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Abstract By looking at the situation when the coefficients Pj(z) (j = 1, 2, · · · , n − 1) (or

most of them) are exponential polynomials, we investigate the fact that all nontrivial solutions

to higher order differential equations f (n) + Pn−1(z)f (n−1) + · · · + P0(z)f = 0 are of infinite

order. An exponential polynomial coefficient plays a key role in these results.
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1 Introduction

This paper is devoted to considering the growth of solutions to higher order linear differ-

ential equations

f (n) + Pn−1(z)f (n−1) + · · · + P0(z)f = 0, (1.1)

where P0(z) 6≡ 0 and Pj(z) (j = 1, 2, · · · , n− 1) are entire functions. Due to the classical result

by Wittich [20], all solutions to (1.1) are entire functions with finite order if and only if all

coefficients are polynomials. If max{ρ(Pj), j = 1, 2, · · · , n − 1} < ρ(P0), then every nontrivial

solution to (1.1) is of infinite order. In this paper, we are concentrating on looking at the

situation when the coefficients (or most of them) of (1.1) are exponential polynomials.

Throughout this paper, an important and basic tool in our discussion is Nevanlinna theory,

see e.g. [3, 9, 22, 23]. For a meromorphic function f(z), we denote by T (r, f) and N(r, f), the

characteristic function and the counting function of f(z), respectively. In particular, we define

the order and the lower order of a meromorphic function f(z) by

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
and µ(f) = lim inf

r→∞

log+ T (r, f)

log r
,

while

logdens(F ) = lim sup
r→∞

ml(F ∩ [1, r])

log r
and logdens(F ) = lim inf

r→∞

ml(F ∩ [1, r])

log r
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stand for the upper and lower logarithmic densities of F ⊂ [1,∞), respectively.

We now recall the exponential polynomial of order n, which is defined by

g(z) = p1(z)eq1(z) + · · · + pl(z)eql(z),

where pj and qj are polynomials in z with degree deg(g) = max
1≤j≤l

{deg(qj)} = n. As described

in [12], g(z) can be written in the normalized form

g(z) = H0(z) + H1(z)eω1zn

+ · · · + Hm(z)eωmzn

, (1.2)

where m ≤ l, Hj are either exponential polynomials of order ≤ n − 1 or polynomials in z, and

ωj are pairwise different nonzero complex constants referred to as the leading coefficients of g.

We second recall that the Phragmén-Lindelöf indicator function of an entire function g of

finite order ρ(g) = ρ > 0 is

hg(θ) = lim sup
r→∞

r−ρ log |g(reiθ)|, θ ∈ [−π, π).

For an exponential polynomial (1.2), we can get that hg(θ) = max
1≤j≤m

{ℜ(ωje
inθ)}, and so it

follows from the proof of ([11], Satz 4) (see also [12], p. 462) that

hg(θ) = lim
r→∞

r−n log |g(reiθ)| (1.3)

with finitely many possible exceptional values θ on [−π, π). Hence an exponential polynomial

is of completely regular growth (c.r.g.) on every ray with at most finitely many exceptions.

By ([14],Theorem 1.3.4) or ([15], p. 140), it follows that exceptional rays are not possible, and

hence g is of completely regular growth.

Considering infinite order solutions to the second order differential equation

f ′′ + A(z)f ′ + B(z)f = 0, (1.4)

with entire coefficients A(z) and B(z), a natural goal that arises is to find the assumptions on

the coefficients A(z) and B(z). It is known that (i) if either ρ(A) < ρ(B) or A(z) is a polynomial

and B(z) is transcendental, or (ii) if either ρ(B) < ρ(A) ≤ 1/2 or A(z) is transcendental with

ρ(A) = 0 and B(z) is a polynomial, then every solution f 6≡ 0 of (1.4) is of infinite order

[4, 7, 13, 21]. Kwon improved Theorem 4 in [4], in which the angular sector θ1 ≤ arg z ≤ θ2 is

replaced by a smaller set E, and obtained

Theorem 1.1 ([8, Theorem 3]) Let E be a set of complex numbers satisfying dens{|z| :

z ∈ E} > 0, and let A(z) and B(z) be entire functions which satisfy

|A(z)| ≤ exp{o(1)|z|β}

and

|B(z)| ≥ exp{(1 + o(1))α|z|β},

respectively, as z → ∞ in E. Then every solution f 6≡ 0 of (1.4) is of infinite order, and hyper

order ρ2(f) ≥ β.

If ρ(A) = ρ(B) with different types, Wang and Chen [17] obtained that every nontrivial

entire solution of (1.4) satisfies µ(f) = ∞. However, if ρ(A) = ρ(B), the conclusions are usually

false. For example, f(z) = exp{P (z)} satisfies the differential equation

f ′′ + A(z)f ′ + (−P ′′ − (P ′)2 − A(z)P ′)f = 0,
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where A(z) is a transcendental entire function and P (z) is a nonconstant polynomial. Thus,

for this situation, we can recall Theorem 2.1 from Heittokangas et al.[6].

Theorem 1.2 ([6, Theorem 2.1]) Let A(z) and B(z) be entire such that ρ(A) = ρ(B) ∈
(0,∞), and assume that both are of finite type. If (1.4) possesses a solution f 6≡ 0 of finite

order, then

hB(θ) ≤ max{0, hA(θ)}, θ ∈ [−π, π).

In particular, if there exists an θ0 ∈ [−π, π) such that max{0, hA(θ0)} < hB(θ0), then all

solutions of (1.4) are of infinite order.

Heittokangas et al. [6, 19] studied the entire solutions of differential equation (1.1) with

exponential polynomial coefficients and obtained some profound results. In this paper, we are

considering the infinite order solutions of (1.1) with exponential polynomials as its coefficients

and obtain

Theorem 1.3 Let Pj(z) (j = 0, · · · , n − 1) be entire such that ρ(Pj) = ρ ∈ (0,∞), and

assume that all of them are of finite type. If (1.1) possesses a solution f 6≡ 0 of finite order ,

then

hP0(θ) ≤ max{0, hP1(θ), hP2 (θ), · · · , hPn−1(θ)}, θ ∈ [−π, π). (1.5)

In particular, if there exists a θ0 ∈ [−π, π) such that max{0, hP1(θ0), hP2(θ0), · · · , hPn−1(θ0)} <

hP0(θ0), then all solutions of (1.1) are of infinite order.

Remark 1.4 Inequality (1.5) cannot be replaced by

hP0(θ) ≤ max{hP1(θ), hP2 (θ), · · · , hPn−1(θ)}, θ ∈ [−π, π).

For example, when P0(z) = 2, P1(z) = 1 − ez and P2(z) = ez, we have that hP0(θ) = 0 and

hP1(θ) = hP2(θ) = cos θ, though f(z) = e−z − 1 solves the differential equation

f
′′′

+ P2(z)f ′′ + P1(z)f ′ + P0f = 0.

Obviously, hP0(θ) ≤ max{hP1(θ), hP2 (θ)} when θ ∈ [−π
2 , π

2 ], but max{hP1(θ), hP2 (θ)} < hP0(θ)

when θ ∈ [−π, π)\[−π
2 , π

2 ].

Theorem 1.5 Let P1(z) be an entire function of completely regular growth, and let

Pj(j 6= 1) be any entire function such that ρ(P1) > max {ρ(Pj) : j 6= 1}. Define E = {θ ∈
[−π, π) : hP1(θ) ≤ 0}. Then every solution f 6≡ 0 of (1.1) satisfies

ρ(f) ≥ max

{

ρ(P1),
(

21
√

m(E)
)−1

− 1

}

,

while ρ(f) = ∞ if m(E) = 0.

Definition 1.6 ([6, 11]) The convex hull co(W ) of a finite set W ⊂ C is the intersection of

finitely many closed half-planes each containing W . Hence co(W ) is either a compact polygon

or a line segment. We denote the perimeter of co(W ) by C(co(W )). If co(W ) is a line segment,

then C(co(W )) equals twice the length of this line segment. Related to the leading coefficients

in (1.2), we denote that W = {w1, · · · , wm} and W0 = W
⋃{0}.

Definition 1.7 ([10]) Suppose that f 6≡ 0 is a solution of differential equation (1.1). If f

satisfies

lim sup
r→∞

log T (r, f)

rn
= 0,
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then we say that the differential equation (1.1) has a nontrivial n-subnormal solution.

Theorem 1.8 Let Pj(z)(j = 0, · · · , n − 1) be entire functions, α > 1 be a constant,

and let f1, f2, · · · , fn be linearly independent solutions of (1.1). Then there exists a constant

r0 = r0(α) > 0 such that for all r ≥ r0, we have

T (r, Pn−1) ≤ max{logT (αr, f1), log T (αr, f2), · · · , log T (αr, fn)} + O(log r). (1.6)

If Pn−1(z) satisfies

lim sup
r→∞

r−1T (r, Pn−1) > 0, (1.7)

then at least one of f1, f2, · · · , fn cannot be a 1−subnormal solution. In particular, if Pn−1(z)

is an exponential polynomial

Pn−1(z) = H0(z) + H1(z)ew1zn

+ · · · + Hm(z)ewmzn

,

with ρ(Pn−1) = n ≥ 1, then (1.7) holds and (1.6) can be replaced by

(C(co(W0)) + o(1))
rn

2π
≤ max{log T (r, f1), log T (r, f2), · · · , log T (r, fn)}, (1.8)

where W0 = {0, w0, · · · , wm}.
Theorem 1.9 Let A(z) and B(z) be two exponential polynomials with degree n, and let

E = {θ ∈ [−π, π) : hA(θ) = hB(θ)} with mesE = 0. Then

(i) if hA(θ) < hB(θ), θ ∈ [−π, π)\E, every transcendental solution f of (1.4) satisties

ρ(f) = ∞ and ρ2(f) = n;

(ii) if hA(θ) > hB(θ), θ ∈ [−π, π)\E, every finite order solution f of (1.4) satisties ρ(f) = n.

Example 1.10 When A(z) = e2z and B(z) = −(e3z + e2z + ez), we have 0 < hA(θ) =

2 cos θ < hB(θ) = 3 cos θ when θ ∈ (−π
2 , π

2 ) and hA(θ) = 2 cos θ < hB(θ) = cos θ < 0 when

θ ∈ [−π, π)\[−π
2 , π

2 ]. Hence, hA(θ) < hB(θ), θ ∈ [−π, π)\E. Obviously, f(z) = eez

solves the

differential equation (1.4), which satisfies ρ(f) = ∞ and ρ2(f) = 1 = deg(A) = deg(B).

Example 1.11 When A(z) = −(e3z + e2z + ez) and B(z) = e2z, we have hA(θ) =

3 cos θ > hB(θ) = 2 cos θ > 0 when θ ∈ (−π
2 , π

2 ). 0 > hA(θ) = cos θ > hB(θ) = 2 cos θ when

θ ∈ [−π, π)\[−π
2 , π

2 ]. Hence, hA(θ) > hB(θ), θ ∈ [−π, π)\E. Obviously, f(z) = e−z + 1 solves

the differential equation (1.4), which satisfies ρ(f) = 1 = deg(A) = deg(B).

2 Lemmas

In order to prove our Theorems, we need the following lemmas.

Lemma 2.1 Let Pj(z) (j = 0, · · · , n−1) be entire functions such that ρ(P1) > max{ρ(Pj) :

j 6= 1}. Then every solution f 6≡ 0 of (1.1) satisfies ρ(f) ≥ ρ(P1).

Proof Write (1.1) as

|P1(z)| ≤
∣

∣

∣

∣

f (n)

f ′

∣

∣

∣

∣

+

∣

∣

∣

∣

Pn−1(z)
f (n−1)

f ′

∣

∣

∣

∣

+ · · · +
∣

∣

∣

∣

P2(z)
f ′′

f ′

∣

∣

∣

∣

+

∣

∣

∣

∣

P0(z)
f

f ′

∣

∣

∣

∣

.

By the lemma of logarithmic derivative, we have

T (r, P1) = m(r, P1) ≤
n−1
∑

j=0,j 6=1

m(r, Pj) + m

(

r,
f

f ′

)

+ O(log rT (r, f))
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≤
n−1
∑

j=0,j 6=1

T (r, Pj) + 3T (r, f) + O(log rT (r, f)).

The assertion then follows by the assumption ρ(P1) > max{ρ(Pj) : j 6= 1}. �

Lemma 2.2 ([16, Theorem 1]) Suppose that Fj (1 < j < L) are entire functions with

order not exceeding ρ < ∞. Suppose that cj (1 < j < L) are complex numbers lying in a

sector with the vertex at the origin and an angle opening 2γ for some γ in [0, π
2 ). For β ∈ (0, 1)

and r > 0, let

Ur =







θ ∈ [0, 2π] :

∣

∣

∣

∣

∣

∣

L
∑

j=1

cjre
iθ

F ′
j(re

iθ)

Fj(reiθ)

∣

∣

∣

∣

∣

∣

≥ β

∣

∣

∣

∣

∣

∣

L
∑

j=1

cjn(r, 0, Fj)

∣

∣

∣

∣

∣

∣







.

Then, for M > 3L, there exists a set E = EM ⊂ [1,∞) with lower logarithmic density of at

least 1 − 3L/M such that

m(Ur) >

(

(1 − β) cos γ

7M(ρ + 1)

)2

, r ∈ E.

Lemma 2.3 ([5]) Let (f, H) be a given pair where f has finite order ρ, and let ε > 0 be

a given constant. Then there exists a set E ⊂ (1,∞) that has finite logarithmic measure, such

that, for all z satisfying |z| /∈ E
⋃

[0, 1] and for all (k, j) ∈ H , we have
∣

∣

∣

∣

f (k)(z)

f (j)(z)

∣

∣

∣

∣

≤ |z|(k−j)(ρ−1+ε).

Lemma 2.4 ([9, Proposition 1.4.8]) Let f1, · · · , fn be linearly independent meromorphic

solutions of

f (n) + an−1f
(n−1) + · · · + a0(z)f = 0,

with meromorphic coefficients. Then the Wronskian determinant W (f1, · · · , fn) satisfies the

differential equation W ′ + an−1(z)W = 0. In partical, if an−1(z) is an entire function, then for

some c ∈ C, W (f1, · · · , fn) = c exp ϕ, where ϕ is a primitive function of −an−1(z).

Lemma 2.5 ([11]) Let g be given by (1.2). Then

T (r, g) = C(co(W0))
rn

2π
+ o(rn). (2.1)

If H0(z) 6= 0, then

m

(

r,
1

g

)

= o(rn), (2.2)

while if H0(z) ≡ 0, then

N

(

r,
1

g

)

= C(co(W ))
rn

2π
+ o(rn). (2.3)

Lemma 2.6 ([5, Theorem 2]) Let f(z) be a transcendental meromorphic function and

α > 1. Then, for ∀ε > 0,

(i) ∃B > 0, and a set H1 with finite logarithmic measure, when |z| = r /∈ H1, we have
∣

∣

∣

∣

f (j)(z)

f (i)(z)

∣

∣

∣

∣

≤ B

[

T (αr, f)

r
(log r)α log T (αr, f)

]j−i

(0 ≤ i < j);
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(ii) there exists a set H2 ⊂ [0, 2π) with zero linear measure and constant B > 0 such that,

when θ ∈ [0, 2π)\H2, there exists R0 = R0(θ) > 1, and when arg z = θ, |z| = r > R0, we have
∣

∣

∣

∣

f (j)(z)

f (i)(z)

∣

∣

∣

∣

≤ B[T (αr, f) logT (αr, f)]j−i (0 ≤ i < j).

Lemma 2.7 ([1]) Let A0, A1, · · · , Ak−1 be entire functions of finite order. If f(z) is a

solution of equation

f (k) + Ak−1f
(k−1) + · · · + A0f = 0,

then ρ2(f) ≤ max{ρ(Aj) : j = 0, 1, · · · , k − 1}.
Lemma 2.8 ([18, Lemma 2.5]) Let f be an entire function and suppose that

G(z) :=
log+ |f (k)(z)|

|z|ρ

is unbounded on some ray arg z = θ with constant ρ > 0. Then there exists an infinite sequence

of points zn = rneiθ (n = 1, 2, · · · ), where rn → ∞ such that G(zn) → ∞ and
∣

∣

∣

∣

f (j)(zn)

f (k)(zn)

∣

∣

∣

∣

≤ 1

(k − j)!
(1 + o(1))rk−j

n , j = 0, 1, · · · , k − 1

as n → ∞.

Lemma 2.9 ([18, Lemma 2.6]) Let f be an entire function with ρ(f) = ρ < ∞. Suppose

that there exists a set E ⊂ [−π, π) which has linear measure zero such that log+ |f(reiθ)| ≤ Mrσ

for any ray arg z = θ ∈ [−π, π)\E, where M is a positive constant depending on θ, while σ is a

positive constant independent of θ. Then ρ(f) < σ.

3 Proofs of Theorems

Proof of Theorem 1.3 Write (1.1) as

−P0(z) =
f (n)

f
+ Pn−1(z)

f (n−1)

f
+ · · · + P1(z)

f ′

f
,

and then use the logarithmic derivative estimate to see that (1.5) holds for almost every θ.

Since Pj(z)(j = 0, · · · , n − 1) are of finite type, the indicator functions are continuous, and so

(1.5) holds for every θ. The remaining assertion is a trivial consequence of (1.5). �

Proof of Theorem 1.5 Lemma 2.1 shows that ρ(f) ≥ ρ(P1). Suppose, on the contrary,

that (1.1) has a solution f 6≡ 0 with ρ(f) <
(

21
√

m(E)
)−1

− 1. Then f is of finite order of

growth. We now split our proof into two cases.

Case 1 m(E) > 0. Then there exists sufficiently small ε > 0 such that

ρ(f) <
1 − ε

7(3 + ε)
√

m(E)
− 1 <

(

21
√

m(E)
)−1

− 1. (3.1)

We assert that f has infinitely many zeros. Otherwise, f = P eQ with polynomials P 6= 0

and Q. Substituting f into (1.1), we conclude that

An(P, Q) + An−1(P, Q)Pn−1 + · · · + A1(P, Q)P1 + PP0 = 0,
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where Aj(P, Q) (j = 1, 2, · · · , n) are polynomials of P, Q and their derivatives, with degrees

j + 1. Since ρ(P1) > max{ρ(Pj) : j 6= 1}, we have A1(P, Q) = P ′ + PQ′ = 0, and so P = ce−Q

for some constant c, which is a contradiction.

Set L = 1, γ = 0, β = ε, c1 = 1 and M = 3 + ε in Lemma 2.2. Then we have

Ur =

{

θ ∈ [0, 2π] : r

∣

∣

∣

∣

f ′(reiθ)

f(reiθ)

∣

∣

∣

∣

≥ εn

(

r,
1

f

)}

, (3.2)

and there exists a set F1 ⊂ [1,∞) with log dens(F1) ≥ ε
3+ε

such that

m(Ur) >

(

1 − ε

7(3 + ε)(ρ(f) + 1)

)2

, r ∈ F1. (3.3)

Hence (3.1) and (3.3) yield that m(Ur) > m(E) and m(Ur\E) > 0.

Since P1(z) is of completely regular growth, it follows by [14, Theorem 1.2.1] that

log |P1(z)| = rρ(P1)hP1(θ) + o(rρ(P1)) (3.4)

for z = reiθ outside of a possible C0-set D ⊂ C, which can be covered by a system of Euclidean

discs D(an, rn) such that

lim
r→∞

r−1
∑

|an|≤r

rn = 0. (3.5)

Let F2 be the projection of D onto the non-negative real axis. Then F2 is covered by the

intervals (|an| − rn, |an| + rn) of length 2rn. Consequently, log dens(F2) ≤ dens(F2) = 0 by

(3.5).

We note from Lemma 2.3 that there exists a set F3 with log des(F3) = 0 such that
∣

∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣

∣

≤ |z|j(ρ(f)−1+ε), |z| /∈ F3

⋃

[0, 1], j = 1, 2, · · · , n. (3.6)

Define F = F1\(F2

⋃

F3). Then log dens(F ) ≥ ε
3+ε

. Rewrite (1.1) as

−P1(z)
f ′

f
=

f (n)

f
+ Pn−1(z)

f (n−1)

f
+ · · · + P2(z)

f ′′

f
+ P0(z). (3.7)

Thus, for z = reiθ such that r ∈ F and θ ∈ Ur\E, we have, from (3.2), (3.4), (3.6) and (3.7),

that

εr−1n

(

r,
1

f

)

exp(rρ(P1)hP1(θ) + o(rρ(P1)))

≤ [M(r, Pn−1) + M(r, Pn−2) + · · · + M(r, P2) + 1]rn(ρ(f)−1+ε) + M(r, P0),

where hP1(θ) > 0. This contradicts the fact that ρ(P1) > max{ρ(Pj) : j 6= 1}.
Case 2 m(E) = 0. Set L = 1, γ = 0, β = 1

2 , c1 = 1 and M = 4 in Lemma 2.2. Then we

have

Ur =

{

θ ∈ [0, 2π] : 2r

∣

∣

∣

∣

f ′(reiθ)

f(reiθ)

∣

∣

∣

∣

≥ εn

(

r,
1

f

)}

,

and there exists a set F4 ⊂ [1,∞) with log dens(F4) ≥ 1
4 such that

m(Ur) >

(

1

56(ρ(f) + 1)

)2

, r ∈ F4.

It is clear that m(Ur) > 0 and m(Ur\E) > 0. The remainder of the proof follows Case 1. �
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Proof of Theorem 1.8 If f1, · · · , fn are linearly independent solutions of (1.1), then

we have, from Lemma 2.4, that the Wronskian determinant

W (f1, · · · , fn) = C exp

{

−
∫ z

Pn−1(t)dt

}

for some constant C 6= 0. By using the logarithmic derivative estimate [2, Corollary 3.2.3], we

have, for β =
√

α, that

T (r, Pn−1) = T

(

r,
W ′

W

)

= O(log T (βr, W )) + O(log r). (3.8)

Set E = f1f2 · · · fn. Then

W

E
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
f ′

1

f1

f ′

2

f2
· · · f ′

n

fn

...
...

...
...

f
(n−1)
1

f1

f
(n−1)
2

f2
· · · f(n−1)

n

fn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and so

T (r, W ) = m(r, W ) ≤
n

∑

j=1

(1 + o(1))T (r, fj) (3.9)

for all r outside of a set E ⊂ [0,∞) of finite linear measure. Set σ =
∫

E
dr, and r0 =

(σ + 1)/(β − 1). By checking the proof of Lemma 1.1.1 in [9], we have

T (r, W ) ≤ 2n max{T (βr, f1), T (βr, f2), · · · , T (βr, fn)} (3.10)

for all r ≥ r0. Since β2 = α, we have proved (1.6) from (3.8) and (3.10).

We now assert that at least one of f1, f2, · · · , fn cannot be a 1-subnormal solution of (1.1).

On the contrary, suppose that f1, f2, · · · , fn are all 1-subnormal solutions of (1.1). By (1.7),

there exists a sequence {rn} of positive real numbers tending to infinity such that

lim
n→∞

r−1
n T (rn, Pn−1) > 0.

Now, substituting r = rn into (1.6) and dividing (1.6) by αrn, we arrive at a contradiction, as

n → ∞.

Finally, suppose that Pn−1(z) is an exponential polynomial. We deduce from Lemma 2.5

that

T (r, Pn−1) = (C(co(W0)) + o(1))
rn

2π
. (3.11)

(1.6) and (3.11) give that

(C(co(W0)) + o(1))
rn

2παn
≤ max{log T (r, f1), log T (r, f2), · · · , log T (r, fn)} (3.12)

for all r ≥ αr0. By choosing β = β(r) = 1 + (σ + 1)/r for r ≥ 1, we derive from Lemma 1.1.1

in [9] that

α−n = β−2n = 1 + o(1), r → ∞,

and hence (3.12) yields (1.8). �
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Proof of Theorem 1.9 (i) Suppose, on the contrary, that ρ(f) < ∞. We deduce from

Lemma 2.3 that there exists a set F5 ⊂ [1,∞) of finite logarithmic measure and a positive

constant M such that for all z satisfying |z| = r 6∈ F5 ∪ [0, 1],
∣

∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣

∣

≤ rM . (3.13)

Since hA(θ) < hB(θ), there must exist an θ0 such that hA(θ0) < hB(θ0). Thus, we obtain

from (1.3) that

|A(reiθ0)| ≤ exp{(hA(θ0) + ε)rn} (3.14)

and

|B(reiθ0)| ≥ exp{(hB(θ0) − ε)rn} (3.15)

for all ε
(

0 < ε < hB(θ0)−hA(θ0)
2

)

, and for all sufficiently large r. Therefore, we obtain from

(1.4) and (3.13)–(3.15) that

exp{(hB(θ0) − ε)rn} ≤ |B(reiθ0)| ≤
∣

∣

∣

∣

f ′′(z)

f(z)

∣

∣

∣

∣

+ |A(z)|
∣

∣

∣

∣

f ′(z)

f(z)

∣

∣

∣

∣

≤ 2rM exp{(hA(θ0) + ε)rn},

which is a contradiction, and so ρ(f) = ∞.

We further obtain from Lemma 2.6 that there exists a set F6 of finite logarithmic measure

and a constant B > 0 such that, for all z satisfying |z| = r 6∈ F6,
∣

∣

∣

∣

f (j)(z)

f (i)(z)

∣

∣

∣

∣

≤ BT (2r, f)2k, 0 ≤ i < j ≤ k. (3.16)

Thus, for all z satisfying |z| = r 6∈ F6, we deduce, from (1.4), (3.14)–(3.15), that

exp{(hB(θ0) − hA(θ0) − 2ε)rn} ≤ 2BT (2r, f)4,

and so ρ2(f) ≥ n. On the other hand, Lemma 2.7 shows that ρ2(f) ≤ max{ρ(A), ρ(B)} = n.

We then easily obtain that ρ2(f) = n.

(ii) We first affirm that G(z) = log+ |f ′(reiθ)|
rn is bounded on ray arg z = θ ∈ [−π, π)\E.

On the contrary, if G(z) is unbounded on ray arg z = θ ∈ [−π, π)\E, then we obtain from

Lemma 2.8 that there exists a positive constant K and an infinite sequence of points zn = rneiθ

(n = 1, 2, · · · ), where rn → ∞ such that G(zn) → ∞ and
∣

∣

∣

∣

f(zn)

f ′(zn)

∣

∣

∣

∣

≤ Krn

as n → ∞.

Thus, for all 0 < ε < hA(θ)−hB(θ)
2 , we obtain from Lemma 2.3 and (1.4) that

exp{(hA(θ) − ε)rn
n} ≤ |A(rneiθ)| ≤

∣

∣

∣

∣

f ′′(rneiθ)

f ′(rneiθ)

∣

∣

∣

∣

+

∣

∣

∣

∣

B(rneiθ)
f(rneiθ)

f ′(rneiθ)

∣

∣

∣

∣

≤ KrM
n exp{(hB(θ) + ε)rn

n},

which is a contradiction. Thus, for some positive constant M ,

log+ |f ′(reiθ)|
rn

≤ M,

when θ ∈ [−π, π)\E. We then obtain from Lemma 2.9 that ρ(f) = ρ(f ′) ≤ n.
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If ρ(f) < n, we then deduce a contradiction. By the Wiman-Valiron theory, there exists a

set F6 ⊂ (1,∞) with finite logarithmic messure such that, for all z satisfying |z| = r /∈ F6

⋃

[0, 1],

and |f(z)| = M(r, f),

f (j)(z)

f(z)
=

(

v(r)

z

)j

(1 + o(1)), j = 1, 2. (3.17)

Since ρ(f) < n, we choose a sequence {zt : zt = rte
iθt} such that |f(zt)| = M(rt, f),

θt ∈ [−π, π)\E and lim
t→∞

θt = θ0 ∈ [−π, π)\E with rt /∈ F6

⋃

[0, 1] as rt → ∞. Then {zt}
satisfies (3.17) and v(rt) < rn

t .

Since θ0 satisfies hA(θ0) > hB(θ0) and the continuity of hA(θ) and hB(θ), we have

lim
t→∞

[hA(θt) − hB(θt)] > 0.

Hence there exists N > 0 such that hA(θt) − hB(θt) > 1
2 (hA(θ0) − hB(θ0)) > 0 for t > N .

Since A(z) and B(z) are exponential polynomials with degree n, we obtain from (1.3), (1.4)

and (3.17) that, for any given ε (0 < ε < 1
4 (hA(θt) − hB(θt))),

exp{hA(θt)(1 − ε)rn
t }

(

v(rt)

rt

)

(1 + o(1))

≤
(

v(rt)

rt

)2

(1 + o(1)) + exp{hB(θt)(1 + ε)rn
t }. (3.18)

Therefore, we obtain from (3.18) that, for some positive constant M ,

rt exp{(hA(θt) − hB(θt) − 2ε)rn
t } ≤ Mv(rt) < Mrn

t ,

which is a contradiction. Thus, ρ(f) = n. �
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