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Abstract
We find an optimal quasi-gap condition for a weakly expanding dynamical sys-
tem associated with Dini potential. Under this optimal quasi-gap condition, we
prove the Ruelle operator theorem and further the decay of the correlations for
any weakly expanding dynamical systems with Dini potentials.
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1. Introduction

An important problem in dynamical systems is to understand the mixing of a dynamical system
on a probability space. One way to describe the mixing is to use the decay of correlations.
Suppose X is a non-empty compact metric space. Let C(X) be the space of all continuous real
functions on X with the maximal norm. Let M(X) be the dual space of C(X). By the Riesz
representation theorem, M(X) is the space of all measures on X. Then we have

〈ν,φ〉 =
∫

X
φ dν, φ ∈ C(X), ν ∈ M(X). (1.1)
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Suppose f : X → X is a continuous map. We use f n = f ◦ · · · ◦ f︸ ︷︷ ︸
n

to denote the n-iteration

of f for every positive integer n and f 0 = Id, the identity. Then we can consider the dynamical
system { f n}∞n=0. We simply call f a dynamical system. Given a test function φ ∈ C(X) and a
probability measure ν ∈ M(X), we have a sequence of random variables

{Xn = φ ◦ f n}∞n=0

on the probability space (X, ν). Correlations of f on (X, ν) are

Cφ(n) = 〈ν, (φ ◦ f n) · φ〉 − (〈ν,φ〉)2, n = 0, 1, 2, . . . .

They measure the independence of these random variables and the mixing of the dynamical
system. The correlations can be studied by using the transfer operator L associated with f and
a potential ψ (see [4]) defined as

Lφ(x) =
∑

y∈ f−1(x)

ψ(y)φ(y), φ ∈ C(X). (1.2)

The dual operator L∗ : M(X) →M(X) is defined, by using (1.1), as

〈L∗ν,φ〉 = 〈ν,Lφ〉, ν ∈ M(X), φ ∈ C(X). (1.3)

Suppose ν is an eigen-measure corresponding to an eigenvalue �, that is, L∗ν = �ν. Then we
have that

〈ν, (φ ◦ f n) · φ〉 = 〈�−n(L∗)nν,φ ◦ f n · φ〉

= 〈ν, �−nLn(φ ◦ f n · φ)〉 = 〈ν,φ · �−nLnφ〉 = 〈φν, �−nLnφ〉.

Thus the decay of correlations relates to the convergence speed of

�−nLnφ→ 〈ν,φ〉h, as n →∞,

where Lh = �h and 〈φ, ν〉 = 1. To study the convergence speed, we need first to make sure
the existence of an eigen-measure corresponding to an eigenvalue. For the spectral radius as
the maximal eigenvalue, the existence of the probability eigen-measure is called the Ruelle
operator theorem (see e.g. [2, 12]).

It is known that for a uniformly expanding dynamical system f with anα-Hölder continuous
potential ψ, the sequence {�−nLnφ}∞n=1 converges to a constant multiple of h at a geometric
rate for every α-Hölder continuous function φ (see e.g. [2, 4]). This is because the operator
L acting on the space of α-Hölder continuous functions has a spectral gap, that means that the
essential spectral radius of L is strictly less than the spectral radius of L.

There is no spectral gap for the operator L associated with a uniformly expanding dynam-
ical system f with an only Dini continuous potential ψ (see [3, 11]). However, in [5–7], it is
still possible to have a Ruelle operator theorem and the decay of correlation. There is no spec-
tral gap too for the transfer operator associated with a weakly expanding dynamical system
f with a Hölder continuous potential ψ (see [10, 18, 22] for other references). However, in
[10], it is still possible to have a Ruelle operator theorem and the decay of correlation. We
would like to note that in the above studies, no similar spectral gap consideration is involved.
There are many interesting works recently to study the decay of correlation in various cases.
We give a partial list of other papers in the literature [16, 17, 19, 21, 23, 24]. Therefore, the
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study of a Ruelle operator theorem and the decay of correlation becomes a difficult and impor-
tant problem for a weakly expanding dynamical system with a Dini continuous potential, in
particular, under the consideration of a similar idea of the spectral gap. We started to study in
this direction following a similar idea of the spectral gap in [12, 13, 22].

In this paper, we investigate a best general formula which we call an optimal quasi-gap
condition (2.8) or (2.9) for a weakly expanding dynamical system with a Dini potential so
that the Ruelle operator theorem holds and the decay of correlations can be obtained even
there is no spectral gap in this situation. This optimal quasi-gap condition is the one we have
searched for in a long-time research project (see [12, 13, 22]). This paper eventually completes
this long-time project. Moreover, this paper generalises a result obtained in [9] where the
potential is required to be Hölder continuous for a weakly expanding dynamical system and
results in [5–7] where the dynamical system is required to be uniformly expanding. We would
like to point out that there is no any differentiability assumption on the dynamical systems in
the paper, we remove the conformal assumption on a weakly expanding dynamical system
with Dini potential and, thus, theorem 2.5 generalises the main result of paper [22] (see
corollary 2.9).

The paper is organised as follows. In section 2, we state our optimal quasi-gap conditions
(2.8) and (2.9) for a weakly expanding dynamical system with a Dini potential. We state our
main results (theorems 2.5, 2.7, and corollary 2.11) in section 2 too. Theorem 2.5 shows that
the Ruelle operator theorem holds under the optimal quasi-gap condition. Theorem 2.7 is about
the convergence speed and corollary 2.11 is about the decay of correlations. We state corollary
2.9 to close a gap in [22]. In section 3, we prove theorem 2.5 and in section 4, we prove theorem
2.7. In section 5, we prove corollary 2.9. We prove corollary 2.11 in section 6. Our main results
are very general for weakly expanding dynamical systems with Dini potentials. In section 7,
we present two examples of weakly expanding dynamical system with Dini potential which
satisfies the optimal quasi-gap condition. Furthermore, we discuss the weak Gibbs measure and
the central limit theorem as two more applications of the decay of correlations in section 7.

2. Optimal quasi-gap condition and statements of main results

SupposeRd is the d-dimensional Euclidean space with norm | · | and suppose X ⊆ Rd is a non-

empty compact connected subset with X̊ = X, where X̊ is the interior set of X. Without loss of
generality, assume that the diameter

|X| :=max
x,y∈X

|x − y| = 1.

In the following we always assume map f : X → X satisfies the following Markov property:
there exist finite number of non-empty compact connected sets {X j}m

j=1 satisfying that

(a) X̊i = Xi for all 1 � i � m;
(b) X = ∪m

i=1Xi;
(c) X̊i ∩ X j = ∅ for all 1 � i = j � m;
(d) f |X̊i

: X̊i → f
(
X̊i

)
is a homeomorphism with continuous extension to Xi; and

(e) f
(
X̊i

)
= X.

If further

λ(t) := min
1�i�m

inf
x,y∈X̊i
|x−y|�t

| f (x) − f (y)| > t, ∀ 0 < t � min
1�i�m

|Xi|. (2.1)

918
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The dynamical system (X, f ) is called weakly expanding.

Remark 2.1. The reason that we use a compact set in Rd in this paper is because that in the
proof of corollary 2.9 in section 5, we need to use the Fréchet derivative of a map. Other than
that all other calculations and results will be held for a general compact metric space with a
metric d(·, ·) and then, in many places, the notation | · | will be changed to d(·, ·).

Throughout the paper, we consider such a class of weakly expanding dynamical systems. At
this chance, we would like to remark that there is not any differentiability assumption imposed
on f ; and the weakly expanding dynamical system under consideration is somehow similar to
the non-uniformly expanding dynamical system. For this, the readers may refer to paper [1] for
example.

Let gi : X → Xi be the continuous extension of the inverse of the map f |X̊i
: X̊i → X for every

1 � i � m. Then we can define an iteration function system

W = 〈g1, . . . , gm〉.

Therefore, the study of the iterated function system W and the study of the dynamical system
(X, f ) is the same. We say the iteration function system W is weakly contractive if

θ(t) := max
1�i�m

sup
x,y∈X

|x−y|�t

|gi(x) − gi(y)| < t, ∀t > 0.

The reader can check that (X, f ) is weakly expanding if and only if W is weakly contractive.
We say a dynamical system (X, f ) is uniformly expanding if there exists a > 1 such that

λ(t) = min
1�i�m

inf
x,y∈X̊i
|x−y|�t

| f (x) − f (y)| > at, ∀ 0 < t � min
1�i�m

|Xi|. (2.2)

From the definition (2.1) and (2.2), we see that the uniformly expanding implies the weakly
expanding. Therefore, the study of this paper includes all uniformly expanding dynamical
systems.

Let X = [0, 1], X1 = [0, 1/2] and X2 = [1/2, 1]. Let 0 < α � 1, and let

f (x) =

{
x + 2αx1+α, if 0 � x � 1/2;

2x − 1, if 1/2 < x � 1.

Then (X, f ) is a weakly expanding dynamical system. We would like to point out that, by
modifying this example with a small perturbation, we can get a weakly expanding dynamical
system on X which is not differentiable on X̊1

⋃
X̊2.

We need symbolic codings. Let

Σn = {I = i0i1 . . . in−1 | ik ∈ {1, . . . , m}, k = 0, 1, . . . , n − 1}

be the space of all n-strings of i’s with 1 � i � m. LetΣ =
⋃∞

n=0Σn. For each I = i0i1 . . . in−1 ∈
Σn, define

gI = gi0 ◦ gi1 ◦ · · · ◦ gin−1 .

In the following we always let XI = gI(X). And denote

τn = max
I∈Σn

|XI |. (2.3)
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For a weakly expanding dynamical system (X, f ), we have 0 � τ n+1 < τ n. It follows that
(see e.g. [8, theorem 3.2] or [21, proposition 2.2])

lim
n→∞

τn = 0. (2.4)

When (X, f ) is a uniformly expanding dynamical system, τ n tends to 0 at geometric rate. How-
ever, for a general weakly expanding dynamical system, we may not have any expression of
τ n. Luckily, for example 7.3 in section 7, one can check that τn = 1

1+n .
By considering the iteration function system W associated with a system of positive

continuous functions P = {pi}n
i=1, we can define a transfer operator

Lφ(x) =
m∑

i=1

pi(x)φ(gi(x)) : C(X) →C(X). (2.5)

In particular, for a single positive function ψ, if we take pi = ψ ◦ gi, then the transfer operator
defined in (2.5) is the one defined in (1.2). We call P or ψ a potential. Henceforth, when we
talk about a transfer operator associated with a dynamical system and a potential, we mean the
one defined as in (2.5). Let L∗ : M(X) →M(X) be the dual operator of L defined as in (1.3).

Given I = i0i1 . . . in−1 ∈ Σn, define

pI(x) = pi0 (gi1 ◦ gi2 ◦ · · · ◦ gin−1 (x)) . . . pin−2 (gin−1(x))pin−1(x).

We use Pn to denote the system of positive functions {pI}I∈Σn . One can check that for any
n ∈ N,

Lnφ(x) =
∑
I∈Σn

pI(x)φ(gI(x)),

is the transfer operator associated with ( f n,Pn).
The modulus of continuity of a continuous function φ ∈ C(X) is defined as

ωφ(t) := sup
x,y∈X

|x−y|�t

|φ(x) − φ(y)|.

For a potential P , we define its modulus as

ωP(t) := max
1�i�m

ωlog pi (t).

Define

ω̃P (t) =
∫ t

0

ωP(s)
s

ds.

We call P Dini if ω̃P(a) < ∞ for some 0 < a � 1. For the notational simplicity, we use ω(t)
and ω̃(t) to denote ωP (t) and ω̃P(t), respectively, when there is no confusion.

In the Dini case, ω̃(t) → 0 as t → 0+. Thus it is also a modulus of continuity but may not
be Dini again. The following lemma is useful for us.

Lemma 2.2. Suppose ω(t) is a Dini modulus of continuity. Suppose 0 < θ < 1 is a real
number. Then for any 0 < t � 1,

∞∑
n=1

ω(θnt) � 1
− log θ

∫ t

0

ω(s)
s

ds �
∞∑

n=0

ω(θnt). (2.6)
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Proof. Consider∫ t

0

ω(s)
s

ds =
∞∑

n=0

∫ θnt

θn+1t

ω(s)
s

ds �
∞∑

n=0

ω(θnt)
∫ θnt

θn+1t

1
s

ds

� (− log θ)
∞∑

n=0

ω(θnt).

For the left-sided inequality, we have

∞∑
n=1

ω(θnt) �
∫ ∞

0
ω(θxt)dx = − 1

log θ

∫ t

0

ω(s)
s

ds.

In the last equality, we use the change of coordinate s = θxt. �
Throughout the paper, we always assume (X, f ) is a weakly expanding dynamical system

and P is a Dini potential. We call the triple (X, f ,P) a weakly expansive Dini system. Let
L be the transfer operator associated with the system (X, f ,P) defined as in (2.5). By using
Gelfand’s formula, the spectral radius � = �(L) of the operator L is

� = lim
n→∞

‖Ln‖ 1
n .

Since L is a positive operator, we have

� = lim
n→∞

‖Ln1‖ 1
n .

This gives us a lower bound for �

� � min
x∈X

m∑
i=1

pi(x). (2.7)

Since all pi are positive functions on a compact metric space, we see that � > 0.

Definition 2.3. We say a weakly expansive Dini system (X, f ,P) satisfies the optimal quasi-
gap condition if

sup
x∈X

m∑
i=1

pi(x)

⎛⎝ sup
y∈X

0<|x−y|�b

|gi(y) − gi(x)|
|y − x|

⎞⎠ < � (2.8)

for some b > 0. More general, we say a weakly expansive Dini system (X, f ,P) satisfies the
optimal quasi-gap condition if for some integer q > 0, (X, f q,Pq) satisfies (2.8), that is,

sup
x∈X

∑
I∈Σq

pI(x)

⎛⎝ sup
y∈X

0<|x−y|�b

|gI(y) − gI(x)|
|y − x|

⎞⎠ < �q (2.9)

for some b > 0.

Remark 2.4. For a weakly expanding dynamical system f and the corresponding weakly
contractive iteration function system

W = 〈g1, . . . , gm〉,
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each gi is a global Lipschitz function, that is, we have a smallest constant 0 < Lip(gi) � 1 such
that

|gi(x) − gi(y)| � Lip(gi)|x − y|, ∀ x, y ∈ X.

Given a potential P = {p1, . . . , pm}, one can consider a geometric condition

sup
x∈X

m∑
i=1

pi(x)Lip(gi) < � (2.10)

which implies our quasi-gap condition (2.8). However, this condition is not preserved by a
simple change in the system (g1, . . . , gm; p1, . . . , pm), in particular, from uniformly expanding
dynamical systems into a weakly expanding dynamical system. For example, let X = [0, 1],
define f : [0, 1] → [0, 1] such that

g1(x) =
x

1 + x
: [0, 1] →

[
0,

1
2

]
and g2(x) =

1
2 − x

: [0, 1] →
[

1
2

, 1

]
.

Construct a family { f ε}0�ε� 1
4

of maps such that

g1,ε(x) =
x

1 + x
(1 + ε(x − 1)) and g2,ε(x) =

1
2 − x

(1 + εx(1 − x)) .

Then for every 0 � ε � 1
4 ,

g1,ε(0) = 0, g1,ε(1) = 1/2 and Lip(g1,ε) = 1 − ε;

and

g2,ε(0) =
1
2

, g2,ε(1) = 1 and Lip(g2,ε) = 1 − ε.

Moreover, for 1 � j � 2, gj,0 = gj and g j,ε → g j as ε→ 0. Thus we have a family of dynami-
cal systems such that fε is a uniformly expanding dynamical system for every 0 < ε � 1

4 and
f0 = f is a weakly expanding dynamical system and fε → f as ε→ 0. Let

p1(x) = p2(x) =
1
2

, x ∈ [0, 1].

Then P = {p1, p2} is a potential. Let Lε be the transfer operator associated with the system
(g1,ε, g2,ε; p1, p2). The spectral radius �ε of Lε is 1 for all 0 � ε < 1

4 . For any ε > 0, we have
the condition (2.10) but for ε = 0, the condition (2.10) fails.

On the other hand, it is clearly that when 0 < ε � 1
4 , our quasi-gap condition (2.8) holds.

When ε = 0, take b = 1/2, we have that for any x ∈ [0, 1],

sup
y∈[0,1]

0<|x−y|�b

|g1(x) − g1(y)|
|x − y| � 1

1 + x
and sup

y∈[0,1]
0<|x−y|�b

|g2(x) − g2(y)|
|x − y| � 1

2 − x
.

This implies that
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sup
x∈[0,1]

⎛⎝p1(x) sup
y∈[0,1]

0<|x−y|�b

|g1(x) − g1(y)|
|x − y| + p2(x) sup

y∈[0,1]
0<|x−y|�b

|g2(x) − g2(y)|
|x − y|

⎞⎠

� 1
2

sup
x∈[0,1]

(
1

1 + x
+

1
2 − x

)
=

3
4
< 1.

Thus our quasi-gap condition (2.8) also holds when ε = 0.

Under the optimal quasi-gap condition, we will prove the following results.

Theorem 2.5. Suppose a weakly expansive Dini system (X, f ,P) satisfies the optimal quasi-
gap condition (2.9). Then there exists a unique positive function h ∈ C(X) and a unique
probability measure ν ∈ M(X) such that

Lh = �h, L∗ν = �ν, 〈ν, h〉 = 1.

And moreover, for any φ ∈ C(X),

lim
n→∞

‖�−nLnφ− 〈ν,φ〉h‖ = 0. (2.11)

We say that the Ruelle operator theorem for L holds if the assertion of theorem 2.5 holds.

Lemma 2.6. If the Ruelle operator theorem for Lq holds for some q � 2, then the Ruelle
operator theorem for L holds.

Proof. The spectral radius for Lq is �q. Since the Ruelle operator theorem for Lq holds, we
have a unique positive function h ∈ C(X) and a unique probability measure ν ∈ M(X) such
that

Lqh = �qh, (Lq)∗ν = �qν, 〈ν, h〉 = 1.

And moreover, for any φ ∈ C(X),

lim
k→∞

‖(�q)−k(Lq)kφ− 〈ν,φ〉h‖ = 0.

This implies that for φ = Lh, we have that

lim
k→∞

�−kqLkq (Lh) = 〈ν,Lh〉h = lim
k→∞

L
(
�−kqLkqh

)
= 〈ν, h〉Lh = Lh.

This implies that

Lh = 〈ν,Lh〉h.

And then,

Lqh = (〈ν,Lh〉)qh = �qh.

This implies that

Lh = �h.

Similarly, we have that L∗ν = �ν.
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For the convergence, take any φ ∈ C(X), we have that

lim
k→∞

‖�−kq− jLkq+ jφ− �− j〈ν,L jφ〉h‖ = 0 for any 0 � j < q.

Note that

〈ν,L jφ〉 = 〈(L∗) jν,φ〉 = � j〈ν,φ〉.

We get that

lim
k→∞

‖�−kLkφ− 〈ν,φ〉h‖ = 0.

Hence, the Ruelle operator theorem for L holds. �

Furthermore, we have the convergence speed of �−nLnφ to 〈ν,φ〉h.

Theorem 2.7. Suppose a weakly expansive Dini system (X, f ,P) satisfies the optimal quasi-
gap condition (2.8). Let h ∈ C(X) and ν ∈ M(X) be from theorem 2.5. Then there exist con-
stants A > 0, 0 < γ0 < 1, and 0 ∈ N such that for any φ ∈ C(X) and n � k with  � 0,

‖�−nLnφ− 〈ν,φ〉h‖ � A
(
ωφ(τ) + ‖φ‖

(
γk

0 + γ
0 + ω̃(τ)

))
,

where τ is the number defined in (2.3) and τ  → 0 as →∞.

Remark 2.8. If a weakly expansive Dini system (X, f ,P) satisfies the optimal quasi-gap
condition (2.9), then we replace n by qn in theorem 2.7.

We take this opportunity to point out that there is a gap in paper [22] since the proof of
[22, lemma 4.2] works only with the assumption of the conformal condition on f . theorem 2.5
successfully removes the assumption of the conformal assumption on f . Hence, the gap in [22]
is closed by this paper as follows.

We say further f is piecewise C1 if every f |X̊i
is C1, 1 � i � m. Then all gi are continuously

Fréchet differentiable on X̊. In this case, the optimal quasi-gap condition (2.9) is equivalent to

sup
x∈X

∑
I∈Σq

pI(x) · ‖DxgI‖ < �q, (2.12)

where DxgI means the derivative of gI at x; ‖DxgI‖ is the norm of DxgI as an operator.

Corollary 2.9. Suppose a weakly expansive Dini system (X, f ,P) satisfies the condition
(2.12) and suppose f is C1. Then there exists a unique positive function h ∈ C(X) and a unique
probability measure ν ∈ M(X) such that

Lh = �h, L∗ν = �ν, 〈ν, h〉 = 1.

Moreover, there exist constants A > 0, 0 < γ0 < 1, 0 ∈ N such that for any φ ∈ C(X) and
qn � k with  � 0,

‖�−qnLqnφ− 〈ν,φ〉h‖ � A
(
ωφ(τ) + ‖φ‖

(
γk

0 + γ
0 + ω̃(τ)

))
,

where τ is the number defined in (2.3) and τ  → 0 as →∞.
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Using the lower bound of the spectral radius � in (2.7), we can use the following calculable
condition (2.13) to replace the optimal quasi-gap condition (2.8):

sup
x∈X

m∑
i=1

pi(x)

⎛⎝ sup
y∈X

0<|x−y|�b

|gi(y) − gi(x)|
|y − x|

⎞⎠ < min
x∈X

m∑
i=1

pi(x) (2.13)

for some b > 0.

Corollary 2.10. Suppose a weakly expansive Dini system (X, f ,P) satisfies the condition
(2.13). Then there exists a unique positive function h ∈ C(X) and a unique probability measure
ν ∈ M(X) such that

Lh = �h, L∗ν = �ν, 〈ν, h〉 = 1.

Moreover, there exist constants A > 0, 0 < γ0 < 1, 0 ∈ N such that for any φ ∈ C(X) and
n � k with  � 0,

‖�−nLnφ− 〈ν,φ〉h‖ � A
(
ωφ(τ) + ‖φ‖

(
γk

0 + γ
0 + ω̃(τ)

))
,

where τ is the number defined in (2.3) and τ  → 0 as →∞.

An important consequence of theorem 2.7 is the decay of correlations.

Corollary 2.11. Suppose a weakly expansive Dini system (X, f ,P) satisfies the optimal quasi-
gap condition (2.8). Let ν ∈ M(X) be the probability measure from theorem 2.5. Then there
exist constants A > 0, 0 < γ0 < 1 and 0 ∈ N such that for any n � k with  � 0 and
φ ∈ C(X), we have

|Cφ(n)| � A‖φ‖
(
ωφ(τ) + ‖φ‖

(
γk

0 + γ
0 + ω̃(τ)

))
,

where τ is the number defined in (2.3) and τ  → 0 as →∞.

3. Proof of theorem 2.5

We prove theorem 2.5 through several lemmas.

Lemma 3.1. The followings hold

(a) minx∈X�
−nLn1(x) � 1 � maxx∈X�

−nLn1(x) for all n > 0;
(b) if there exist λ > 0 and 0 < h ∈ C(X) such that Lh = λh, then λ = � and there exist

A, B > 0 such that

A � �−nLn1(x) � B for all n > 0;

(c) if h � 0 is a �-eigenfunction of L, then h > 0;
(d) dim {h ∈ C(X) | Lh = �h, h � 0} � 1.

Proof. We prove the second inequality in (a) by contradiction. Suppose it is not true, then there
exists an integer k such that ‖Lk1‖ < �k. From Gelfand’s formula, �k = (�(L))k = �(Lk), we
have that

� =
(
�(Lk)

) 1
k � ‖Lk‖ 1

k = ‖Lk1‖ 1
k < �,
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which is a contradiction. The proof of the first inequality in (a) is similar.
To prove (b), let a1 = minx∈Xh(x) and a2 = maxx∈Xh(x). Then

0 <
a1

a2
� h(x)

a2
=

λ−n

a2
Lnh(x) � λ−nLn1(x) � λ−n‖Ln‖.

Similarly we can show that λ−n‖Ln‖ � a2/a1. Hence

� = lim
n→∞

‖Ln‖ 1
n = λ.

To prove (c), we first note that if 0 ≡ φ ∈ C(X) and φ � 0, then for any x ∈ X, there is
an integer n > 0 such that Lnφ(x) > 0. This is because that if we let V = {y ∈ X|φ(y) > 0}.
Then V is a non-empty open set. And there exists an I0 ∈ Σ such that gI0 (x) ∈ V for any x ∈ X.
Then

Lnφ(x) =
∑

|I|=|I0|
pI(x)φ(gI(x)) � pI0 (x)φ(gI0(x)) > 0.

From the above argument, we can get (c).
To prove (d), suppose h1, h2 ∈ C(X) are two strictly positive �-eigenfunctions. With-

out loss of generality, assume 0 < h1 � h2 and h1(x0) = h2(x0) for some x0 ∈ X. Consider
h = h2 − h1 � 0. It is a �-eigenfunction with h(x0) = 0. From (c), we have that h ≡ 0, that is,
h1 ≡ h2. �

The next result is interesting since for the transfer operator associated with a weakly expand-
ing dynamical system and a Dini potential, we have, in general, the essential spectrum radius
�ess = �. We first give a basic criterion for the existence of the eigenfunction corresponding to
the spectrum radius � in this case.

From proposition 3.1 of [14], we have

Lemma 3.2. Suppose that

(a) There exist A, B > 0 such that A � �−nLn1(x) � B for all x ∈ X and n > 0 and
(b) For any φ ∈ C(X), {�−nLnφ}∞n=1 is an equicontinuous sequence.

Then the Ruelle operator theorem for L holds.

Lemma 3.3. Let 0 < θ < 1 and a =
∑∞

i=0ω(θi). For any n > 0 and any x, y ∈ X, if

|g ji ◦ · · · ◦ g jn−1 (x) − g ji ◦ · · · ◦ g jn−1 (y)| � θn−1−i ∀ 0 � i < n − 1,

then

pJ(x) � ea pJ(y),

where J = j0j1 . . . jn−1 ∈ Σn.

Proof. Note the definition of ω. The inequality follows from the estimate that∣∣∣∣log
pJ(x)
pJ(y)

∣∣∣∣ � n−1∑
i=0

| log pji

(
g ji+1 ◦ · · · ◦ g jn−1 (x)

)
− log pji

(
g ji+1 ◦ · · · ◦ g jn−1(y)

)
|

�
n−1∑
i=0

ω(θn−1−i) � a.

�
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Lemma 3.4. Suppose

(a) r := min
1�i�m

sup
x∈X

sup
y∈X

0<|y−x|�b0

|gi(x)−gi(y)|
|x−y| < 1 for some b0 > 0 and suppose

(b) There exist constants A, B > 0 such that

A � �−nLn1(x) � B for any x ∈ X and n > 0.

Then the Ruelle operator theorem for L holds.

To prove lemma 3.4, we need the following lemma that is modified from lemma 3.3 of [14].
Let C+(X) := {0 < φ ∈ C(X)}.

Lemma 3.5. Suppose

(a) supn‖�−nLn‖ < ∞ and suppose
(b) There exists a b0 > 0 and a dense subset D of C+(X) such that for each φ ∈ D, there

exists a continuous function Φ (depends on φ) defined on [0, 1] with Φ(0) = 0 such that

0 < Lnφ(x) � Lnφ(y)eΦ(|x−y|) ∀ n � 0 and x, y ∈ X with |x − y| � b0.

Then for each φ ∈ C(X), {�−nLnφ}∞n=1 is a bounded equicontinuous sequence.

Proof. Let φ ∈ D and ϕ ∈ C(X). For any x, y ∈ X with |x − y| � b0 and n > 0,

|�−nLnϕ(x) − �−nLnϕ(y)|

� ‖�−nLnφ‖ ·
∣∣∣∣1 − Lnφ(y)

Lnφ(x)

∣∣∣∣+ 2‖�−nLn‖ · ‖φ− ϕ‖

� B
(
‖φ‖(eΦ(|x−y|) − 1) + 2‖φ− ϕ‖

)
.

where B = supn‖�−nLn‖. By the assumptions on D and Φ, we can show that for each
φ ∈ C+(X), {�−nLnφ}∞n=1 is a bounded equicontinuous subset of C(X).

For φ ∈ C(X), we can choose a > 0 such that φ+ a > 0. Then

{�−nLn(φ+ a)}∞n=1

and {�−nLna}∞n=1 are bounded equicontinuous subsets of C+(X), hence {�−nLnφ}∞n=1 is also
a bounded equicontinuous subset of C(X). �

Proof of lemma 3.4. Let

D = {φ ∈ C+(X) : φ(x) � φ(y)ec|x−y| for all x, y ∈ X for some c > 0}.

Then D is dense in C+(X).
For any φ ∈ D there exist c, c1 > 0 such that

φ(x) � φ(y)ec|x−y| ∀x, y ∈ X and c−1
1 � φ(x) � c1.

This, together with assumption (b), implies that

Ac−1
1 � �−nLnφ(x) � Bc1.
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Combining with the strictly positivity of pi, it is direct to show that

0 < b := inf
n�1

min
x,i

pi(x)Ln−1φ(gi(x))
Lnφ(x)

< 1. (3.1)

Since P is a Dini potential, we can choose k � 1 large enough such that kb � 1 and define

Φ(t) =
k + c
1 − r

∫ t

0

ω
(

x
r

)
x

dx. (3.2)

By a direct calculation, we have

ct � Φ(t), kω(t) +Φ(rt) � Φ(t), (3.3)

and hence φ(x) � φ(y)eΦ(|x−y|) for any x, y ∈ X with |x − y| � b0. We will prove that for any
n > 0

Lnφ(x) � Lnφ(y)eΦ(|x−y|) ∀x, y ∈ X with |x − y| � b0.

Let ωlog φ(t) be the modulus of continuity of logφ. Then for any x, y ∈ X with |x − y| � b0,

Lφ(y) = Lφ(x)
m∑

i=1

pi(y)φ(gi(y))
Lφ(x)

� Lφ(x)
m∑

i=1

pi(x)φ(gi(x))
Lφ(x)

e−ω(|x−y|)−ωlog φ(|gi(x)−gi(y)|)

� Lφ(x)e−ω(t)−S (by the convexity of ex)

where t = |x − y| and

S =
m∑

i=1

pi(x)φ(gi(x))
Lφ(x)

ωlog φ(|gi(x) − gi(y)|).

From (a) we can assume, without loss of generality, that

sup
x∈X

sup
y∈X

0<|y−x|�b0

|g1(x) − g1(y)|
t

� r,

then

ωlog φ(|g1(x) − g1(y)|) � Φ(rt),

and by the weak contractivity of gi, 2 � i � m, we have

ωlog φ(|gi(x) − gi(y)|) � Φ(t).

We continue the above estimate on S:
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S � p1(x)φ(g1(x))
Lφ(x)

(Φ(rt) − Φ(t)) + Φ(t)

� −bk · ω(t) +Φ(t) (by (3.1), (3.3))

� −ω(t) +Φ(t).

Hence, Lφ(x) � Lφ(y)eΦ(|x−y|). Inductively we prove that for any n ∈ N

Lnφ(x) � Lnφ(y)eΦ(|x−y|) ∀x, y ∈ X with |x − y| � b0. (3.4)

The result now follows from lemmas 3.5 and 3.2. �
We would like to point out that the condition (a) of lemma 3.4 is a generalisation of the con-

dition (a) of theorem 4.2 in [14]. We modify it in the current form so that the system considered
in this paper satisfies the condition (a) of lemma 3.4.

For any integer n, we let

Dn = {(n1, n2, . . . , nk) : 0 < ni < ni+1 and nk � n}
⋃

{(0)}.

For any J = j0 j1 . . . jn−1 ∈ Σn and any 0 � k < l � n, we define

J|kl = jn−l jn−l+1 . . . jn−k−1.

We let J|kl = ∅ if k = l.
Let b0 > 0 be fixed. For any multi-index J ∈ Σ and x ∈ X, we let

γJ(x) = sup
y∈X

0<|y−x|�b0

|gJ(x) − gJ(y)|
|x − y| . (3.5)

For convenience, we let γJ(x) = 1 and pJ(x) = 1 if |J| = 0.

Lemma 3.6. Let {D(k)}k=1 be a partition of Σn, and let

0 = n(k)
0 < n(k)

1 < · · · < n(k)
tk

= n ∀1 � k � . (3.6)

Then for any x ∈ X,

∑
k=1

∑
J∈D(k)

pJ(x) ·
tk∏

t=1

γ
J|

n(k)
t−1

n(k)
t

(
gJ|0

n(k)
t−1

(x)

)
� an,

provided that

sup
x∈X

m∑
i=1

pi(x) · γi(x) � a. (3.7)

Proof. Note the fact that for any multi-index J = j0 j1 . . . jn−1 ∈ Σn, n ∈ N, and x ∈ X, we
have

|gJ(x) − gJ(y)|
|x − y| =

n∏
i=1

|g jn−i

(
gJ|0i−1

(x)
)
− g jn−i

(
gJ|0i−1

(y)
)
|

|gJ|0i−1
(x) − gJ|0i−1

(y)| , ∀y = x,
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and

pJ(x) =
n∏

i=1

pjn−i

(
gJ|0i−1

(x)
)
.

Hence, from the weakly contraction of the system W , we conclude that

γJ(x) �
n∏

i=1

γ jn−i

(
gJ|0i−1

(x)
)
. (3.8)

And then this, combined with (3.7), implies that

∑
J∈Σn

pJ(x) ·
n−1∏
i=0

γJ|ii+1

(
gJ|0i

(x)
)
� an. (3.9)

From the assumption (3.6), using the same argument as that in (3.8), we can deduce that for
any J ∈ Σn,

tk∏
t=1

γ
J|

n(k)
t−1

n(k)
t

(
gJ|0

n(k)
t−1

(x)

)
�

n−1∏
i=0

γJ|ii+1

(
gJ|0i

(x)
)
. (3.10)

Note that {D(k)}k=1 is a partition of Σn(= {J : |J| = n}). It follows that

∑
k=1

∑
J∈D(k)

pJ(x) ·
tk∏

t=1

γ
J|

n(k)
t−1

n(k)
t

(
gJ|0

n(k)
t−1

(x)

)

�
∑
J∈Σn

pJ(x) ·
n−1∏
i=0

γJ|ii+1

(
gJ|0i

(x)
)

(by (3.10))

� an (by (3.9)).

Thus, the conclusion follows. �

As a consequence of lemma 3.4, we have

Lemma 3.7. Suppose

(a) There exists q such that

sup
x∈X

∑
J∈Σq

pJ(x) · γJ(x) < �q

and suppose
(b) There exist constants A, B > 0 such that A � �−nLn1(x) � B for any x ∈ X and n > 0.

Then the Ruelle operator theorem for L holds.

Proof. By (a) there exists a 0 < η < 1 such that

sup
x∈X

∑
J∈Σq

pJ(x) · γJ(x) � η�q
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From this, we conclude, by applying lemma 3.6, that for any x ∈ X and n ∈ N,

∑
J∈Σnq

pJ(x) ·
n∏

t=1

γ
J|(t−1)q

tq

(
gJ|0(t−1)q

(x)
)
� ηn�nq.

By using the argument similar to (3.8), we can prove that for any muti-index J ∈ Σnq,

γJ(x) �
n∏

t=1

γ
J|(t−1)q

tq

(
gJ|0(t−1)q

(x)
)
.

It follows that ∑
J∈Σnq

pJ(x) · γJ(x) � ηn�nq. (3.11)

We claim that

sup
x∈X

inf
n∈N

min
J∈Σnq

γJ(x) = 0.

Otherwise, we suppose that

sup
x∈X

inf
n∈N

min
J∈Σnq

γJ(x) > 0.

Then, there exists a c0 > 0 and a x0 ∈ X such that

inf
n∈N

min
J∈Σnq

γJ(x0) � c0.

This, combined with (3.11) and (b), implies that for any n ∈ N,

ηn � �−nq
∑

J∈Σnq

pJ(x0) · γJ(x0) � c0 · �−nq
∑

J∈Σnq

pJ(x0)

= c0 · �−nqLnq1(x0) � c0A. (by (b))

This contradicts to the choice of 0 < η < 1. Then, the claim follows. And thus, there exists
a n0 ∈ N and a J0 ∈ Σn0q such that supx∈XγJ0 (x) < 1. From this, by applying lemma 3.4, we
conclude that the Ruelle operator theorem for Ln0q holds. lemma 2.6 implies that the Ruelle
operator theorem for L holds. �

Now we can complete our proof of theorem 2.5.

Proof of theorem 2.5. The optimal quasi-gap condition (2.9) says that the condition (a)
of lemma 3.7 is satisfied. Hence, to finish the proof, we need only to prove that condition (b)
of lemma 3.7 is also satisfied, i.e., there exist A, B > 0 such that

A � �−n
∑
J∈Σn

pJ(x) � B ∀ x ∈ X and n ∈ N. (3.12)

From lemma 2.6, we know that if the Ruelle operator theorem for Lq holds for some q � 2,
then the Ruelle operator theorem for L holds. Without loss of generality, we may assume that
the optimal quasi-gap condition (2.8) is satisfied, i.e.,

sup
x∈X

m∑
j=1

pj(x) · γ j(x) < �. (3.13)
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By (3.13), we can find 0 < η < 1 such that

sup
x∈X

m∑
j=1

pj(x) · γ j(x) � η�. (3.14)

For any x ∈ X and any r > 0, we let

B(x; r) = {y ∈ X : |y − x| < r}.

It is obvious that

X ⊆
⋃
x∈X

B

(
x;

b0

4

)
.

From the compactness of X, we conclude that there exists a finite subset {zi}0
i=1 of X such that

X ⊆
0⋃

i=1

B

(
zi;

b0

4

)
. (3.15)

It follows that

max
1�i�0

sup
x∈B

(
zi;

b0
2

)
m∑

j=1

pj(x) · γ j(x) = sup
x∈X

m∑
j=1

pj(x) · γ j(x).

Hence it follows from (3.14) that

max
1�i�0

sup
x∈B

(
zi;

b0
2

)
m∑

j=1

pj(x) · γ j(x) < η�. (3.16)

For any fixed x ∈ X, we let γJ(x), J ∈ Σ, be defined as in (3.5). Choose θ such that
0 < η < θ < 1. Let δ0 = η

θ . Then 0 < δ0 < 1. And for any integer n and J ∈ Σn, since f is
weakly expanding, we have the largest integer n1(x) � 0 such that

γJ|0n1(x)
(x) � θn1(x),

and let n2(x)(> n1(x)) be the largest integer such that

γ
J|n1(x)

n2(x)

(
gJ|0n1(x)

(x)

)
� θn2(x)−n1(x),

and so on. Then, we find a (finite) sequence {ni(x)}tJ
i=1 such that

γ
J|ni(x)

ni+1(x)

(
gJ|0ni(x)

(x)

)
� θni+1(x)−ni(x) ∀ 1 � i � ntJ (x) − 1,

and

γ
J|

ntJ (x)
i

(
gJ|0ntJ (x)

(x)

)
< θi−ntJ (x) ∀ ntJ (x) < i � n. (3.17)
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Define σx : Σn → Dn by

σx(J) =
(
n1(x), n2(x), . . . , ntJ (x)

)
.

Then #σx(Σn) < ∞. Denote σx(Σn) = {Ak(x)}(x)
k=1, where Ak(x) ∈ Dn. Let

Dx(k) = {J : σx(J) = Ak(x)}, ∀1 � k � (x).

It is clear that

Dx(i)
⋂

Dx( j) = ∅, ∀i = j.

Hence, {Dx(k)}(x)
k=1 is a partition of Σn. Let

Ωx(n, k) = {J ∈ Σn : ntJ (x) = k}, 1 � k � n,

Ωx(n, 0) = {J ∈ Σn : ntJ (x) = 0}.

Then

Σn =
n⋃

k=0

Ωx(n, k).

We, sometimes, use Ak,  and Ω(·, ·) to denote Ak(x), (x) and Ωx(·, ·), respectively, for the
simplicity if there is no confusion causes. For any 1 � k � , let Ak = (n(k)

1 , n(k)
2 , . . . , n(k)

tk−1
). For

convenience, we let n(k)
0 = 0 and let n(k)

tk = n. We conclude from lemma 3.6, by making use of
(3.14), that

S0 :=
∑

k=1

∑
J∈D(k)

pJ(x) ·
tk∏

t=1

γ
J|

n(k)
t−1

n(k)
t

(
gJ|0

n(k)
t−1

(x)

)
� (η�)n. (3.18)

Without loss of generality, we assume that Ω(n, n) = {D(k)}1
k=1, where 1 �  = (x). And

we let

S1 :=
1∑

k=1

∑
J∈D(k)

pJ(x) ·
tk∏

t=1

γ
J|

n(k)
t−1

n(k)
t

(
gJ|0

n(k)
t−1

(x)

)
.

For any 1 � k � 1 and any J ∈ D(k), we have n(k)
tk−1

= ntJ = n, and this implies that

tk∏
t=1

γ
J|

n(k)
t−1

n(k)
t

(
gJ|0

n(k)
t−1

(x)

)
�

tk∏
t=1

θn(k)
t −n(k)

t−1 = θn.

From this, we conclude that

S1 �
1∑

k=1

∑
J∈D(k)

pJ(x) · θn =
∑

J∈Ω(n,n)

pJ(x) · θn.

This, combined with (3.18), implies that∑
J∈Ωx (n,n)

pJ(x) · θn � S1 � S0 � (η�)n.
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Thus, it follows that

�−n
∑

J∈Ωx (n,n)

pJ(x) �
(η
θ

)n
= δn

0. (3.19)

Remember that ω(t) is the modulus of continuity for P and

a :=
∞∑

k=0

ω(θk) < ∞.

For any n ∈ N, let⎧⎨⎩
Ξ(n, k) = {J ∈ Σn : max

1�i�0

ntJ (zi) = k}, 1 � k � n,

Ξ(n, 0) = {J ∈ Σn : max
1�i�0

ntJ (zi) = 0}.
(3.20)

Then

Σn =

n⋃
k=0

Ξ(n, k).

Remember that

τn = max
J∈Σn

sup
x,y∈X

|gJ(x) − gJ(y)| → 0, as n →∞.

For any n > 0, we can make use of lemma 3.1(a) to find xn ∈ X such that

�−n
∑
J∈Σn

pJ(xn) � 1. (3.21)

And from (3.15), it is easy to confirm that for any J ∈ Ξ(n, n) and x ∈ X

pJ(x) � e
∑n−1

q=0 ω(τq) · pJ(zi), ∀1 � i � 0.

From this, together with (3.19), we conclude that for any x ∈ X,

�−n
∑

J∈Ξ(n,n)

pJ(x) � �−ne
∑n−1

q=0 ω(τq) max
1�i�0

∑
J∈Ωzi (n,n)

pJ(zi)

� e
∑n−1

q=0 ω(τq) · δn
0 . (3.22)

For any J = j0 j1 . . . jn−1 ∈ Ξ(n, k), we have J|0k ∈ Ωzi (k, k) for some 1 � i � 0. For any
x, y ∈ X, it follows from (3.15) that there exist {i j}j=1 ⊆ {1, . . . , 0}, which depends on gJ|0k

(x)
and y, such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a) 1 �  � 0;

(b) B

(
zi j ;

b0

2

)⋂
B

(
zi j+1 ;

b0

2

)
= ∅ for all 1 � j � − 1;

(c) gJ|0k
(x) ∈ B

(
zi1 ;

b0

2

)
and y ∈ B

(
zi ;

b0

2

)
.
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Taking x j ∈ B(zi j;
b0
2 )
⋂

B(zi j+1 ; b0
2 ), 1 � j � − 1. And let x0 = gJ|0k

(x), y = x. Then we get
a chain from x0 to y:

gJ|0k
(x) = x0 → zi1 → x1 → zi2 → · · · → x−1 → zi → x = y.

It is obvious that

x j−1, x j ∈ B

(
zi j ;

b0

2

)
for any 1 � j � .

Note that the definition ofΞ(n, k). From this, together with lemma 3.3, we can deduce, by using
(3.17) repeatedly 2 times, that

pJ|kn(x0) � ea pJ|kn(zi1 ) � e2a pJ|kn(x1) � · · · � e2a pJ|kn (x),

i.e., pJ|kn

(
gJ|0k

(x)
)
� e2a pJ|kn(y). (We use |X| = 1 here.) This implies that

pJ|kn

(
gJ|0k

(x)
)
� e20a pJ|kn(y) ∀ x, y ∈ X. (3.23)

Hence

pJ(x) = pJ|kn

(
gJ|0k

(x)
)
· pJ|0k

(x) � e20a pJ|kn(xn−k) · pJ|0k
(x). (3.24)

It follows that

�−n
∑

J∈Ξ(n,k)

pJ(x) � �−ne20a
∑

J∈Ξ(n,k)

pJ|kn(xn−k)pJ|0k
(x) (by (3.24))

� e20a

⎛⎝�−n+k
∑

J′∈Σn−k

pJ′ (xn−k)

⎞⎠⎛⎝�−k
∑

J′′∈Ξ(k,k)

pJ′′ (x)

⎞⎠
� e20aδk

0e
∑k−1

q=0 ω(τq). (by (3.21) and (3.22)) (3.25)

This further implies that

�−n
∑
J∈Σn

pJ(x) = �−n
n∑

k=0

∑
J∈Ξ(n,k)

pJ(x)

� e20a
n∑

k=0

k−1∏
q=0

(
δ0 · eω(τq)

)
. (3.26)

From the fact that

lim
k→∞

∏k
q=0

(
δ0 · eω(τq)

)∏k−1
q=0

(
δ0 · eω(τq)

) = lim
k→∞

(
δ0 · eω(τk)

)
= δ0 < 1,

we conclude that the last term of (3.26) is bounded by

B := e20a
∞∑

k=0

k−1∏
q=0

(
δ0 · eω(τq)

)
< ∞.
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This concludes our upper bound estimation for (3.12).
For the lower bound estimation for (3.12), we note that lemma 3.1(a) and (3.26) implies

that for any n > 0, there exists yn ∈ such that

1 � Cn := �−n
∑
J∈Σn

pJ(yn) � B.

For any fixed x ∈ X, we let

ωJ =

n−1∑
i=0

ω(|gJ|0i
(x) − gJ|0i

(yn)|).

Then, we have

pJ(yn) � pJ(x)eωJ .

By making use of (3.23), we get that

ωJ � 20a +
k−1∑
i=0

ω(τi) � 20a + kω(1) for all J ∈ Ξ(n, k). (3.27)

And then, we have

�−n
∑
J∈Σn

pJ(yn)ωJ = �−n
n∑

k=0

∑
J∈Ξ(n,k)

pJ(yn)ωJ

� �−n
n∑

k=0

(20a + kω(1))
∑

J∈Ξ(n,k)

pJ(yn)

�
n∑

k=0

(20a + kω(1)) ·
(
δk

0 · e20a+
∑k−1

q=0 ω(τq)
)

(by (3.25))

� B1,

where B1 := e20a
∑∞

k=0δ
k
0 (20a + kω(1)) · e

∑k−1
q=0ω(τq)

< ∞. By the convexity of function ex ,
we have

�−n
∑
J∈Σn

pJ(x) � �−n
∑
J∈Σn

pJ(yn)e−ωJ � �−n

Cn

∑
J∈Σn

pJ(yn)e−ωJ

� e
− 1

Cn
�−n ∑

J∈Σn
pJ (yn)ωJ

� A := e−B1 .

This concludes our lower bound estimation for (3.12).
Now lemma 3.7 completes the proof of theorem 2.5. �

4. Proof of theorem 2.7

From theorem 2.5, we can normalise the operator L as follows. Suppose � and h and ν are
eigenvalue and the unique eigenfunction and the unique eigen-measure for L and L∗ from
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theorem 2.5, that is,

Lh = �h, L∗ν = �ν and 〈ν, h〉 = 1.

Let μ = hν, and let

p̃i(x) =
h(gi(x))
�h(x)

pi(x). (4.1)

Then we have a normalised transfer operator L̃ defined as

L̃φ(x) =
m∑

i=1

p̃i(x)φ(gi(x)). (4.2)

The normalisation means that

L̃1 =

m∑
i=1

p̃i = 1 and L̃∗μ = μ.

Moreover, we have that for any φ ∈ C(X) and n � 1

L̃nφ = �−n(1/h)Ln(φh) = �−nLn

(
φh

h ◦ f n

)
. (4.3)

Furthermore, we define

Pnφ = (L̃nφ) ◦ f n, ∀φ ∈ C(X), ∀ n � 1.

And let

ImPn = Pn (C(X)) .

The sequence of operators CMP = {Pn}∞n=1 is a compatible chain of Markovian projections,
that is, it satisfies that

(a) PnPm = PmPn = Pn for all m � n � 1 and
(b) For any φ ∈ C(X) and χ ∈ Γn = ImPn,

Pn(χφ) = χPnφ.

Then μ is a g-measure for this chain of Markovian projections, that is, P∗
nμ = μ for all

n � 1. We would like to note that μ is the unique solution for the eigenvalue problemP∗
nμ = μ

for all n � 1. Then convergence (2.11) is equivalent to the convergence condition:

Pnφ(x) → 〈μ,φ〉, n →∞, ∀ φ ∈ C(X), ∀ x ∈ X,

due to a standard result in probability theory. It is worth to note that the convergence implies that
the eigenvalue problem P∗

nμ = μ should have the unique solution. Actually the convergence
problem and the eigenvalue problem are equivalent. Note that

‖Pnφ‖ = ‖L̃nφ‖ = �−n‖Ln

(
φh

h ◦ f n

)
‖, ∀φ ∈ C(X), ∀n � 1. (4.4)

So if we can get a formula for the convergence speed for Pn, then we can have a convergence
speed for Ln. We divide the proof into several steps stated as lemmas and propositions.
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For every n > 0, consider the σ-algebraBn generated by {XI |I ∈ Σn}. Recall that XI(I ∈ Σ)
is defined in section 2 just before (2.3). Let En(·) = E(·|Bn), n > 0, be the conditional expecta-
tion in the probability space (X, μ). And let, in particular, E(·) = E(·|X). For every φ ∈ C(X),
we have that

En(φ)(x) =

∫
XI
φ dμ

ν (XI)
, ∀x ∈ XI , ∀I ∈ Σn.

Then

L̃nEn(φ)(x) =
∑
I∈Σn

p̃I(x)

∫
XI
φ dμ

ν(XI)
, ∀ x ∈ X. (4.5)

PnEn(φ)(x) =
∑
I∈Σn

p̃I( f n(x))

∫
XI
φ dμ

ν(XI)
, ∀ x ∈ X. (4.6)

Recall τ ( ∈ N) defined in (2.3) and assume τ < b where b is in definition 2.3 for the
quasi-gap condition. For any , n ∈ N, denote

S
n = max

|x−y|�τ

∑
I∈Σn

| p̃I(x) − p̃I(y)| .

Lemma 4.1. For any n = k (k,  ∈ N) and any φ ∈ C(X), we have

‖Pnφ‖ � ωφ(τ) +
k−1∑
j=2

S
( j−1) · ‖

j−2∏
i=1

PiEi(φ)‖+ ‖
k∏

i=1

PiEi(φ)‖.

Proof. Since Pn1 = 1, we have that

‖Pnφ‖ � ‖φ‖.

Let

varn(φ) = max
I∈Σn

max
x,y∈XI

|φ(x) − φ(y)|

be the variation of φ on the σ-algebra Bn. Then we have

‖Pn(E− Ek)(φ)‖ � ‖(E− Ek)(φ)‖ � vark(φ).

By (4.6) and the Bn-measurability of En(φ), we have

varn+ (PnEn(φ)) � var (LnEn(φ)) � S
n · ‖φ‖.

Then for any j � 2

‖Pn(E− E j)

(
j−1∏
i=1

PiEi

)
φ‖ � S

( j−1)‖
(

j−2∏
i=1

PiEi

)
(φ)‖. (4.7)

Since n = k, we get that
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Pn = Pn

⎛⎝(E− E) +
k−1∑
j=2

(E− E j)
j−1∏
i=1

PiEi +

k∏
i=1

PiEi

⎞⎠ .

Note that

‖Pn(E− E)(φ)‖ � var(φ) � ωφ(τ).

From this, together with (4.7), we get the conclusion of the lemma. �

From this lemma, we see that the proof of theorem 2.7 depends on estimations of ‖PnEn(φ)‖
and Sn

jn. We will give these estimations in two key propositions (proposition 4.4 and proposition
4.5).

Lemma 4.2. Let C > 0 be a constant such that for I ∈ Σn

p̃I(x) � Cp̃I(y), ∀x, y ∈ X.

Then

C−1 � p̃I(x)
μ(XI)

� C, ∀x ∈ X.

Proof. Since for any x ∈ X̊,

L̃n1XI (x) =
∑
J∈Σn

p̃J(x) · 1XI (gJ(x))) = p̃I(x)

and since L∗μ = μ and <μ, 1 >= 1, we have that

C−1 p̃I(x) � μ(XI) = 〈μ, L̃n1XI 〉 = 〈μ, p̃I(·)〉 � Cp̃I(x).

This gives the lemma. �

Lemma 4.3. Suppose a � 1 is a constant. Let cI(x) be a function for any I ∈ Σn. Suppose

a−1 � cI(x) � a, ∀x ∈ X, ∀I ∈ Σn.

Then, for any φ(x) ∈ C(X) with
∫

Xφdμ = 0,

|
∑
I∈Σn

cI(x)
∫

XI

φ dμ| � (1 − a−2)‖φ‖
∑
I∈Σn

cI(x)μ(XI).

Before proving this lemma, we would like to point out that the factor (1 − a−2) in the last
inequality will play an important role in the later argument.

Proof. Let

Σ+
n =

{
I ∈ Σn

∣∣∣∣ ∫
XI

φ dμ > 0

}
and Σ−

n = Σn\Σ+
n .

Since ∑
I∈Σn

∫
XI

φ dμ =

∫
X
φ dμ = 0,
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we have that

A =
∑

I∈Σ+
n

∫
XI

φ dμ = −
∑
I∈Σ−

n

∫
XI

φ dμ.

Without lost of generality, we assume A = 1. Set

b1 =
∑

I∈Σ+
n

cI(x)
∫

XI

φ dμ, b2 = −
∑
I∈Σ−

n

cI(x)
∫

XI

φ dμ.

We have that

a−1 � bi � a, i = 1, 2.

So one can show that

|b1 − b2|
b1 + b2

� a − a−1

a + a−1
.

This implies that∣∣∣∣∣∑
I∈Σn

cI(x)
∫

XI

φ dμ

∣∣∣∣∣ = |b1 − b2| �
a − a−1

a + a−1
(b1 + b2)

� a − a−1

a + a−1

∑
I∈Σn

cI(x)

∣∣∣∣∫
XI

φ dμ

∣∣∣∣ � (1 − a−2)‖φ‖
∑
I∈Σn

cI(x)μ(XI).

We prove the lemma. �
Now we prove the first key proposition.

Proposition 4.4. There exists 0 < γ < 1 such that for any φ ∈ C(X) with
∫

Xφdμ = 0, we
have

‖PnEn(φ)‖ � γ‖φ‖, ∀ n � 1.

Proof. From (4.1), we can deduce that there exist two constants c1, c2 > 0 such that

c1�
−n pI(x) � p̃I(x) � c2�

−n pI(x), ∀I ∈ Σn, ∀n � 1 ∀x ∈ X. (4.8)

We know from theorem 2.5 and lemma 3.1(b) that there exists a constant B > 0 such that

�−n
∑
I∈Σn

pI(x) � B for all x ∈ X and n > 0.

By condition (2.8), we can find a 0 < η < 1 such that

sup
x∈X

m∑
i=1

pi(x) ·

⎛⎝ sup
y∈X

|y−x|�b

|gi(y) − gi(x)|
|y − x|

⎞⎠ � η�.

Then we know from (3.11) that

∑
I∈Σn

pI(x) ·

⎛⎝ sup
y∈X

|y−x|�b

|gI(y) − gI(x)|
|y − x|

⎞⎠ � (η�)n, ∀ x ∈ X, ∀n � 1.
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Let 0 < δ0 = η
θ < 1 be as in the proof of theorem 2.5. From (4.8) and (3.25), we get a

constant c3 > 0 such that∑
I∈Ξ(n,k)

p̃I(x) � c3δ
k
0e

∑k−1
q=0 ω(τq) for all x ∈ X.

Recall Ξ(n, j) defined in (3.20) in the proof of theorem 2.5. Let

A(n, k) =
n⋃

j=k

Ξ(n, j) and B(n, k) =
k−1⋃
j=0

Ξ(n, j).

Then

Σn = A(n, k)
⋃

B(n, k) =
n⋃

k=0

Ξ(n, k).

Hence

∑
I∈A(n,k)

p̃I(x) =
n∑

j=k

∑
I∈Ξ(n, j)

p̃I(x) �
n∑

j=k

c3δ
j
0e

∑ j−1
q=0 ω(τq)

� c3

∞∑
j=k

j−1∏
q=0

(
δ0eω(τq)

)
:= dk.

Note that

lim
j→∞

∏ j
q=0

(
δ0eω(τq)

)∏ j−1
q=0

(
δ0eω(τq)

) = δ0 < 1.

It follows that there exist c > 0 and δ0 < δ < 1 such that dk � cδk for all k ∈ N. This implies
that for any x ∈ X∑

I∈A(n,k)

p̃I(x) � dk � cδk for all k, n ∈ Nwith k � n. (4.9)

For any I ∈ Ξ(n, k), we conclude from (3.23) that for any x, y ∈ X

| log pI(x) − log pI(y)| � 20a +
k−1∑
j=0

ω(τ j). (4.10)

For any I ∈ B(n, k), there exists some  < k such that I ∈ Ξ(n, ). Then from (4.10), we get
that

| log pI(x) − log pI(y)| � 20a +

−1∑
j=0

ω(τ j) � 20a +

k−1∑
j=0

ω(τ j).

Let ωlog h(·) be the modulus of continuity of log h. Denote
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ak = exp

⎛⎝20a + 2ωlog h(1) +
k−1∑
j=0

ω(τ j)

⎞⎠ .

From this, together with (4.1), we conclude that for any I ∈ B(n, k),

p̃I(x) � ak · p̃I(y), ∀x, y ∈ X. (4.11)

(We use |X| = 1 here.)
From (2.4), we know that limn→∞τ n = 0. Since ω is the modulus of continuity, we have

that limn→∞ω(τ n) = 0. This, combined with the fact that 0 < δ < 1, implies that there exists
integer k0 > 0 such that a−2

k0
− 3cδk0 > 0. Fixing such a k0, and let

γ1 = 1 − a−2
k0

+ 3cδk0 .

Then 0 < γ1 < 1.

Claim. For any φ ∈ C(X) with
∫

Xφdμ = 0,

‖L̃nEn(φ)‖ � γ1‖φ‖ ∀n > k0. (4.12)

Proof of claim. Indeed for any n > k0, we let

An =
∑

I∈A(n,k0)

∫
XI

φ dμ,

and let

Bn(x) =
∑

I∈B(n,k0)

p̃I(x)
μ(XI)

∫
XI

φ dμ.

Note that

μ(XI) =
∫

XI

p̃I(x)dμ.

This, together with (4.9), implies that

|An| �
∑

I∈A(n,k0)

μ(XI)‖φ‖ � cδk0‖φ‖.

It follows, again from (4.9), that

|L̃En(φ)(x) − Bn(x)| =

∣∣∣∣∣∣
∑

I∈A(n,k0)

p̃I(x)
μ(XI)

∫
XI

φ dμ

∣∣∣∣∣∣
�

∑
I∈A(n,k0)

p̃I(x)‖φ‖ � cδk0‖φ‖.

Hence, we conclude that∣∣∣L̃En(φ)(x) − An − Bn(x)
∣∣∣ � |An|+ |L̃En(φ)(x) − Bn(x)| � 2cδk0‖φ‖.

942



Nonlinearity 35 (2022) 916 Y Jiang and Y-L Ye

Define

cI(x) =

⎧⎪⎨⎪⎩
1, if I ∈ A(n, k0);

p̃I(x)

μ(XI)
, if I ∈ B(n, k0).

From (4.11) and lemma 4.2, we deduce that

a−1
k0

� p̃I(x)
μ(XI)

� ak0 ∀I ∈ B(n, k0).

This implies that for any n > k0,

a−1
k0

� cI(x) � ak0 ∀I ∈ Σn, ∀x ∈ X.

From lemmas 4.3 and 4.2, we have that

|An + Bn(x)| =
∣∣∣∣∣∑
I∈Σn

cI(x)
∫

XI

φ dμ

∣∣∣∣∣
� (1 − a−2

k0
)‖φ‖

⎛⎝ ∑
I∈A(n,k0)

μ(XI) +
∑

I∈B(n,k0)

p̃I(x)

⎞⎠
� (1 − a−2

k0
)(1 + cδk0 )‖φ‖ � (1 − a−2

k0
+ cδk0 )‖φ‖.

Thus for any n > k0∣∣∣L̃En(φ)(x)
∣∣∣ � ∣∣∣L̃En(φ)(x) − An − Bn(x)

∣∣∣+ |An + Bn(x)|

� 2cδk0‖φ‖+ (1 − a−2
k0

+ cδk0 )‖φ‖ = γ1‖φ‖.

The claim is proved. �
Therefore, from (4.4), we have that for any φ ∈ C(X) with

∫
Xφdμ = 0,

‖PnEn(φ)‖ � γ1‖φ‖ ∀n > k0.

For any n � k0, let

b = exp

⎛⎝2ωlog h(1) +
k0∑

j=0

ω(τ j)

⎞⎠ ,

and let γ2 = 1 − b−2. Then 0 < γ2 < 1. For n � k0, we have

| log pI(x) − log pI(y)| �
k0∑

j=0

ω(τ j), ∀I ∈ Σn, ∀x, y ∈ X.

This, combined with (4.8) and lemma 4.2, implies that

b−1 � p̃I(x)
μ(XI)

� b, ∀I ∈ Σn and x ∈ X.
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Then again from (4.5) and lemma 4.3, we conclude that

|L̃En(φ)(x)| � γ2‖φ‖, for any n � k0.

Let γ = max{γ1, γ2}. Then 0 < γ < 1. This, combined with (4.12), implies that

‖L̃En(φ)‖ � γ‖φ‖, ∀n � 1.

From (4.4), we finally have that

‖PnEn(φ)‖ � γ‖φ‖, ∀n � 1.

We proved the proposition. �
Now we prove our second key proposition.

Proposition 4.5. There exist C > 0, 0 < ε < 1 and 0 ∈ N such that for any  � 0

S
j � C

(
ε j + ω̃(τ)

)
, ∀ j ∈ N.

Proof. We use the same notation as those in the proof of proposition 4.4.
For any I ∈ Σn and x, y ∈ X, let

αI(x, y) = 2ωlog h(|x − y|) +
n∑

k=0

ω
(
|gI|0k

(x) − gI|0k
(y)|
)
.

From (4.1), we conclude that

p̃I(x) � exp(αI(x, y)) · p̃I(y). (4.13)

Let Φ(·) be defined as in (3.2). Then we have Φ(t) ≈ ω̃(t) as t → 0+. From lemma 3.4 (in
particular, (3.4)) and theorem 2.5, we conclude that there exists a > 0 such that

(a) �−nLn1(x)
�−nLn1(y) � ea·ω̃(|x−y|) ∀x, y ∈ X with |x − y| � b0;

(b) limn→∞ maxx∈X |�−nLn1(x) − h(x)| = 0.

From this, we conclude that

sup
t>0

(
ωlog h(t)
ω̃(t)

)
< ∞. (4.14)

Then from (2.6) and (4.14), we deduce that there exists c1 > 0 such that for any I ∈ Ξ(n, k),

αI(x, y) � (n − k)ω(|x − y|) + c1ω̃(|x − y|). (4.15)

Remember that 0 < δ0 = η/θ < δ < 1. Let t = |x − y|. Then, by (4.9), (4.13) and (4.15), we
have ∑

I∈Ξ(n,k)

|p̃I(x) − p̃I(y)| �
(

max
I∈Ξ(n,k)

exp(αI(x, y)) − 1

)
·
∑

I∈Ξ(n,k)

p̃I(x)

� exp(c1ω̃(t))(δ exp(ω(t)))n−k − δn−k.

Take t0 > 0 such that δexp(ω(t0)) < 1. Then for any 0 � t = |x − y| � t0,

∑
I∈Σn

|p̃I(x) − p̃I(y)| =
n∑

k=0

∑
I∈Ξ(n,k)

|p̃I(x) − p̃I(y)| � S +
δn

1 − δ
,
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where

S :=
exp(c1ω̃(t))

1 − δ exp(ω(t))
− 1

1 − δ
.

From (2.6) and the fact that limt→0+ ω̃(t) = 0, we deduce that there exists c2 > 0 such that

exp(c1ω̃(t)) � 1 + c2ω̃(t), ∀ t � t0.

We continue the above estimate on S:

S � 1 + c2ω̃(t)
1 − δ exp(ω(t))

− 1
1 − δ

� c3ω̃(t) for some c3 > 0.

Take ε := max{θ, δ} < 1. Then there exists C > 0 such that for |x − y| � t0∑
I∈Σn

|p̃I(x) − p̃I(y)| � C
(
εn + ω̃(|x − y|)

)
∀n ∈ N.

Since our system W is weakly contractive, there exists integer 0 > 0 such that τ � τ0 � t0
for any  � 0. Hence, in particular,

S
j � C(ε j + ω̃(τ)), ∀ j ∈ N.

We completed the proof. �

Now we are ready to complete the proof of theorem 2.7.

Proof of theorem 2.7. Let 0 < γ < 1 be given in proposition 4.4. Let C > 0, 0 < ε < 1
and 0 > 0 be given by proposition 4.5. Then 0 < γ0 := max{ε, γ} < 1. Hence for any j � 1
and  � 0

S
j � C

(
γ j

0 + ω̃(τ)
)
� C

(
γ

0 + ω̃(τ)
)
.

For any φ ∈ C(X) with
∫
φdμ = 0. By using

‖PnEn(φ)‖ � γ0‖φ‖

repeatedly, we prove that

‖

⎛⎝ k′∏
i=1

PiEi

⎞⎠ (φ)‖ � γk′
0 ‖φ‖, ∀ 1 � k′ � k.

Observe that
∑∞

j=0γ
j
0 < ∞. This, together with Lemma 4.1, implies that

‖Pk(φ)‖ � ωφ (τ) +
k−1∑
j=2

S
( j−1) · γ

j−2
0 ‖φ‖+ γk

0‖φ‖

� ωφ(τ) + A‖φ‖
(
γ

0 + γk
0 + ω̃(τ)

)
for some A > 0.

Consequently for any n � k with  � 0
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‖L̃nφ‖ � ‖L̃kφ‖ = ‖Pk(φ)‖ � ωφ(τ) + A‖φ‖
(
γk

0 + γ
0 + ω̃(τ)

)
.

For any φ ∈ C(X), let φ0 = φ− 〈ν,φ〉h. Then we have that

〈μ,φ0/h〉 = 0.

Note that

�−nLnφ− 〈ν,φ〉h = �−nLnφ0 = hL̃n(φ0/h).

It follows that

‖�−nLnφ− 〈ν,φ〉h‖ � ‖h‖
(
ωφ0/h(τ) + A‖φ0/h‖

(
γk

0 + γ
0 + ω̃(τ)

)
.

By (4.14), there exists C > 0 such that

ωφ0/h(τ) = ωφ/h(τ) � C
(
ωφ(τ) + ‖φ‖ω̃(τ)

)
.

Note that ‖φ0/h‖ �
(
1 + (hmin)−1

)
‖φ‖. Therefore, we get a positive constant, which we still

denote as A, such that

‖�−nLnφ− 〈ν,φ〉h‖ � A
(
ωφ(τ) + ‖φ‖(γk

0 + γ
0 + ω̃(τ))

)
.

This completes the proof of theorem 2.7. �

5. The proof of corollary 2.9

From (2.12), it follows that there exists 0 < η1 < 1 such that

sup
x∈X

∑
I∈Σq

pI(x) · ‖DxgI‖ < η1 · �q. (5.1)

Without loss of generality, we assume that X is a compact convex set and all gi’s are Fréchet
differentiable on X̊.

For any multi-index I and y, z ∈ X with y = z, there exists 0 � θ � 1 such that

|gI(y) − gI(z)| � |g′
I (y + θ(z − y)) (y − z)|.

From this, it follows that

|gI(y) − gI(z)|
|y − z| � |

(
Dy+θ(z−y)gI

)
(y − z)|

|y − z| � ‖Dy+θ(z−y)gI‖.

From this, together with the continuity of ‖DxgI‖’s and (5.1), we deduce that for any η1 <
η2 < 1 and for any x ∈ X there exists rx > 0 such that

∑
I∈Σq

pI(x) ·

⎛⎝ sup
y=z

y,z∈B(x;rx )

|gI(y) − gI(z)|
|y − z|

⎞⎠ < η2 · �q. (5.2)
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Note that X ⊂
⋃

x∈X B(x; rx) and X is compact. By Lebesgue’s number lemma, there exists
b0 > 0 (the Lebesgue number) such that for any y, z ∈ X, if |y − z| � b0, then y, z ∈ B(x, rx)
for some x ∈ X. From this, together with (5.2), we deduce that

sup
x∈X

∑
I∈Σq

pI(x) ·

⎛⎝ sup
y∈X

0<|x−y|�b0

|gI(y) − gI(x)|
|y − x|

⎞⎠ < �q.

This is condition (2.9). By applying theorems 2.5 and 2.7, we finish the proof of the corollary.

6. The proof of corollary 2.11

For any φ ∈ C(X),

Ln(φ ◦ f n · φ) = φLnφ.

Then

〈ν, (φ ◦ f n)φ〉 = 〈�−n(L∗)nν, φ ◦ f n · φ〉 = 〈ν, �−nLn(φ ◦ f n · φ)〉

= 〈ν,φ�−nLnφ〉 = 〈ν,φhL̃n(φ/h)〉 = 〈μ,φL̃n(φ/h)〉.

Let φ0 = φ/h − 〈ν,φ〉. Then<μ,φ0 >= 0. Now theorem 2.7 says that there exist constants
A > 0, 0 < γ0 < 1 and 0 ∈ N such that

Cφ(n) = |〈μ,φL̃n(φ0)〉| � ‖φ‖ · ‖L̃n(φ0)‖

� ‖φ‖
(
ωφ0 (τ) + A‖φ0‖

(
γk

0 + γ
0 + ω̃(τ)

))
.

By the same way to the estimates of modulus of continuity as we did in the proof of theorem 2.7,
we get for a different positive constant, which we still denote as A, such that

Cφ(n) � A‖φ‖
(
ωφ(τ) + ‖φ‖

(
γk

0 + γ
0 + ω̃(τ)

))
.

This completes the proof.

7. Examples and applications

Our main results, theorems 2.5, 2.7, and corollary 2.11 are useful for much more general weakly
expanding Dini systems. Here we give two examples. For this purpose, we need the following
result.

Proposition 7.1. Let (X, f) be a weakly expanding dynamical system with f |X̊ j
being

expanding for all 2 � j � m. Let P be a Dini potential. If

max
x∈X

p1(x) < min
x∈X

⎛⎝ m∑
j=1

pj(x)

⎞⎠ ,

then there exists an integer q > 0 such that

max
x∈X

∑
I∈Σq

pI(x) ·

⎛⎝sup
y,z∈X
y=z

|gI(y) − gI(z)|
|y − z|

⎞⎠ < �q. (7.1)
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And hence, the weakly expansive Dini system (X, f ,P) satisfies the optimal quasi-gap
condition (2.9).

Proof. It is easy to confirm that for any I = i0i1 . . . in−1 ∈ Σn

sup
y,z∈X
y=z

|gI(y) − gI(z)|
|y − z| �

n−1∏
k=0

sup
y,z∈X
y=z

|gik (y) − gik (z)|
|y − z| .

From this, together with assumptions on the system (X, f ,P), we conclude, by applying [14,
theorem 4.7], that (7.1) is satisfied. Note that

sup
y∈X

0<|x−y|�b

|gI(y) − gI(x)|
|y − x| � sup

y,z∈X
y=z

|gI(y) − gI(z)|
|y − z| .

From this, together with (7.1), we conclude that (2.9) is satisfied. �

Example 7.2. Let X = [0, 1], X1 = [0, 1/2] and X2 = [1/2, 1]. Let 0 < α � 1, and let

f (x) =

{
x + x1+α + o(x1+α), if x ∈ X1 near 0;

2x − 1, if x ∈ X2.

be a weakly expanding dynamical system with f (Xi) = X for i = 1, 2. Let {pi}2
i=1 be positive

Dini potentials satisfying the following condition:

1 = p1(0) = max
x∈X

p1(x) < p1(x) + p2(x). (7.2)

Then the weakly expanding dynamical system (X, f ) associated with the Dini potential
P = {p1, p2} satisfies the optimal quasi-gap condition (2.9).

Proof. Since f 1 = f |X̊1
: X̊1 → f 1

(
X̊1
)

and f 2 = f |X̊2
: X̊2 → f 2

(
X̊2
)

are two diffeomor-
phisms, we can consider the continuous extensions of their inverses:

f −1
1 : f 1

(
X̊1
)
→ X1 and f −1

2 : f 2
(
X̊2
)
→ X2.

And denoted by g1, g2, respectively. Then W =< g1, g2 > is a weakly contractive iteration
function system. The potential P is a Dini potential. From this, together with (7.2), it follows
that

p1(0) = 1 = max
x∈X

p1(x) < min
x∈X

(p1(x) + p2(x)) .

By applying proposition 7.1, we conclude that the weakly expansive Dini system (X, f ,P)
satisfies the optimal quasi-gap condition (2.9). �

We would like to remark that the system (X, f ) in example 7.2 is not assumed to be smooth.
Now we present an example which does not satisfy the condition of proposition 7.1.
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Example 7.3. Let X = [0, 1] and X1 = [0, 1/2] and X2 = [1/2, 1]. Consider

f (x) =

⎧⎨⎩
x

1 − x
, if 0 � x � 1/2;

2x − 1, if 1/2 < x � 1.

It is a weakly expanding dynamical system. For 1/2 < a < 3/4, let

p1(x) =

⎧⎨⎩− log
(

a + (− log x +
√

8)−2
)

, 0 < x � 1;

− log a, x = 0

and

p2(x) =

⎧⎨⎩− log
(

1 − a − (− log x +
√

8)−2
)

, 0 < x � 1;

− log(1 − a), x = 0

be two positive functions in C(X). Then P = {p1, p2} is a Dini potential with the modulus

ω̃(t) = O
(

−1
log t

)
as t → 0+. Then the weakly expansive Dini system (X, f ,P) satisfies the

optimal quasi-gap condition (2.8).

Proof. Since f 1 = f |X̊1
: X̊1 → f 1

(
X̊1
)

and f 2 = f |X̊2
: X̊2 → f 2

(
X̊2
)

are two diffeomor-
phisms, we can consider the continuous extensions of their inverses:

f −1
1 : f 1

(
X̊1
)
→ X1 and f −1

2 : f 2
(
X̊2
)
→ X2.

And denoted by g1, g2, respectively. Then W =< g1, g2 > is a weakly contractive iteration
function system with the derivatives

g′
1(x) =

1
(1 + x)2

and g′
2(x) =

1
2
.

Let � be the spectral radius of the transfer operator L in (2.5). We have that

min
x∈X

{p1(x) + p2(x)}

= min
x∈X

{
− log

(
a + (− log x +

√
8)−2
)

− log
(

1 − a − (− log x +
√

8)−2
)}

= − log a(1 − a) � �.

Now

max
x∈X

{p1(x)|g′
1(x)|+ p2(x)|g′

2(x)|}

= max
x∈X

{
− 1

(1 + x)2
log
(

a + (− log x +
√

8)−2
)
− 1

2
log
(

1 − a − (− log x +
√

8)−2
)}

� max
x∈X

{
− 1

(1 + x)2
log
(

a + (− log x +
√

8)−2
)}
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+max
x∈X

{
−1

2
log

(
1 − a −

(
− log x +

√
8
)−2
)}

= − log a − 1
2

log

(
1 − a − 1

8

)
< − log a(1 − a) � �.

Since

g′
1(x) = lim

y→x

g1(y) − g1(x)
y − x

and g′
2(x) = lim

y→x

g2(y) − g2(x)
y − x

are continuous functions and since X is a compact metric space, we have a real number b > 0
such that

sup
x∈X

2∑
i=1

pi(x)

⎛⎝ sup
y∈X

0<|x−y|�b

|gi(y) − gi(x)|
|y − x|

⎞⎠ < �

This is the optimal quasi-gap condition (2.8) for system (X, f ,P). �

A probability measure μ on X is said to be a weak Gibbs measure for (X, f ,P) if there exists
a sub-exponential sequence of real numbers Kn > 1 (i.e. limn→∞(1/n) log Kn = 0) such that
for any n > 0 and I ∈ Σn,

1
Kn

� μ(XI)
exp(log pI(x) − n log �)

� Kn for all x ∈ X. (7.3)

Corollary 7.4. Suppose a weakly expansive Dini system (X, f ,P) satisfies the optimal quasi-
gap condition (2.8). Let 0 < h ∈ C(X), ν ∈ M(X) and � > 0 be from theorem 2.5, that is,

Lh = �h, L∗ν = �ν, and 〈ν, h〉 = 1.

Let μ = hν. Then we have that

(a) μ is a weak Gibbs measure;
(b) μ is the unique equilibrium state;
(c) μ is mixing.

Proof.

(a) Define

ξn =

n−1∑
k=0

ω(τk), where τ0 = 1.

Since limk→∞ω(τ k) = 0, we have that

lim
n→∞

ξn

n
= 0.

For any I = i0i1 . . . in−1 ∈ Σn, we have that for any x, y ∈ X,
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| log pI(x) − log pI(y)| �
n∑

k=1

| log pin−k (gI|0k−1
(x)) − log pin−k (gI|0k−1

(y))|

� ξn.

Let 1XI be the characteristic function on XI . Then we have that

Ln1XI (x) = pI(x), ∀ x ∈ X̊.

This implies that

ν(XI) = 〈�−nL∗nν, 1XI 〉 = 〈ν, �−nLn1XI 〉 = 〈ν, �−n pI〉.

So we have that for any n > 0 and I ∈ Σn,

exp(−ξn) � ν(XI)
exp(log pI(x) − n log �)

� exp(ξn) for all x ∈ X.

Let μ = hν. From this, together with 0 < h ∈ C(X) and <ν, h >= 1, we can get (7.3).
Thus μ is a weak Gibbs measure for the weakly expanding dynamical system f with the
Dini potential P .

(b) From (4.3) and (2.11), we can deduce, similarly to [20, Theorem 2.1], that the system has
a unique equilibrium state μ = hν.

The proof of (c) is standard and can be modified from [4] on the Hölder continuous system.
We omit it. �

Another important statistical property for a dynamical system f on a probability space
(X, μ) is so called the central limit theorem. This property for a weakly expanding dynamical
system now follows theorem 2.7.

Corollary 7.5. Suppose a weakly expansive Dini system (X, f ,P) satisfies the optimal quasi-
gap condition (2.8). Let 0 < h ∈ C(X), ν ∈ M(X) and � > 0 be from theorem 2.5, that is,

Lh = �h, L∗ν = �ν, and 〈ν, h〉 = 1.

Let μ = hν. Suppose we have two strictly increasing sequences of integers ln, kn →∞ such
that n � knln and

∞∑
n=1

ω(τln) < ∞ and
∞∑

n=1

ω̃(τln) < ∞.

Then we have the central limit theorem for f on (X, μ), that is,

lim
n→∞

μ

⎧⎨⎩x :
n−1∑
j=0

φ ◦ f j − n
∫

φdμ � t
√

n

⎫⎬⎭ =
1√
2πσ

∫ t

−∞
exp

(
− x2

2σ2

)
dx,

where σ2 = −Eφ2 + 2
∑∞

j=0E(φ · φ ◦ f j) and Eφ = 〈μ,φ〉.

Proof. Without loss of generality, assume
∫
φdμ = 0. Let B be the Borel σ-field. For n � 1,

letBn = f −nB. Define Vφ = φ ◦ f forφ ∈ L2(μ). Let V∗ be the adjoint operator of V : L2(μ) →
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L2(μ). By theorem 1.1 of [15], it suffices to show the convergences of the following two series

∞∑
n=0

|E(φVnφ)| < ∞,
∞∑

n=0

E|V∗nφ| < ∞. (7.4)

Recall that L̃ denotes the normalised transfer operator defined in (4.2). Then we have that
L̃∗μ = μ. Furthermore,

E(φVnφ) = 〈μ,φ · Vnφ〉 = 〈L̃∗nμ,φ · Vnφ〉 = 〈μ, L̃n(φ · Vnφ)〉 = 〈μ,φL̃nφ〉.

So

|E(φVnφ)| � ‖φ‖ · ‖L̃nφ‖.

Since V∗φ = L̃φ, we have also

E|V∗nφ| � ‖L̃nφ‖.

From theorem 2.7, we know that

‖L̃nφ‖ � A‖φ‖
(
ωφ(τn) + ‖φ‖

(
γkn

0 + γn
0 + ω̃(τn)

))
.

Since
∑∞

n=1γ
kn
0 < ∞ and

∑∞
n=1γ

ln
0 < ∞, (7.4) depends on the finiteness of both of∑∞

n=1ωφ(τln) and
∑∞

n=1ω̃(τln). But that is our assumption. We proved the theorem. �
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