland & Salamin, 2016; Stevens et al., 2014). Alternatively, this 
difference might involve deep- time evolutionary processes, driven 
by orogenetic events and past climatic change during different pe-
riods (Mosbrugger et al., 2018). For instance, ectotherms colonized 
the TP earlier and more often via the southern route, whereas the 
endotherms colonized the TP predominantly via the northern route 
during a later period (compare Figure 2 and Figure 3). This shift co-
incided with the uplift of the TP in that the initial uplift occurred 
at the southern margin followed by northward and eastward uplift 
progression (Mulch & Chamberlain, 2006).

4.5 | Potential limitations

Our study potentially suffered from several limitations that should 
be addressed in future studies. First, there were uncertain place-
ments of several species in the available phylogenetic tree owing to 
missing molecular data. Uncertain placement of some species in phy-
logenies might bias ancestral range estimates, and more comprehen-
sive molecular data would further reinforce our understanding of 
the origins of endemic TP species. Furthermore, our analysis relied 
solely on a synthesis of molecular divergences of multiple lineages, 
but extinction events were not considered. Once a sister clade to 
TP species went extinct, the divergence time of endemic TP species 
would far pre- date the true colonization time (O’Dea et al., 2016). 
Thus, a temporal framework that incorporates molecular phyloge-
nies and fossil data would better constrain biogeographical scenarios 

F I G U R E  4   Regression coefficients and 
95% confidence intervals for predicting 
the source area of endemic Tibetan 
Plateau species in generalized linear mixed 
models. Filled dots represent statistically 
significant relationships (p < .05). The 
full models are provided in Supporting 
Information Table S1.6 [Colour figure can 
be viewed at wileyonlinelibrary.com]
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(Wu et al., 2019). Since the earliest vertebrate fossils found on the 
TP dated to the Oligocene (33.9– 23 Ma; Deng et al., 2019), further 
exploration of fossil collections is necessary to facilitate a more com-
prehensive understanding of the spatio- temporal origins of the TP 
biota.

5  | CONCLUSION

The present work provides a comprehensive assessment of the 
spatio- temporal origins of endemic TP species based on a syn-
thesis of their biogeographical histories. Our results revealed that 
terrestrial vertebrates endemic to the TP have colonized predomi-
nantly from the Hengduan Mountains, the Himalayas, and Central 
Asia since the early Eocene, and that the main colonization phase 
started 15 Ma and peaked from 6 Ma onwards. The source areas of 
endemic TP species can be predicted by elevation and geographical 
distance but were more likely shaped by historical events such as 
the uplift of the TP and regional climatic changes. Different verte-
brate classes showed varied colonization modes according to the 
geological and climatic history. Our findings would be reinforced 
by integrating more comprehensive molecular data and fossil col-
lections, as well as considering other taxa, which would further our 
understanding of the origin and evolution of life on the TP.
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