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Abstract

Resolving trade-offs between economic development and biodiversity conservation needs
is crucial in currently developing countries and in particularly sensitive systems harbor-
ing high biodiversity. Yet, such a task is challenging because human activities have com-
plex effects on biodiversity. We assessed the effects of intense economic development on
Hainan Island (southern China) on different components of biodiversity. This highly bio-
diverse tropical island has undergone extensive economic development and conversion
of forest to agriculture and urban area. We identified 3 main transformation areas (low,
medium, and high transformation) based on land-use, local-climate, and economic changes
across 145 grids (10 × 10 km), and estimated changes in avian biodive6rsity from 1998 to
2013. We recorded ongoing taxonomic biotic homogenization throughout the island. Dif-
ferences between traditional and directional alpha diversity decreased by 5%. Phylogeneti-
cally clustering increased by 0.5 points (W= 7928, p< 0.01), and functional overdispersion
increased by 1 point (W= 16,411, p< 0.01). Initial taxonomic, phylogenetic, and functional
scores correlated negatively with changes in these scores across all transformation areas (all
ps< 0.01). At the local scale, economic and environmental indicators showed complex and
divergent effects across transformation areas and biodiversity components. These effects
were only partially ameliorated in an ecological function conservation area in the moun-
tainous central part of the island. We found complex effects of economic development on
different biodiversity dimensions in different areas with different land uses and protection
regimes and between local and regional spatial scales. Profound ecosystem damage asso-
ciated with economic development was partially averted, probably due to enhanced bio-
diversity conservation policies and law enforcement, but not without regional-scale biotic
homogenization and local-scale biodiversity loss.
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Compensaciones entre el Desarrollo Económico y la Conservación de la Biodiversidad en
una Isla Tropical
Resumen: Es muy importante resolver las compensaciones entre el desarrollo económico
y la conservación de la biodiversidad en los países que actualmente se encuentran en desar-
rollo y en los sistemas particularmente sensibles que albergan una gran biodiversidad. Sin
embargo, dicha labor es un reto porque las actividades humanas tienen efectos comple-
jos sobre la biodiversidad. Analizamos los efectos del desarrollo económico intenso en
la isla de Hainan (sur de China) sobre diferentes elementos de la biodiversidad. Esta isla
tropical con una gran biodiversidad ha sufrido un desarrollo económico extenso y la con-
versión forestal a campos agrícolas y áreas urbanas. Identificamos tres áreas principales de
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transformación (baja, media y alta) con base en cambios en el uso de suelo, clima local y en
la economía a lo largo de 145 cuadrantes (10 × 10 km) y estimamos los cambios en la diver-
sidad de aves desde 1998 hasta 2013. Registramos la homogenización biótica continua de
los taxones en la isla. La diferencia entre la diversidad alfa tradicional y direccional dismin-
uyó 5%. Las agrupaciones filogenéticas incrementaron 0.5 puntos (W= 7928, p< 0.01) y la
sobredispersión funcional incrementó un punto (W = 16411, p < 0.01). Los puntajes tax-
onómicos, filogenéticos y funcionales iniciales estuvieron correlacionados negativamente
con los cambios en estos puntajes en todas las áreas de transformación (todas p< 0.01).
En la escala local, los indicadores económicos y ambientales mostraron efectos comple-
jos y divergentes en las áreas de transformación y los elementos de la biodiversidad. Estos
efectos sólo mejoraron parcialmente en un área de conservación con función ecológica en
la parte montañosa al centro de la isla. Descubrimos que el desarrollo económico tiene
efectos complejos sobre diferentes dimensiones de la biodiversidad en diferentes áreas
con usos de suelo y sistemas de protección diferentes y entre las escales espaciales local
y regional. El daño profundo al ecosistema asociado con el desarrollo económico pudo
evitarse parcialmente, probablemente debido a la mejora en las políticas de conservación
de la biodiversidad y la aplicación de la ley, pero no sin sufrir pérdidas de la biodiversidad a
escala local y una homogenización biótica a escala regional.

PALABRAS CLAVE

conversión forestal, diversidad filogenética, diversidad funcional, islas tropicales, pérdida de la biodiversidad,
riqueza de especies, urbanización
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INTRODUCTION

Intense landscape transformation can reduce biodiversity up
to 75% (Díaz et al., 2019; Haddad et al., 2015), strongly con-
straining ecological processes in remaining patches of natural
habitat (Chase et al., 2020). Agricultural intensification drives
biodiversity loss by consuming primary productivity through
forest to agriculture conversion (Otero et al., 2020). Similarly,

urbanization leads to an equivalent loss of 500 million years of
avian evolutionary history (Sol et al., 2017). This situation has
stimulated the incorporation of environmental protection in the
international political agenda, yet biodiversity conservation tar-
gets have only been partially reached (Sutherland et al., 2021).
To achieve these targets, a comprehensive assessment of the
impacts of economic development on biodiversity in develop-
ing countries and especially in sensitive systems is long overdue.
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Large-scale economic and land-use changes can affect multi-
ple facets of biodiversity and interact with local climatic changes
(Jetz et al., 2007). These changes reduce species richness where
human-driven impacts are especially intense, such as in heavily
transformed landscapes (Díaz et al., 2019; Pimm et al., 2014),
and species variability in nearby landscapes (generally referred
to as biotic homogenization) (Devictor et al., 2008; McKin-
ney, 2006). These changes also affect different components
of species diversity, such as taxonomic (TD), functional (FD),
and phylogenetic diversity (PD) (Baiser & Lockwood, 2011;
Georgiev et al., 2020; Graham & Fine, 2008). Yet, in highly
biodiverse systems, heterogeneous agricultural landscapes can
sustain relatively high species richness (Fahrig, 2017) within
and between sites (Ranganathan et al., 2008; Sreekar et al.,
2021; Tscharntke et al., 2008). Biodiversity changes are medi-
ated by priority (i.e., historical contingency) effects, namely, ini-
tial community structure and historical land uses (Dallimer et al.,
2015; Fukami, 2015). Early community niche dynamics, if not
assessed, may act as a confounding factor simulating apparent
randomness—species’ composition changes that are difficult to
attribute to specific factors.

Hainan Island (People’s Republic of China) is one of the
world’s largest tropical islands and represents a highly suit-
able model to investigate the combined effects of economic
growth and enhanced environmental protection. Since the early
2000s, Hainan has undergone intense economic development,
leading to unregulated urban development (Gu & Wall, 2007),
decreased area of natural tropical forests (Lin et al., 2017),
and declines of native avian species (Xu et al., 2017). In 2010,
the establishment of an ecological function conservation area
(EFCA) aimed at regulating ecosystem services, such as car-
bon sequestration and water provision, may have helped ame-
liorate these negative effects by restricting land-use changes
in this special protection zone (Sun et al., 2020; Zhai et al.,
2018). Promoting human development and ecosystem stabil-
ity and resilience through ecosystem restoration and ecofriendly
agroforestry are key strategies to achieve sustainable economic
growth (Li et al., 2020; Zheng et al., 2019). However, there is a
lack of detailed assessments of how these profound economic
changes are affecting biodiversity (Mi et al., 2021).

We conducted an integrated assessment of changes in the
economy, climate, land use, and avian biodiversity over 15 years
on Hainan Island (18◦10′−20◦10′N and 108◦37′−111◦03′E).
We carried out our analyses at the local (10 × 10 km grid)
and regional (entire island) scales. We expected apparent ran-
dom drift, broadscale biodiversity changes, and biotic homog-
enization due to the magnitude of the changes. Nonetheless,
we expected biodiversity to be less affected by changes and
more diverse and communities to be more resilient inside than
outside the EFCA. We expected divergent effects of these
changes on TD, PD, and FD in natural, rural, and urban
areas.

METHODS

A flowchart of our method is in Appendix S1.

Study area

Hainan Island is one of the world’s largest tropical islands (rank
of 42) and the southernmost and largest island of the People’s
Republic of China. It has an area of about 35,400 km2 and a
population of over 10 million people in 2020 (National Bureau
of Statistics, 2021). It is dominated by a tropical wet savanna cli-
mate with very mild winters and hot and rainy summers (Köp-
pen classification). It is a remarkably biodiverse island. It has
over 400 avian species and is part of the Indo-Burma biodi-
versity hotspot (Myers et al., 2000). Biodiversity conservation
efforts have significantly improved in recent years, and as a
result there are 32 protected areas covering >7% of the island’s
area (Xu et al., 2017).

The EFCA, a large special protection zone established in
2010 in the mountainous central part of the island, while focus-
ing on ecosystem service provision might also benefit biodiver-
sity conservation (Li et al., 2020; Zheng et al., 2019) (Figure 1a).
The EFCA aims to balance the trade-off between provisioning
and regulating services (i.e., economic development and ecosys-
tem functions) (Zheng et al., 2019). These aims are achieved by
restricting and regulating land-use changes, such as the expan-
sion of rubber plantations in the EFCA and promoting ecosys-
tem restoration to recover previously degraded areas.

Avian diversity data

We focused on avian biodiversity because birds are often used
as indicators of biodiversity (Kati et al., 2004) and because the
data we used had sufficient resolution to conduct a comprehen-
sive analysis from local to regional scales. We conducted sur-
veys to assess long-term changes in avian diversity in Hainan.
Surveys were conducted along line transects by pairs of trained
ornithologists in 172 10 × 10 km grids from 1997 to 1998 (total
2232.5 km of transects, mean [SD] = 12,980 m [14,429]) and
2012 to 2013 (total 4080.4 km of transects, mean [SD] = 23,723
m [21,503]), mostly between March and October throughout
the island. At least 1 member of each observer pair participated
in both survey periods. Species identities and number of indi-
viduals were recorded. We recorded 5894 individuals from 191
species in 1998 and 8141 individuals from 215 species in 2013,
for a total of 256 avian species. All statistical analyses were con-
ducted in R 3.6.1 (R Core Team, 2021).

Two strategies were employed to overcome uneven sampling
effort among grids. First, we used the rarefy function in the
vegan package (Oksanen et al., 2020) to compute rarefied rich-
ness at the grid level by setting a minimum threshold of 5
observed individuals in each grid (Zou et al., 2020). This was
our TD metric. Grids with fewer than 5 observed individuals
were excluded from further analyses, reducing the sample from
172 to 152 grids. Results with a 5-individual threshold were
compared with a 20-individual threshold. We obtained a strong
positive correlation for both periods (1997–1998, R2

= 0.96;
2012–2013, R2

= 0.89) (Appendix S2), suggesting that this pro-
cedure was appropriate to obtain an accurate representation of
species richness in the different grids. Second, to compute PD
and FD (see below), we applied a Wisconsin transformation
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FIGURE 1 On Hainan Island (People’s Republic of China), (a) 145 grid areas (10 × 10 km) classified according to land use into low, middle (mid), and high
transformation areas (EFCA, boundaries of the ecological function conservation area) and (b–g) differences in taxonomic, phylogenetic, and functional diversity in
1998 and 2013 between low, mid, and high transformation areas
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(i.e., each grid was first divided by the species maximum num-
ber and then by the grid total) to these community data with the
decostand function in vegan (Oksanen et al., 2020).

Phylogenetic and functional diversity

We extracted 1000 phylogenetic trees, including the 256 avian
species we recorded, from a comprehensive phylogeny of global
birds (9993 species) (Jetz et al., 2012). We constructed a con-
sensus phylogenetic tree with the functions consensus.edges in
the phytools package (Revell, 2012) and multi2di in the ape
package (Paradis et al., 2004) to resolve multichotomies. We
used this consensus phylogenetic tree in further calculations. We
also curated a trait database for the 256 avian species, includ-
ing information on diet, foraging substrate, body morphology,
and clutch size. We used these traits because habitat trans-
formation, and particularly urbanization, filters species accord-
ing to these characteristics (Callaghan et al., 2019; Sepp et al.,
2018). Diet and foraging information was obtained from a com-
monly used foraging traits’ database (Wilman et al., 2014). Diet
was expressed as the proportion of 10 food types per species
(invertebrate, vertebrate endotherm, vertebrate ectotherm, ver-
tebrate fish, scavenger, fruit, etc.). Foraging substrate was also
expressed as the proportion of 8 types (water below surface,
water around surface, ground, understory, etc.). Body mor-
phology included body mass (taken from the abovementioned
database) and body length, beak culmen length, wing length, tail
length, and tarsus length, which were taken from the China Ani-
mal Scientific Database (http://www.zoology.csdb.cn). When
data from both sexes were available, we computed the aver-
age. We also took information on clutch size from this database.
Brood parasites were assigned a score of 1 for clutch size. We
then scaled trait data and built a dendrogram through a hier-
archical clustering analysis with the function hclust, which was
later converted into a phylo object.

We used the package picante to compute PD and FD (Kem-
bel et al., 2010). We estimated phylogenetic diversity by comput-
ing standardized effects sizes of Faith’s phylogenetic diversity
with the function ses.pd, which allowed us to control for the
effect of unequal richness across communities. We estimated
functional diversity with the same function. Given the lack of
independence between PD and FD (Cadotte et al., 2019), rather
than simply using observed values, we compared these values
against 999 null models constructed by shuffling all taxa labels
across the tips of the phylogenies. In doing so, we were able
to assess significant changes in observed values against a null
model based on this randomization. We standardized PD and
FD values against the null models by deducting the random
mean from the observed value and dividing these values by the
standard deviance of the random values. We computed these
scores for 1998 and 2013.

Land-use data

All spatial analyses and calculations were performed using
ArcMap 10.3 (ESRI, Redlands, California), particularly the

Zonal tool to estimate land-use values per grid. Land-use
data were obtained from the Data Centre for Resource and
Environmental Sciences of the Chinese Academy of Science
(RESDC) (https://www.resdc.cn), which is based on Landsat
TM/ETM remote sensing images. The downloaded data have
a resolution of 1 km2. We used data from 2000 to match
1997–1998 avian diversity data and averaged data from 2012
and 2013 to match 2012–2013 avian biodiversity data. Here-
inafter, we refer to these periods as 1998 and 2013. We used
grids of 10 × 10 km as the unit for analysis (Anderson et al.,
2009; Luoto et al., 2007). Information on the 21 land-use
categories we used, which we grouped into 7 categories (urban,
agricultural, forest, water, grassland, coastal, and water), is in
Appendix S3. This information is available in Chinese from
https://www.resdc.cn/data.aspx?DATAID=335. The bound-
ary of the EFCA was delineated from available sources (Li et al.,
2020), and the area of each grid in the EFCA was computed.

Habitat, climate, and economic data

We also downloaded data on habitat productivity (NDVI), cli-
mate, population density, gross domestic product (GDP), and
light pollution from the same source (RESDC). Annual NDVI
was based on SPOT/VEGETATION and MODIS remote
sensing images; maximum monthly NDVI values from January
to December at 1 km2 resolution were combined. Original val-
ues were divided into 9 levels with the Jenks (1967) natural
breaks method (1, 0.00–0.04; 2, 0.05–0.17; 3, 0.18–0.36; 4, 0.37–
0.48; 5, 0.49–0.58; 6, 0.59–0.65; 7, 0.66–0.69; 8, 0.70–0.81; 9,
0.82–1.0) and reclassified as low (0.00–0.36), mid (0.37–0.65),
and high (0.66–1.00). The number of pixels in each class were
counted for each grid. Unfortunately, these scores simply pro-
vided an estimate of habitat productivity and did not allow us to
determine specific vegetation classes or to discriminate between
natural forests and plantations. Still, in combination with land-
use data, we were able to determine which areas could sus-
tain high biodiversity. Digital elevation model data are based
on SRTM (Shuttle Radar Topography Mission) at a 90-m cell
resolution, and precipitation and temperature data are based
on daily observations from over 2400 meteorological stations
across China. Precipitation and temperature data were gener-
ated by sorting, calculation, and spatial interpolation. The units
of precipitation and of temperature were 0.1 mm and 0.1◦C,
respectively.

We used population and economic growth (Clausen & York,
2008; Jha & Bawa, 2006; Pergams et al., 2004), particularly
GDP per capita, as indicators of economic change in Hainan
because social processes may have a strong effect on biodi-
versity (Bragina et al., 2015). County-level population density
and GDP data were transformed to the grid scale by weighting
the area of each county in each grid. The unit of population
density was number of people per square kilometer, and GDP
was 10,000 yuan per km2. Light pollution data (watts per square
centimeter per steradian per micrometer) were based on the
Operational Linescan Sensor (OLS) onboard DMSP (Defense
Meteorological Satellite Program) at 1-km2 resolution. Light

http://www.zoology.csdb.cn
https://www.resdc.cn
https://www.resdc.cn/data.aspx?DATAID=335
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pollution data were computed for each grid with the same
method as for NDVI. For further analyses, we used the area
in square kilometer of the 3 NDVI classes (low, mid, or high),
mean precipitation and SD per grid, mean temperature and
SD per grid, mean elevation and range per grid, grid area, total
population and GDP per grid, and area of the 3 light pollution
classes (low, mid, or high) for 1998 and 2013.

Habitat classification and environmental
change

We aimed to characterize broadscale habitat transformation
initial conditions (i.e., in 1998) throughout the island. To do this,
we followed a sequential iteration procedure based on land-use
classification reliability to produce several meaningful clusters
(Carlier et al., 2021). We used the 7 relevant land-use categories
(urban, agricultural, grasslands, forests, water, coastal, and bar-
ren [square kilometers per grid]), EFCA area (square kilometers
per grid), climatic variables (mean and SE precipitation and tem-
perature), and elevation mean and range (meters per grid) to aid
the classification process. All the variables were scaled, which
strongly improved clustering performance. We ran a principal
component analysis (PCA) on these variables and then applied
a hierarchical clustering procedure on the obtained components
with the HCPC function FactoMineR (Lê et al., 2008). We
performed a multiresponse permutation procedure (MRPP) to
assess the homogeneity of the different groups (mrpp function
of vegan package [Oksanen et al., 2020]). An MRPP A score
>0.4 is desirable (Peck, 2010). We obtained a score of A = 0.24,
so we had to remove less important variables (with the lowest
η2 values). Following this criterion, we removed area, water,
barren, coastal, grassland, and precipitation mean. We also
excluded low NDVI, which provided redundant information
with the other 2 NDVI categories. We retained 11 descriptive
variables for an MRPP A score of 0.41 and produced 3 balanced
and meaningful groups according to the level of transformation
(low transformation area [LTA], n = 43; mid transformation
area [MTA], n = 57; high transformation area [HTA], n = 51)
(see RESULTS). We preferred to use these acronyms rather
than natural, rural, and urban because these broad land-use
categories were present in each of the transformation areas.

We were also interested in characterizing land-use, local-
climate, and economic changes between the 2 study periods.
To do this, we ran 3 different PCAs for each group of fac-
tors, focusing on variables that were relevant in the hierarchical
clustering analysis or that have potential to explain biodiversity
changes. We used differences between 1998 and 2013 in urban-
ization, agriculture, forest cover, mid NDVI, and high NDVI
area per grid as quantitative variables characterizing land-use
changes. We used differences between 2013 and 1998 in pre-
cipitation mean and SD, temperature mean and SD, and eleva-
tion mean and range per grid as quantitative variables to charac-
terize local-climate changes. We used differences between 2013
and 1998 in low, mid, and high light pollution, population den-
sity, and GDP per grid to quantify economic changes. All vari-
ables were scaled. We excluded grids that produced scores with

>6 SDs from the mean. This resulted in 6 additional grids
being excluded. We also excluded a grid with anomalous rar-
efied richness scores (close to 0). This reduced our sample to
145 grids.

Statistical analyses

After obtaining 3 main transformation areas and characterizing
land-use, local-climate, and economic changes for the Island, we
compared alpha and beta diversity between 1998 and 2013 and
determined the importance of its spatial component. In doing
so, we determined the extent of biodiversity homogenization at
the regional scale (Devictor et al., 2008). We used the Rarefy
package to estimate directional (spatially explicit) and nondi-
rectional rarefied species accumulation curves and beta diver-
sity accumulation curves (Ricotta et al., 2019). We ran the same
analysis with the 21 raw land-use categories in 1998 and 2013
to assess potential landscape homogenization. We then ran a
Wilcoxon rank sum test to determine differences in alpha and
beta directional and nondirectional diversity between 1998 and
2013. Also using a Wilcoxon Test, we determined whether there
were differences in TD, PD, and FD between these 2 periods.

We investigated differences in TD, PD, and FD among LTA,
MTA, and HTA. To do this, we used linear mixed-effects mod-
eling in the function lme of the nlme package (Pinheiro et al.,
2007). We used a mock random factor and latitude and longi-
tude as linear correlation structure to account for spatial auto-
correlation effects (Dormann et al., 2007). We were thus able
to construct spatially explicit models to assess the relation-
ships between biodiversity patterns and transformation areas.
We used TD as dependent variable and the 3 transformation
areas as factors. We alternatively used LTA and MTA as refer-
ences and showed results for all the potential interactions. We
did the same with PD and FD as dependent variables.

We determined the magnitude of historical contingency
effects on biodiversity changes from 1998 to 2013 (Fukami,
2015). We constructed linear mixed-effects models following
the procedure described above with a focus on biodiversity
score changes between periods. We ran a model with TD
changes as dependent variable and the interaction between ini-
tial TD, PD, and FD scores (in 1998) and transformation areas
as independent variables. We did the same with PD and FD
changes as dependent variables. We also assessed whether there
were differences in biodiversity changes (for TD, PD, and FD)
between transformation areas.

Finally, we assessed the relationships between land-use, local-
climate, and economic changes and biodiversity changes across
transformation areas. We followed the statistical approach
described above. Changes in TD was the dependent variable
and the interaction between the 3 components of the PCA
characterizing land-use changes and transformation areas
were the predictors. We repeated this procedure to assess the
interaction among the 3 components of local-climate change
and with the 2 components of economic change across the 3
transformation areas and repeated this procedure with PD and
FD as dependent variables.
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FIGURE 2 On Hainan Island (People’s Republic of China), (a) traditional (alpha) and directional (alpha dir) alpha diversity species accumulation curves for
1998 (98) and 2013 (13) and (b) traditional (beta) and directional (beta dir) beta diversity species accumulation curves for 1998 (98) and 2013 (13)

RESULTS

Land-use classification and biodiversity scores

Based on land-use and climatic variables from 1998, we classi-
fied 145 grid cells as LTA, MTA, or HTA (Figure 1a & Appendix
S4). The LTA grids were mainly in the EFCA (5373 km2, 37%
of grid sample), which showed high precipitation and tempera-
ture variability and high habitat productivity (NDVI). The MTA
grids were dominated by highly thermic and productive agricul-
tural land, mainly in lowland areas outside the EFCA. The HTA
grids were in thermic but less productive lowland areas outside
the EFCA and were dominated by urban and agricultural land
uses and low levels of forest cover.

Between 1998 and 2013, the directional (namely spatial) com-
ponent of taxonomic diversity variation decreased in impor-
tance within and between grids (namely, alpha and beta diver-
sity), suggesting ongoing biotic homogenization (traditional
alpha diversity 1998 vs. 2013, W = 15,235, p < 0.01; directional
alpha diversity 1998 vs. 2013, W = 16,220, p < 0.01; traditional
beta diversity 1998 vs. 2013, W = 8818, p < 0.01; directional
1998 vs. 2013, W = 8643, p < 0.01) (Figure 2a,b). Conversely,
we recorded no significant differences in directionality regarding
land uses between the 2 periods (nondirectional β: W = 10,084,
p= 0.12, directional β: W= 10,205, p= 0.16, both cases n= 145

grids), suggesting that landscapes did not become significantly
more homogeneous. Taxonomic diversity did not change in
grids across this period (W = 11,072, p = 0.43), whereas phylo-
genetic diversity decreased (W = 7928, p < 0.01) and functional
diversity increased (W = 16,411, p < 0.01) (Figure 1b–g).

Transformation areas showed marked differences in their
biodiversity scores. In 1998, communities in LTA were tax-
onomically more diverse than in HTA and marginally signif-
icantly more diverse than in MTA. Communities were more
diverse from an evolutionary point of view in LTA than in
MTA and HTA and in MTA than in HTA. There were no sig-
nificant differences in functional diversity between transforma-
tion areas (Table 1 & Figure 1b,d,f). There were subtle differ-
ences between 1998 and 2013 biodiversity scores. The MTA
become phylogenetically overdispersed when compared with
HTA, whereas LTA showed higher taxonomic diversity than
MTA and tended to be functionally overdispersed in compar-
ison with HTA (Table 1 & Figure 1c,e,g).

Community and land-use priority effects

We recorded strong effects of initial taxonomic, phylogenetic,
and functional scores (i.e., scores from 1998) on biodiversity
changes (Appendix S5). Initial taxonomic, phylogenetic, and
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TABLE 1 Spatially explicit, linear, mixed-effects models fit by restricted maximum likelihood used to assess biodiversity differences over time (1998–2013) in
145 100-km2 grids throughout Hainan Island (People’s Republic of China) with taxonomic,a phylogenetic,b and functionalc diversity measures (1998–2013) as
dependent variables and transformation area (low, middle [mid], or high), product of an agglomerative hierarchical clustering on 145 grids, as a predictor

Diversity component and year β SE t p

Taxonomic 1998

intercept 4.55 0.05 87.96 <0.01

low-mid –0.14 0.07 –2.00 0.05

low-high –0.23 0.08 –3.02 <0.01

mid-highd –0.09 0.07 –1.23 0.22

2013

intercept 4.58 0.07 62.03 <0.01

low-mid –0.13 0.05 –2.40 0.02

low-high –0.14 0.06 –2.28 0.02

mid-high –0.01 0.06 –0.09 0.93

Phylogenetic 1998

intercept –1.30 0.25 –5.09 <0.01

low-mid 0.45 0.19 2.37 0.02

low-high 0.85 0.21 4.12 <0.01

mid-high 0.40 0.20 1.98 0.05

2013

intercept –2.03 0.25 –8.16 <0.01

low-mid 0.80 0.19 4.26 <0.01

low-high 1.33 0.20 6.52 <0.01

mid-high 0.53 0.20 2.67 0.01

Functional 1998

intercept –0.95 0.26 –3.65 <0.01

low-mid 0.11 0.20 0.57 0.57

low-high 0.16 0.22 0.73 0.46

mid-high 0.04 0.21 0.21 0.83

2013

intercept 0.26 0.23 1.11 0.27

low-mid –0.17 0.18 –0.95 0.35

low-high –0.38 0.19 –1.99 0.05

mid-high –0.21 0.18 –1.15 0.25

aRarefied richness.
bStandardized effect size of Faith’s phylogenetic diversity versus null communities.
cStandardized effect size of Faith’s functional diversity versus null communities (based on a trait dendrogram instead of a phylogenetic tree).
dWe alternatively set low and mid transformation levels as reference and show results of all possible interactions.

functional scores showed significant negative relationships with
changes in its respective component across the 3 transforma-
tion areas. This means that communities with the lowest scores
showed the largest increases and communities with the highest
scores showed the largest decreases in these scores. Moreover,
we recorded several nonsignificant tendencies in LTA, with
taxonomically poorer communities displaying larger increases
in phylogenetic diversity and phylogenetically and functionally
poorer communities displaying larger increases in functional
diversity.

We found no significant differences in the magnitude of the
changes for the 3 components of biodiversity among the 3

transformation areas (Appendix S6). We recorded a nonsignifi-
cant tendency of LTA to experience smaller increases in phylo-
genetic diversity and larger increases in functional diversity than
HTA. Thus, overall, initial land-use conditions had a relatively
weak effect on biodiversity changes.

Economic development effects on biodiversity

Three sets of indicators described land-use, local-climatic,
and economic changes (Figure 3a & Appendix S7). Land-
use changes were characterized by decreasing productivity
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FIGURE 3 On Hainan Island (People’s Republic of China) from 1998 to 2013, (a) 1 × 1 km pixels showing the dominant land-use changes urbanization (newly
urban) and forest to agriculture conversion (EFCA, ecological function conservation area), (b) relationship between taxonomic (TD), phylogenetic (PD), and
functional diversity (FD) change and the component DIM3LU (landscape urbanization index) that characterizes land-use changes, (c) relationship between TD, PD,
and FD change and the component DIM1CL (high elevation climate index [i.e., increased precipitation variability and decreased temperature in high-elevation areas])
that characterizes local-climate changes, and (d) relationships between TD, PD, and FD change and the component DIM2SE (economic growth index [i.e., changes
in population and gross domestic product]) that characterizes economic changes (low, mid, or high) in spatial classification according to transformation areas
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index (NDVI) (DIM1LU), forest to agriculture conversion
index (DIM2LU), and landscape urbanization index (DIM3LU).
These changes represented an overall decrease of about 50 km2

in highly productive areas, an increase of about 100 km2 in
urban areas (at the expense of forest cover), and 100 km2 of for-
est converted agriculture. Changes in local climatic conditions
were characterized by high elevation climate index (namely,
increasing precipitation variability and decreasing temperature
in high elevation areas) (DIM1CL), precipitation and tem-
perature index (DIM2CL), and temperature variability index
(DIM3CL). Overall, local climatic conditions were character-
ized by a 500-ml average increase in precipitation and a 2◦C
decrease in temperature. Economic changes were characterized
by light pollution index (DIM1SE) and economic growth index
(DIM2SE). There was an average population increase of 3551
people/100 km2 and an average GDP increase of over 589,569
RMB/100km2, in addition to an expansion of 372 km2 of high-
intensity light pollution.

Regarding land-use changes, the landscape urbanization
index correlated positively with taxonomic diversity changes in
HTA and phylogenetic diversity changes in LTA (Table 2 &
Figure 3b). Thus, increasingly urbanized grids showed increases
in taxonomic diversity in urban areas and increases in evolu-
tionary diversity in natural areas. We also recorded a nonsignif-
icant positive effect on phylogenetic diversity changes in MTA.
Decreasing productivity index correlated positively with func-
tional diversity changes in LTA (i.e., in response to decreasing
habitat productivity, communities became functionally overdis-
persed in natural areas).

Changes in local climatic conditions also affected different
components of biodiversity. High elevation climate index corre-
lated positively with functional diversity changes in MTA and
HTA and showed a nonsignificant negative effect on taxo-
nomic diversity changes in HTA (Table 2 & Figure 3c). Thus,
increasing precipitation variability and decreasing temperature
in high elevation areas were related to functional overdispersion
in transformed habitats. The temperature variability index cor-
related negatively with functional diversity changes in MTA and
HTA, yet was only marginally significant in the former, suggest-
ing that increasing temperature variability was linked to func-
tional clustering in rural areas.

Regarding economic changes, the light pollution index
showed parallel (positive) effects with landscape urbanization
on taxonomic diversity changes in HTA (Table 2). This sug-
gests that increasing human activities indicated by light pollution
were indistinguishable from landscape urbanization. Finally,
economic growth index correlated negatively with functional
diversity changes in MTA and positively in HTA (Figure 3d).
Thus, increasing population density and economic wealth pro-
duced divergent effect in rural (functional clustering) and urban
habitats (functional overdispersion).

DISCUSSION

We recorded avian biodiversity changes on a tropical island with
high biodiversity on which enhanced biodiversity conservation

policies are being established and where rapid economic growth
and increasing ecological footprints are occurring (Dong et al.,
2019). Biodiversity may experience changes in response to eco-
nomic development and broadscale land use that may be dif-
ficult to attribute to specific factors because these responses
are complex and divergent across spatial scales (Jarzyna & Jetz,
2018). As such, there may be ubiquitous regional-scale biodi-
versity changes due to extensive ecosystem degradation and
local effects that can be attributed to specific factors, such
as land use and climate change (Chase et al., 2020; Newbold
et al., 2015). This complexity was apparent in our study area.
We recorded evidence of regional-scale spatial biotic homoge-
nization, phylogenetic clustering and functional overdispersion,
and habitat-dependent biodiversity responses. Our results con-
tribute to identifying the drivers of these changes and hence
inform conservation policies and sustainable development plans
aiming to harmonize environmental protection and economic
growth.

Our data show that large-scale habitat transformation
resulted in decreased spatial variability of taxonomic diversity
(Magurran et al., 2015). Because differences in taxonomic diver-
sity were relatively constant between transformation areas, this
result might be a consequence of changes in other components
of biodiversity. Increasing regional-scale phylogenetic cluster-
ing and functional overdispersion and the fact that communi-
ties that were more diverse taxonomically, phylogenetically, and
functionally showed decreases in each of these components sug-
gest there was a considerable reorganization of communities in
response to human-driven changes. This result is in line with
previous studies showing functional changes but no net biodi-
versity losses across time series (Dornelas et al., 2014; Vellend
et al., 2013; see also Jarzyna & Jetz, 2018). Our results are novel
in showing that communities responded to an intensification of
human activities by becoming less diverse in terms of their evo-
lutionary origins but more diverse in terms of their life-history
traits. Human activities may have driven the extinction of less
human-tolerant species (Sol et al., 2014). However, our results
are in contrast with other studies showing steep decreases in
functional diversity in response to habitat transformation at
global scales (Sol et al., 2020). Our study was conducted at local
to regional scales; thus, results are in line with works investigat-
ing similar geographical ranges in which the matrix can harbor
relatively high functional diversity (Pagani-Núñez et al., 2019;
Sreekar et al., 2021).

An interesting aspect of our results is that initial commu-
nity structure determined changes in biodiversity metrics to a
greater extent than land-use transformation. Intrinsic commu-
nity dynamics had more weight in shaping these responses than
extrinsic habitat features. Probably, human-driven environmen-
tal filters prevented community recolonization by native spe-
cialists (Xu et al., 2017) and promoted rapid colonization by a
relatively high diversity of disturbance-tolerant species (Jarzyna
& Jetz, 2018). This could be the result of niche preemption
caused by species competition, with human-tolerant species
outcompeting specialists in combination with niche modifi-
cation caused by human activities (Fukami, 2015). Enhanced
environmental protection averted to some extent human-driven
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TABLE 2 Spatially explicit, linear, mixed-effects models fit by restricted maximum likelihood used to assess biodiversity changes over time (1998–2013)
(dependent variables: Taxonomic,a phylogenetic,b and functionalc changes) and the interactions among habitat transformation levels (low, mid [middle], or high),
product of an agglomerative hierarchical clustering on 145 100-km2 grids from Hainan Province (People’s Republish of China), and land-use,d local-climate,e and
economic changes,f represented, by 3 sets of principal component analyses

Type of change across transformation area β SE t p

Land use taxonomic

intercept 0.05 0.11 0.46 0.65

low:DIM1LU 0.05 0.21 0.26 0.80

mid:DIM1LU 0.03 0.04 0.71 0.48

high:DIM1LU 0.05 0.04 1.27 0.20

low:DIM2LU –0.02 0.09 –0.20 0.85

mid:DIM2LU 0.01 0.05 0.25 0.80

high:DIM2LU –0.02 0.06 –0.41 0.68

low:DIM3LU 0.05 0.17 0.29 0.77

mid:DIM3LU –0.04 0.06 –0.64 0.52

high:DIM3LU 0.10 0.05 2.00 0.05

phylogenetic

intercept –0.35 0.31 –1.14 0.26

low:DIM1LU 0.02 0.60 0.03 0.98

mid:DIM1LU –0.04 0.11 –0.38 0.70

high:DIM1LU –0.08 0.11 –0.69 0.49

low:DIM2LU –0.23 0.26 –0.87 0.39

mid:DIM2LU –0.12 0.13 –0.94 0.35

high:DIM2LU –0.06 0.16 –0.38 0.71

low:DIM3LU 1.08 0.49 2.22 0.03

mid:DIM3LU 0.34 0.19 1.79 0.08

high:DIM3LU –0.05 0.15 –0.31 0.75

functional

intercept 0.88 0.33 2.72 0.01

low:DIM1LU –0.58 0.63 –0.91 0.36

mid:DIM1LU 0.01 0.12 0.05 0.96

high:DIM1LU 0.28 0.12 2.38 0.02

low:DIM2LU 0.08 0.28 0.28 0.78

mid:DIM2LU 0.00 0.14 –0.03 0.97

high:DIM2LU 0.26 0.17 1.51 0.13

low:DIM3LU –0.31 0.51 –0.59 0.55

mid:DIM3LU 0.08 0.20 0.42 0.67

high:DIM3LU 0.20 0.15 1.32 0.19

Local climate taxonomic

intercept <0.01 0.06 –0.05 0.96

low:DIM1CL 0.03 0.04 0.96 0.34

mid:DIM1CL –0.02 0.06 –0.24 0.81

high:DIM1CL –0.10 0.05 –1.80 0.07

low:DIM2CL –0.05 0.06 –0.80 0.42

mid:DIM2CL –0.04 0.05 –0.91 0.37

(Continues)
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TABLE 2 (Continued)

Type of change across transformation area β SE t p

high:DIM2CL 0.03 0.06 0.49 0.62

low:DIM3CL –0.06 0.06 –0.90 0.37

mid:DIM3CL 0.00 0.05 –0.07 0.95

high:DIM3CL –0.12 0.09 –1.26 0.21

phylogenetic

intercept –0.54 0.33 –1.64 0.10

low:DIM1CL –0.13 0.10 –1.23 0.22

mid:DIM1CL –0.17 0.19 –0.92 0.36

high:DIM1CL –0.16 0.16 –1.03 0.30

low:DIM2CL 0.07 0.17 0.41 0.68

mid:DIM2CL –0.02 0.14 –0.14 0.89

high:DIM2CL –0.08 0.17 –0.49 0.63

low:DIM3CL 0.05 0.18 0.26 0.80

mid:DIM3CL –0.21 0.15 –1.35 0.18

high:DIM3CL –0.41 0.27 –1.53 0.13

functional

intercept 1.34 0.30 4.44 <0.01

low:DIM1CL –0.13 0.10 –1.27 0.21

mid:DIM1CL 0.57 0.18 3.15 <0.01

high:DIM1CL 0.47 0.15 3.16 <0.01

low:DIM2CL 0.05 0.16 0.30 0.76

mid:DIM2CL <0.01 0.13 0.02 0.98

high:DIM2CL 0.05 0.16 0.29 0.77

low:DIM3CL –0.20 0.17 –1.14 0.26

mid:DIM3CL –0.28 0.15 –1.88 0.06

high:DIM3CL –0.73 0.26 –2.78 0.01

Economic taxonomic

intercept 0.02 0.11 0.17 0.87

low:DIM1SE –0.04 0.10 –0.40 0.69

mid:DIM1SE 0.01 0.04 0.31 0.76

high:DIM1SE 0.10 0.03 3.10 <0.01

low:DIM2SE 0.05 0.11 0.41 0.68

mid:DIM2SE 0.03 0.03 0.78 0.44

high:DIM2SE 0.05 0.07 0.77 0.44

phylogenetic

intercept –0.34 0.32 –1.06 0.29

low:DIM1SE 0.36 0.30 1.20 0.23

mid:DIM1SE –0.02 0.10 –0.17 0.86

high:DIM1SE –0.07 0.10 –0.66 0.51

low:DIM2SE 0.15 0.32 0.47 0.64

mid:DIM2SE 0.03 0.10 0.29 0.77

(Continues)
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TABLE 2 (Continued)

Type of change across transformation area β SE t p

high:DIM2SE –0.05 0.21 –0.24 0.81

functional

intercept 0.85 0.32 2.69 0.01

low:DIM1SE –0.29 0.30 –0.98 0.33

mid:DIM1SE 0.14 0.10 1.32 0.19

high:DIM1SE 0.01 0.10 0.15 0.88

low:DIM2SE –0.16 0.32 –0.50 0.62

mid:DIM2SE –0.24 0.10 –2.36 0.02

high:DIM2SE 0.42 0.21 2.03 0.04

aRarefied richness.
bStandardized effect size of Faith’s phylogenetic diversity versus null communities.
cStandardized effect size of Faith’s functional diversity versus. null communities (based on a trait dendrogram instead of a phylogenetic tree).
dAbbreviations: DIM1LU, decreasing productivity index; DIM2LU, forest to agriculture conversion index; DIM3LU, landscape urbanization index.
eAbbreviations: DIM1CL, high elevation climate index (namely increased precipitation variability and decreased temperature in high elevation areas); DIM2CL, precipitation and temperature
index; DIM3CL, temperature variability index.
fAbbreviations: DIM1SE, light pollution index; DIM2SE, economic growth index.

impacts on biodiversity, primarily by preventing drastic land-use
changes, such as the indiscriminate expansion of rubber mono-
cultures occurring outside protected areas (Zhai et al., 2018;
Zheng et al., 2019). Yet, negative broadscale effects on biodiver-
sity were widespread, although a lack of stronger positive effects
on biodiversity may be due to the limited time of implemen-
tation of the EFCA (only 3 out of 15 years studied here) and
that its focus is on ecological services rather than on biodiver-
sity conservation (Li et al., 2020; Zheng et al., 2019).

Land-use changes and human activities are often direct
drivers of biodiversity change and loss (e.g., Sambell et al., 2019;
Smith et al., 2012; Sol et al., 2014), yet there are also exam-
ples of how these processes can result in enhanced biodiversity
at moderate disturbance levels (McKinney, 2008), affect differ-
ent biodiversity components (Knapp et al., 2017; Sreekar et al.,
2021), or show no effect on biodiversity (Korányi et al., 2021).
Our study helps disentangle the diverging effects of different
aspects of human activities on different biodiversity metrics.
For instance, economic growth had a positive effect on tax-
onomic diversity that was only apparent in HTA. Landscape
urbanization was linked only to increasing phylogenetic overdis-
persion in LTA. Regional-scale functional diversity overdisper-
sion was apparently driven by many factors, including changes
in local climatic conditions, landscape urbanization, and eco-
nomic growth. Economic growth was linked to functional
clustering in MTA and to functional overdispersion in HTA.
These local-scale effects were more prevalent in MTA and
HTA (7 significant effects) than in LTA (1 significant effect)
(Figure 3b–d).

We acknowledge certain limitations of our approach. For
instance, we were unable to discriminate between forest types
with our data and did not examine in detail the performance
of strictly protected natural reserves. Moreover, we focused on
avian biodiversity responses to human activities, which might
differ from other taxa due to their high mobility and plastic-
ity, and the status of some species may have changed in the

last decade. Our research is significant in presenting evidence
that environmental protection can minimize negative impacts
of economic growth (Anderson & Mammides, 2020; Juuti-
nen et al., 2019; Sandker et al., 2012), yet pervasive regional-
scale negative effects can overcome local-scale positive effects
(Jarzyna & Jetz, 2018). Less diverse communities would bene-
fit from enhanced environmental protection, but more diverse
communities would require highly focused protection measures.
Therefore, conservation policies, while having broad benefits
on biodiversity, may require focused actions targeting natural
habitats and specialist species. Our results illustrate how eco-
nomic growth and biodiversity conservation can be comple-
mentary but at the likely cost of broadscale biotic homoge-
nization and local-scale biodiversity loss. Further research could
investigate this issue at broader spatial scales and incorporate
different taxa to determine whether these patterns are consis-
tent at continental scales and in other climates. Moreover, it
would be interesting to pinpoint which aspects of economic
activities contribute most to biodiversity responses and to study
the effects of diverging economic trajectories on different bio-
diversity metrics.
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