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GROWTH OF SOLUTIONS TO HIGHER ORDER

DIFFERENTIAL EQUATIONS WITH MITTAG-LEFFLER

COEFFICIENTS

ZHI-BO HUANG*, ILPO LAINE, AND MIN-WEI LUO*

Communicated by Min Ru

Abstract. The classical problem of finding conditions on the entire coeffi-

cients Aj (j = 0, 1, · · · , k−1) ensuring that all nontrivial solutions to higher

order differential equations f (k) +Ak−1f
(k−1) + · · ·+A1(z)f

′
+A0(z)f = 0

are of infinite lower order is being discussed in this paper. In particular, we

assume that the coefficients (or most of them) are Mittag-Leffler functions.

1. Introduction and main results

This paper is devoted to considering the growth of solutions to higher order

linear differential equations

(1.1) f (k) +Ak−1(z)f (k−1) + · · ·+A0(z)f = 0,

where A0(z) 6≡ 0 and Aj(z) (j = 1, 2, · · · , k − 1) are entire functions. As is well

known, all solutions to (1.1) are entire functions. Due to the classical result by

Wittich [14], all solutions to (1.1) are of finite order if and only if all coefficients

are polynomials. As for number of linearly independent solutions of infinite order

(in which case at least one of the coefficients is transcendental), see Frei [3] for

the classical result and [8] for more detailed recent investigations. Trivially, if

max{ρ(Aj), j = 1, 2, · · · , k − 1} < ρ(A0), then every nontrivial solution to (1.1)
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is of infinite order. In this paper, we are concentrating to looking at the situation

when the coefficients (or most of them) of (1.1) are Mittag-Leffler functions.

Throughout this paper, we use the key results and notations of the Nevanlinna

theory of meromorphic functions, see e.g. [5, 16, 17]. In particular, we need

to apply the notions of order ρ, lower order µ and hyper-order ρ2 frequently.

Moreover, we need to apply various notions of densities and measures. As a

suitable reference for them, the reader may look at [7]. Also, we need to make

use of the Wiman-Valiron theory, see e.g. [9, 12].

We next recall Mittag-Leffler function, see [5], p. 83–86:

(1.2) Eρ(z) =

∞∑
k=0

zk

Γ
(

1 + k
ρ

) , 0 < ρ <∞.

Using Stirling’s formula, it is easy to verify that this power series has an infinite

radius of convergence. For several specific values of ρ, Mittag–Leffler function re-

duces back to well-known elementary functions such as to the exponential function

ez for ρ = 1 and to cos
√
z for ρ = 1/2. Furthermore, by use of the Hankel inte-

gral representation for Γ−function, Mittag–Leffler function Eρ(z) has the uniform

asymptotic behavior

Eρ(z) =

{
ρ exp(zρ) +O(|z|−1), | arg z| ≤ π

2ρ

O(|z|−1), π
2ρ < | arg z| ≤ π.

Recalling the characteristic function

T (r, Eρ) =

{
1
πρr

ρ + o(rρ), 1
2 ≤ ρ <∞

sinπρ
πρ rρ + o(rρ), 0 < ρ < 1

2 ,

we immediately conclude that Mittag–Leffler function Eρ(z) is a transcendental

entire function of regular growth of order ρ(Eρ) = µ(Eρ).

Considering infinite order solutions to

(1.3) f (k) +Ak−1(z)f (k−1) + · · ·+A0(z)f = 0

with entire coefficients, a natural topic might be looking the oscillation and growth

of such solutions. In particular, analysis of the hyper-order of these solutions

would shed some light on the situation. As a simple example, we may recall [2],

Theorem 4, due to Chen and Yan

Theorem 1.1. [2, Theorem 4] Let A0(z), A1(z), · · · , Ak−1(z) be entire functions

such that

max{ρ(Aj), j = 1, 2, · · · , k − 1} < ρ(A0) <∞.
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Then every nontrivial entire solution f to (1.3) is of infinite order and satisfies

ρ2(f) = ρ(A0).

In this paper, we consider the hyper-order of transcendental entire solutions to

(1.3) with Mittag-Leffler coefficients. We may list our main results as follows.

Theorem 1.2. Suppose that Aj(z) = Eρj (z) with ρj >
1
2 (j = 0, 1, · · · , k − 1).

If max{ρj (j = 1, · · · , k − 1)} = ρ < ρ0, then every nontrivial entire solution f

to (1.3) satisfies µ(f) = ρ(f) =∞ and ρ2(f) = ρ0.

Definition 1. An exponential polynomial of order n is an entire function of the

form

g(z) = P1(z)eQ1(z) + · · ·+ Pl(z)e
Ql(z),

where Pj and Qj are polynomials in z with max
1≤j≤l

{deg(Qj)} = n.

The Phragmén-Lindelöf indicator function of an entire g of finite order ρ =

ρ(g) > 0 is

hg(θ) = lim sup
r→∞

log |g(reiθ)|
rρ

, θ ∈ [−π, π).

For example, if g(z) = exp(wzn), where w ∈ C\{0} and n is a positive integer,

then hg(θ) = <(weinθ). If g is of finite type, then hg is continuous.

If As(z) (s ∈ {0, 1, · · · , k − 1}) is a dominant coefficient, we further obtain

Theorem 1.3. Let As(z) be an exponential polynomial satisfying hAs
(θ) > 0

for all θ ∈ [−π, π). Suppose that Aj(z) = Eρj (z) with ρj > 1
2 (j 6= s, j =

0, 1, · · · , k − 1). If ρs > ρ = max{ρj , j 6= s, j = 0, 1, · · · , k − 1}. Then every

nontrivial entire solutions to (1.3) satisfies µ(f) = ρ(f) =∞ and ρ2(f) = ρs.

Theorem 1.4. Suppose that the coefficients Aj(z) = Eρj (z) are of order ρj >
1
2 (j = 1, 2, 3, · · · , k − 1) with ρ1 ≤ min{ρj , (j = 2, 3, · · · , k − 1} and A0(z)

is an entire function with 0 < µ(A0) < 1, and that A1(z) has a finite deficient

value a. Then every nontrivial solution f to (1.3) satisfies µ(f) = ρ(f) =∞ and

ρ2(f) ≥ µ(A0).

Theorem 1.5. Suppose that Aj(z) = Eρj (z) are of order ρj >
1
2 (j = 1, · · · , k−1)

and that 1
2 ≤ µ(A0) < ρ1 ≤ min{ρj , (j = 2, · · · , k − 1)}. Then every nontrivial

solution f to (1.3) satisfies ρ(f) =∞ and ρ2(f) ≥ µ(A0).
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2. Auxiliary results

We first recall the familiar growth property of complex exponential function

eQ(z), where Q(z) = anz
n + · · · + a1z + a0 is a polynomial of degree n, see e.g.

[13]. The complex plane divides into 2n equal open angles by the rays

arg z = −arg an
n

+ (2j − 1)
π

2n
, (j = 0, 1, · · · , 2n− 1).

In each of these sectors, eQ(z) either (1) blows up exponentially; or (2) decays to

zero exponentially.

To consider entire functions that have a somewhat similar behavior as eQ(z),

we define entire functions of exponential growth type, see [11], as follows.

Definition 2. [11, Definition 2] A transcendental entire function A(z) is of ex-

ponential growth type, denoted as A(z) ∈ A, provided that ρ(A) = µ(A) < ∞,

and for two positive constants c, d and for a real-valued function δA(θ) defined on

[0, 2π), continuous outside an exceptional set F of finitely many points, it holds

that for any given θ ∈ [0, 2π)\F , there are a constant τ , and positive constants

R = R(θ) and M = M(θ) such that when |z| = r > R,

(A1) |A(reiθ)| ≥ exp{cδA(θ)rd} if δA(θ) > 0,

(A2) |A(reiθ)| ≤Mrτ if δA(θ) < 0,

where τ < 2(ρ(A)− 1).

Remark. Since Mittag-Leffler function Eρ(z) is of regular growth, we have A(z) :=

Eρ(z) ∈ A for ρ > 1
2 . Moreover, δA(θ) = −1 for θ ∈ ( π2ρ , 2π −

π
2ρ ), and δA(θ) =

cos(ρθ) for θ ∈ [− π
2ρ ,

π
2ρ ), see [11].

We next recall four results that all are from the seminal paper [6].

Lemma 2.1. [6, Corollary 1] Let f be a meromorphic function of finite order

ρ(f) and let ε > 0 be a given constant. Then there exists a set E ⊂ [0, 2π) that

has linear measure zero, such that if ψ0 ∈ [0, 2π)\E, then there exists a constant

R0 = R0(ψ0) > 1 such that for all z satisfying arg z = ψ0 and |z| ≥ R0, and for

all integers j > i ≥ 0, we have∣∣∣∣f (j)(z)f (i)(z)

∣∣∣∣ < |z|(j−i)(ρ(f)−1+ε).
Lemma 2.2. [6, Corollary 2] Let f be a transcendental meromorphic function

with ρ(f) <∞. Let H = {(k1, j1), (k2, j2), · · · , (kq, jq)} be a finite set of distinct

pairs of integers that satisfy ki > ji ≥ 0 for i = 1, 2, · · · , q, and let ε > 0 be a

given constant. Then there exists a set E ⊂ (1,∞) that has finite logarithmic
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measure, such that for all z satisfying |z| 6∈ E ∪ [0, 1] and for all (k, j) ∈ H, we

have ∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(ρ(f)−1+ε).
Lemma 2.3. [6, Theorem 3] Let f be a nontrivial entire function, and let α > 1

be a given real constant. Let j and i be two integers such that j > i ≥ 0. Then

there exists a set F ⊂ [0,∞) having finite logarithmic measure and a constant

B > 0 depending on α, j, i only, such that for all z satisfying |z| = r 6∈ F ∪ [0, 1],

we have ∣∣∣∣f (j)(z)f (i)(z)

∣∣∣∣ ≤ B [T (αr, f)

r
logα r log T (αr, f)

]j−i
.

Lemma 2.4. [6, Theorem 4] Let f be a nontrivial entire function, and let α > 1

and ε > 0 be given constants. Then there exist a constant c > 0 and a set

F ⊂ [0,∞) having finite linear measure such that for all z satisfying |z| = r 6∈ F ,

we have ∣∣∣∣f (j)(z)f(z)

∣∣∣∣ ≤ c [T (αr, f)rε log T (αr, f)]
j
, (j = 1, 2, · · · , k).

For the convenience of the reader, we recall the next three lemmata.

Lemma 2.5. [1, Theorem] Let f be a transcendental meromorphic function with

0 ≤ µ(f) < 1. Then, for every α ∈ (µ(f), 1), the set E := {r ∈ [0,∞) : m(r) >

M(r) cosπα} satisfies log densE ≥ 1 − µ(f)
α , where m(r) := inf

|z|=r
log |f(z)|, and

M(r) := sup
|z|=r

log |f(z)|.

Lemma 2.6. [4, Lemma 1] Let f be a meromorphic function of finite order ρ(f).

For any given ε > 0 and 0 < σ < 1
2 , there is a constant K(ρ(f), ε) and a set

E(ε) ⊂ [0,∞) of lower logarithmic density of log densE(ε) ≥ 1− ε, such that, for

r ∈ E(ε) and each interval J of length σ, we have

r

∫
J

∣∣∣∣f ′(reiθ)f(reiθ)

∣∣∣∣ dθ < K(ρ, ε)

(
σ log

1

σ

)
T (r, f).

Lemma 2.7. [15, p. 180] Let f be an entire function of lower order µ(f) ∈ [ 12 ,∞).

Then there exists a sector S(α, β) = {z : α < arg z < β} with β − α ≥ π
µ(f) such

that

lim sup
r→∞

log log |f(reiθ)|
log r

≥ µ(f)

holds for all the rays arg z = θ ∈ (α, β), where 0 ≤ α < β ≤ 2π.
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It remains to complete this section of auxiliary results by two simple lemmata,

whose proofs we shortly add here.

Lemma 2.8. Suppose that Aj(z) = Eρj (z) with ρj >
1
2 (j = 0, 1, · · · , k − 1).

If there exists s ∈ {0, 1, · · · , k − 1} such that ρs > ρ = max{ρj , j 6= s, j =

0, 1, · · · , k−1}. Then every nontrivial solution to (1.3) satisfies ρ(f) ≥ µ(f) ≥ ρs.

Proof. We obtain from (1.3) that

(2.1) −As =
f (k)

f (s)
+ · · ·+As+1

f (s+1)

f (s)
+As−1

f (s−1)

f (s)
+ · · ·+A1

f
′

f (s)
+A0

f

f (s)
.

By elementary Nevanlinna theory, we have

T (r,As) = m(r,As) ≤
k−1∑

j 6=s,j=0

m(r,Aj) +
k−1∑
j=s+1

m
(
r, f

(j)

f(s)

)
+

s−1∑
j=0

m
(
r, f

(j)

f(s)

)
+O(1)

(2.2)

as r →∞. Since

m(r, f (j)/f (s)) ≤ T (r, f (j)) + T (r, f (s)) +O(1) ≤ BT (r, f)

as r →∞, it follows from (2.2) that

T (r,As)−
k−1∑

j 6=s,j=0

T (r,Aj)−O(log rT (r, f)) ≤ BT (r, f)(2.3)

as r →∞. The claim now follows from (2.3) since Aj(z) = Eρj (j = 1, 2, · · · , k−1)

are of regular growth and ρs > ρ = max{ρj , j 6= s, j = 0, 1, · · · , k − 1}. �

Lemma 2.9. Suppose that Aj(z) = Eρj (z) with ρj >
1
2 (j = 0, 1, · · · , k − 1).

If there exists s ∈ {0, 1, · · · , k − 1} such that ρs > ρ = max{ρj , j 6= s, j =

0, 1, · · · , k − 1}. Then every infinite order solution to (1.3) satisfies ρ2(f) ≤ ρs.

Proof. We obtain from (1.3) that∣∣∣∣f (k)f
∣∣∣∣ ≤ |Ak−1|

∣∣∣∣f (k−1)f

∣∣∣∣+ · · ·+ |As+1|
∣∣∣∣f (s+1)

f

∣∣∣∣
+ |As|

∣∣∣∣f (s)f
∣∣∣∣+ |As−1|

∣∣∣∣f (s−1)f

∣∣∣∣+ · · ·+ |A1|

∣∣∣∣∣f
′

f

∣∣∣∣∣+ |A0|.(2.4)

By the Wiman-Valiron theory, we obtain for the central index ν(r) of f that

(2.5)
f (j)(z)

f(z)
=

(
ν(r)

z

)j
(1 + o(1)), j = 1, 2, · · · , k,
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where z satisfies |f(z)| = M(r, f) and |z| = r 6∈ F0 ∪ [0, 1], where F0 ⊂ (1,∞) has

finite logarithmic measure.

As stated above, ρ(Aj) = ρ(Ej(z)) = ρj . Thus, for any 0 < ε < ρs − ρ,

|As(z)| ≤ exp(rρs+ε),

|Aj(z)| ≤ exp(rρ+ε) (j = 0, 1, · · · , k − 1, j 6= s).
(2.6)

Thus, it easily follows from (2.4)-(2.6) that, for all z satisfying |f(z)| = M(r, f),

|z| = r 6∈ F0 ∪ [0, 1],

ν(r)k|1 + o(1)| ≤ krk exp(rρs+ε)ν(r)k−1|1 + o(1)|.

This immediately results in ρ2(f) ≤ ρs. �

3. Proof of Theorem 1.2

Suppose that f is a solution to (1.3) and max{ρj (j = 1, · · · , k− 1)} = ρ < ρ0,

then it follows that

(3.1) |A0| ≤
∣∣∣∣f (k)f

∣∣∣∣+ |Ak−1|
∣∣∣∣f (k−1)f

∣∣∣∣+ · · ·+ |A1|

∣∣∣∣∣f
′

f

∣∣∣∣∣ .
By Lemma 2.4, it is immediate to find a set F1 ⊂ [0,∞) of finite linear measure

such that for all z satisfying |z| = r 6∈ F1, we have

(3.2)

∣∣∣∣f (j)(z)f(z)

∣∣∣∣ ≤ r[T (2r, f)]k, (j = 1, 2, · · · , k).

Since A0(z) = Eρ0(z), we deduce from Definition 2 that for all θ ∈ E0 =

[− π
2ρ0

, π
2ρ0

], δA0
(θ) > 0. Furthermore, there exist constants 0 < α < 1 and

R0 = R0(θ) > 0 such that when |z| = r > R0,

(3.3) |A0(reiθ)| ≥ exp{αδA0
(θ)rρ0}.

Since max{ρj (j = 1, · · · , k − 1)} = ρ < ρ0 and every Aj(z) is of regular

growth, we have

lim
r→∞

log |Aj(reiθ)|
rρ0

= 0, (j = 1, 2, · · · , k − 1),

and so

(3.4) |Aj(reiθ)| ≤ exp{o(1)rρ0} (j = 1, 2, · · · , k − 1).

Thus, it follows from (3.1)-(3.4) that there exists a set F = [0,∞)\(F1∪[0, R0])

of positive upper density densF > 0 such that

exp{(1 + o(1))αδA0(θ)rρ0} ≤ [T (2r, f)]k
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as |z| = r →∞ in F . Therefore, µ(f) = ρ(f) =∞ and

ρ2(f) = lim sup
r→∞

log+ log+ T (r, f)

log r
≥ ρ0.

By Lemma 2.9, ρ2(f) = ρ0.

Remark. Observe that proving ρ2(f) ≥ ρ0 may also immediately be seen as fol-

lows. Indeed, suppose that ρ2(f) = τ < ρ0. By [10, Lemma 1.3],

m

(
r,
f (j)

f

)
= O(rτ+ε)

for j = 1, . . . , k. Since T (r,Aj) = m(r,Aj) = O(rρ+ε) for j = 1, . . . , k − 1, we

observe by (3.1) that

T (r,A0) = m(r,A0) = O(rτ+ε) +O(rρ+ε).

Hence ρ(A0) ≤ max{τ, ρ} < ρ0, a contradiction.

4. Proof of Theorem 1.3

By Lemma 2.8, all solutions to (1.3) are transcendental. Write now (1.3) in

the form

−As =
f (k)

f (s)
+ · · ·+As+1

f (s+1)

f (s)

+
f

f (s)

(
As−1

f (s−1)

f
+ · · ·+A1

f
′

f
+A0

)
.(4.1)

By Lemma 2.3, there exists a set F2 ⊂ [0,∞) of finite logarithmic measure and a

constant B > 0, such that for all z satisfying |z| = r 6∈ F2 ∪ [0, 1], we have

(4.2)

∣∣∣∣f (j)(z)f (i)(z)

∣∣∣∣ ≤ BT (2r, f)2k, 0 ≤ i < j ≤ k.

By the Wiman-Valiron theory,

(4.3)
f (j)(z)

f(z)
=

(
ν(r)

z

)j
(1 + o(1)), j = 1, 2, · · · , k,

where |f(z)| = M(r, f) and |z| = r 6∈ F3 ∪ [0, 1], where F3 ⊂ (1,∞) is of finite

logarithmic measure. Since f is transcendental, ν(r)→∞ as r →∞. Hence, for

all z such that |z| = r 6∈ F3 ∪ [0, 1] and |f(z)| = M(r, f), (4.3) implies that

(4.4)
f(z)

f (j)(z)
≤ 2rj , j = 1, 2, · · · , k.
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Note F4={θ ∈ [0, 2π) : |f(reiθ)| = M(r, f) when r 6∈ F3 ∪ [0, 1]}. Since As(z) is

an exponential polynomials, it follows from the proof of [19, Satz 4], [20, p. 462],

and [18, Theorem 1.3.4] that

lim
r→∞

log |As(reiθ)|
rρs

= hAs
(θ)

for all θ ∈ [−π, π). Since hAs(θ) is continuous in [−π, π), there exists θ1 such

that hAs
(θ) ≥ hAs

(θ1) for all θ ∈ [−π, π). Hence, for all sufficiently small ε, there

exists R0 = R0(θ) > 0 such that when |z| = r > R0 and θ ∈ F4

(4.5) |As(reiθ)| ≥ exp{(1− ε)hAs
(θ1)rρs}.

Since max{ρj (j = 1, · · · , k − 1), j 6= s} = ρ < ρs and Aj(z) is of regular growth,

we have

lim
r→∞

log |Aj(reiθ)|
rρs

= 0, (j = 1, 2, · · · , k − 1, j 6= s).

Therefore,

(4.6) |Aj(reiθ)| ≤ exp{o(1)rρs} (j = 1, 2, · · · , k − 1, j 6= s).

Note the set F := [1,∞)\(F2 ∪ F3 ∪ [0, R0]) is of infinite logarithmic measure.

It follows from (4.1), (4.2), (4.4)-(4.6) that, for all z satisfying |z| = r ∈ F and

all arg z ∈ F4,

exp{(1 + o(1))hAs
(θ1)rρs ≤ [T (2r, f)]2k

as |z| = r →∞ in F . Therefore, µ(f) = ρ(f) =∞ and

ρ2(f) = lim sup
r→∞

log+ log+ T (r, f)

log r
≥ ρs.

By Lemma 2.9, we have ρ2(f) = ρs.

5. Proof of Theorem 1.4

Since A0 is an entire function with 0 < µ(A0) < 1, we deduce from Lemma 2.5

that, for every α ∈ (µ(A0), 1), E := {r ∈ [0,∞) : m(r) > M(r) cosπα} satisfies

log densE ≥ 1− µ(A0)
α . Thus, there exists a positive constant r0 such that for all

sufficiently small ε > 0 and all r ∈ E\[0, r0],

(5.1) |A0(z)| > exp{rµ(A0)−ε}.

Since A1(z) has a finite deficient value a, say δ(A1, a) = 2δ > 0, there exists a

constant r1 such that m(r, 1
A1−a ) > δT (r,A1) for all r > r1 > r0. Therefore, for

all r > r1, there exists zr = reiθr such that

(5.2) log |A1(zr)− a| ≤ −δT (r,A1).
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Set 0 < ε0 < 1 − µ(A0)
α . Applying Lemma 2.6 to A1(z) − a, we now choose

σ0 such that σ0 < min{ 12 , 2π −
π
ρ } and K(ρ(A1), ε0)σ0 log 1

σ0
< δ

4 . Then, for an

interval J ⊂ ( π
2ρ1

, 2π − π
2ρ1

) of length of σ0, and for all r > r1 in a set E(ε0) of

lower logarithmic density log densE(ε0) ≥ 1− ε0, we have

(5.3) r

∫
J

∣∣∣∣∣ A
′

1(reiθ)

A1(reiθ)− a

∣∣∣∣∣ dθ < δ

2
T (r,A1).

If θr /∈ J , then we get log |A1(zr) − a| → ∞, which contradicts (5.2), hence

θr ∈ J . Let |zr| = r ∈ E(ε0)\[0, r1]. We conclude from (5.2) and (5.3) that, for

all θ ∈ J0 = [θr − σ0

2 , θr + σ0

2 ] ∩ J ,

log |A1(reiθ)− a| = log |A1(reiθr )− a|+
∫ θ

θr

d(log |A1(reiϕ)− a|)
dϕ

dϕ

≤ −δT (r,A1) + r

∫ θ

θr

∣∣∣∣∣ A
′

1(reiϕ)

A1(reiϕ)− a

∣∣∣∣∣ dϕ
≤ −δ

2
T (r,A1) < 0,

and so

(5.4) |A1(reiθ)− a| ≤ 1

for r ∈ E(ε0)\[0, r1] and θ ∈ J0.

Since for Aj(z) = Eρj (z), ρj >
1
2 (j = 2, 3, · · · , k − 1), we have δρj (θ) < 0 for

θ ∈ J0 ⊂ ( π
2ρ1

, 2π − π
2ρ1

). Hence, there exists M > 0 and r2 > 0 such that, for all

z satisfying |z| = r > r2 and all θ = arg z ∈ J0,

(5.5) |Aj(reiθ)| ≤Mr−1, (j = 2, 3, · · · , k − 1).

Set F := E(ε0)
⋂
E. Then

log densF + log dens(E(ε0)\E) ≥ log densE(ε0),

and so

log densF ≥ 1− ε0 − log densEc.

Since 0 < ε0 < 1− µ(A0)
α , log densE+ log densEc = 1 and log densE ≥ 1− µ(A0)

α ,

we have

log densF ≥ 1− ε0 −
µ(A0)

α
> 0.

Assume now, contrary to the claim, that there exists a solution f of finite order

to (1.3). Then by Lemma 2.2, there is a set F6 ⊂ (1,∞) of finite logarithmic
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measure such that for all z satisfying |z| 6∈ F6 ∪ [0, 1],

(5.6)

∣∣∣∣f (j)f
∣∣∣∣ ≤ |z|j(ρ(f)−1+ε), j = 1, 2, · · · , k.

By (1.3),

(5.7) |A0(z)| ≤
∣∣∣∣f (k)(z)f(z)

∣∣∣∣+ · · ·+ |A2(z)|

∣∣∣∣∣f
′′
(z)

f(z)

∣∣∣∣∣+ (|A1(z)− a|+ |a|)

∣∣∣∣∣f
′
(z)

f(z)

∣∣∣∣∣ .
Thus, for r ∈ F\(F6 ∪ [0, 1] ∪ [0, r1] ∪ [0, r2]) and θ ∈ J0, we obtain from (5.1)

and (5.4)-(5.7) that

exp{rµ(A0)−ε} ≤ [(k − 1)Mr−1 + 1 + |a|]rk(ρ(f)−1+ε)

as r →∞, which is impossible. Therefore ρ(f) =∞.

On the other hand, for r ∈ F\(F1 ∪ [0, r1]∪ [0, r2]) and θ ∈ J0, we obtain from

(3.2), (5.1), (5.4), (5.5) and (5.7) that

exp{rµ(A0)−ε} ≤ k(1 + |a|)T (2r, f)

as r →∞. This obviously results in µ(f) =∞ and ρ2(f) ≥ µ(A0).

6. Proof of Theorem 1.5

Since Aj(z) = Eρj (z) ∈ A, ρj >
1
2 (j = 1, · · · , k − 1) and ρ1 ≤ min{ρj (j =

2, · · · , k − 1)}, we obtain, see Definition 2, that δAj
(θ) < 0, j = 1, 2, · · · , k − 1

when θ ∈ J1 = ( π
2ρ1

, 2π − π
2ρ1

). Hence, there exists M > 0 and r1 > 0 such that,

for all z satisfying |z| = r > r1 and all θ = arg z ∈ J1,

(6.1) |Aj(reiθ)| ≤Mr−1, (j = 1, 2, · · · , k − 1).

Denote now by m(E) the linear measure of a set E ⊂ R. We easily see that

ζ(A1) :=
1

2π
m

({
θ ∈ [0, 2π) : lim sup

r→∞

log+ |A1(reiθ)|
log r

<∞
})

=
1

2π
m

(
π

2ρ1
, 2π − π

2ρ1
)

)
= 1− 1

2ρ1
.(6.2)

Assume now, on the contrary, that there exists a solution f with ρ(f) < ∞, we

obtain from Lemma 2.1 that there exists a set E ⊂ [0, 2π) that has linear measure

zero, such that if ψ0 ∈ [0, 2π)\E, then there exists a constant r2 = r2(ψ0) > 1

such that for all z satisfying arg z = ψ0 and |z| ≥ r2, and for all integers j > i ≥ 0,

we have

(6.3)

∣∣∣∣f (j)(z)f(z)

∣∣∣∣ < |z|j(ρ(f)−1+ε), j = 1, 2, · · · , k.
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Lemma 2.7 tells that there exists a sector S(α, β) = {z : α < arg z < β} with

β − α ≥ π

µ(A0)
>

π

ρ1
= 2π(1− ζ(A1))

such that

(6.4) lim sup
r→∞

log log |A0(reiθ)|
log r

≥ µ(A0)

holds for all the rays arg z = θ ∈ (α, β). Thus for any given θ ∈ (α, β), there

exists one sequence {rn}(rn →∞ as n→∞) such that

|A0(rne
iθ)| ≥ exp{rµ(A0)−ε

n }

for sufficiently large n. We obtain from (3.1),(6.1), (6.3) and (6.4) that

exp{rµ(A0)−ε
n } ≤ kMr−1n rk(ρ(f)−1+ε)n

as n→∞, which is impossible. Then ρ(f) =∞.

We also have, when θ ∈ E0, from (3.1), (3.2), (6.1), (6.3) and (6.4) that

exp{rµ(A0)−ε
n } ≤ kT (2rn, f)

as r →∞. This results in ρ2(f) ≥ µ(A0).
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[9] G. Jank, L. Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen

mit Anwendungen auf Differentialgleichungen, Birkhäuser, Basel–Boston–Stuttgart, 1985.
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