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1. Introduction

Let X be a non-empty topological space, and fi, 1 ≤ i < ∞, be continuous selfmaps of X. And we call 
(X; {fi}∞i=1) a nonautonomous dynamical system [9]. We are interested in the sequence of maps f1,∞ =
{fi}∞i=1 and its iteration f j

i := fi+j−1 ◦fi+j−2 ◦ · · · ◦fi. From a logical point of view, these systems naturally 
carry lots of similar objects as the autonomous systems (see e.g. [16]). For example, the Borel measures 
[1,6], topological entropies [8,17], topological pressures [7,11], etc.

It is well known that the topological entropy is one of most important topological invariants in dynami-
cal systems. Bowen [2] defined the topological entropy on noncompact sets in a way resembling Hausdorff 
dimension. Pesin [14,15] developed C-structure, which was called Caratheodory-Pesin (C-P) structure later, 
to study topological entropy as well as the lower and upper capacity entropies. In a similar way to Bowen 
entropy, Dai and Jiang [3] proposed the distance entropy for dynamical systems. For nonautonomous sys-
tems, Li proposed the notions of Bowen entropy and Pesin topological entropy, which are similar to those 
used in classical dynamical systems [10]. He also briefly discussed the relationships among Bowen entropy, 
Pesin entropy and the classical entropy. Biś [1] constructed a C-P structure for nonautonomous systems 
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and introduced the lower and upper capacity entropies; moreover, Biś introduced the entropy-like invariant 
for nonautonomous systems, which was distance entropy in actual. Following Feng and Huang’s work [5]
on the variational principle for topological entropies on subsets, Xu and Zhou [17] considered the measure-
theoretical lower entropy for nonautonomous differential systems. Ju and Yang [8] discussed the properties 
of Pesin topological entropy of nonautonomous dynamical systems.

The main purpose of the paper is to explore the relationships of these various topological entropies of 
nonautonomous systems on subsets. To the best of our knowledge, there are a lot of works focusing on the 
entropies on compact space. Kolyada and Snoha [9] discussed many fundamental properties of the classical 
topological entropy for nonautonomous systems, for example, the power rule, topological equiconjugacy, 
entropy of uniformly convergent, etc. And the topological entropy on subsets of a compact space was given 
in their paper as well. Bowen’s pioneering work demonstrated that the entropy on noncompact sets can 
be studied in a way similar to the Hausdorff dimension [2]. The distance entropy is similar to the Bowen 
entropy in many aspects, but has certain benefits over the Bowen entropy when describing the complexity 
of the dynamical behaviors [3].

Similar to the Hausdorff dimension, the distance entropy of the nonautonomous system (X; f1,∞) on 
subset Y was denoted by entH,d(f1,∞, Y ) temporarily. The distance entropy of nonautonomous system, in 
general, depends on the choice of metric d of the space. However, we have the following Proposition 1.1, 
which comes from Theorem 3.4 and its corollary.

Proposition 1.1. Let d and d′ be two uniformly equivalent metrics on X, and let f1,∞ be a sequence of 
continuous selfmaps on X. Then for any Y ⊆ X,

entH,d(f1,∞, Y ) = entH,d′(f1,∞, Y );

in particular, entH,d(f1,∞) = entH,d′(f1,∞).

The power rule of the entropy performs an important role in dynamical systems, which reveals the 
relationship between entropy h(T ) and entropy h(Tm) for any m ∈ N. The power rule of distance entropy 
and Bowen entropy is discussed in Theorem 3.7.

We suspect that, at least for compact phase space, the distance entropy, Bowen entropy and Pesin 
entropy are equivalent based on Li, Ju and Yang’s findings [8,10]. This guess is proved to be correct (see 
Corollary 3.12), nevertheless we find out that the phase space can be moderately reduced to separable in 
some cases. That is also why the distance entropy is defined on separable metric spaces. A full discussion 
involving comparison of these entropies can be seen in Theorem 3.9 and Theorem 3.13.

Theorem 1.2. Let X be a separable metric space, and let f1,∞ be a sequence of continuous selfmaps of X. 
Then the following statements hold:

(1) If X satisfies the Lebesgue finite covering property, then

Bh(f1,∞, Y ) ≤ entH(f1,∞, Y ), ∀Y ⊆ X;

(2) if X satisfies the totally bounded property, then

Bh(f1,∞, Y ) ≥ entH(f1,∞, Y ), ∀Y ⊆ X;

(3) if X is compact, then

Bh(f1,∞, Y ) = entH(f1,∞, Y ), ∀Y ⊆ X.



C.-B. Li, Y.-L. Ye / J. Math. Anal. Appl. 517 (2023) 126627 3
Theorem 1.3. Let (X, d) be a compact metric space, and let f1,∞ be a sequence of continuous selfmaps of 
X. Then for any compact subset K ⊆ X,

entH(f1,∞,K) ≤ h(f1,∞,K).

To obtain the equality, we consider the weakly mixing systems, then

Theorem 1.4. Let (X, d) be a compact metric space, and let (X; f1,∞) be weakly mixing. Then

entH(f1,∞) = Bh(f1,∞, X) = h(f1,∞, X).

When considering the Hausdorff dimension of subsets, Bowen’s technique has certain drawbacks, and 
it also raises additional challenges, such as determining an appropriate Lebesgue number for a finite open 
cover of the phase space. However, based on the distance entropy, there is a natural Lebesgue number 
[3]. As applications, we consider the relationship between distance entropy and Hausdorff dimension on 
subsets from two perspectives, the expanding and Lipschitz systems. Lately, Xu and Zhou [17] considered 
the measure-theoretical lower entropy of the nonautonomous differential dynamical systems. We further 
discuss the lower bound of Hausdorff dimension of invariant measures.

The paper is organized as follows. In section 2, we give some terminologies of various types of topological 
entropies of nonautonomous dynamical systems. In section 3, the properties of these topological entropies 
are discussed. And the comparison of these entropies is also explored. As applications, we investigate the 
relationship between distance entropy and Hausdorff dimension on subsets in the last section.

2. Preliminaries

Throughout the paper we always let X be a non-empty topological space. And sometimes we assume X
to be metric space if it is necessary. Let fi : X → X, 1 ≤ i < ∞. And denoted by f1,∞ = {fi}∞i=1. Then 
we call (X; f1,∞) a nonautonomous dynamical system [9]. For i, j ∈ N, let f0

i = idX be the identity map 
of X, f j

i := fi+j−1 ◦ · · · ◦ fi and f−j
i := (f j

i )−1 = f−1
i ◦ · · · ◦ f−1

i+j−1. And we denote the sequence of maps 
{fk

ik+1}∞i=0 and {f−1
i }∞i=1 by fk

1,∞ and f−1
1,∞, respectively. For any x ∈ X, the trajectory and the orbit of x

with starting map f1 are the sequence (fn
1 (x))∞n=0 and the set {fn

1 (x)}∞n=0, respectively [9]. Here we would 
like to remark that, in general, we do not have

f j
i = (fi)j and (f j

i )−1 = (f−1
i )j for all i, j ∈ N.

Kolyada and Snoha considered the topological entropy defined for nonautonomous dynamical systems 
[9]. And later we call it the classical topological entropy. In particular, if (X, d) is a compact metric space, 
for each n ≥ 1 and ε > 0, we let

dn(x, y) = max
0≤j≤n−1

d(f j
1 (x), f j

1 (y)) ∀x, y ∈ X.

Define

Bn(x, ε) = {y ∈ X : dn(x, y) < ε}.

Let K be a non-empty subset of X, and let rn(f1,∞, K, ε) be the smallest number of Bn(x, ε)-balls with 
x ∈ K needed to cover K. We set

r(f1,∞,K, ε) = lim sup 1 log rn(f1,∞,K, ε).

n→∞ n
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Then the classical topological entropy of the sequence of maps f1,∞ on K is given by

h(f1,∞,K) = lim
ε→0

r(f1,∞,K, ε).

In the following we will present other three concepts.

2.1. Hausdorff dimension

In this subsection, we assume that X is a non-empty compact metric space. For any subset K(⊆ X), the 
diameter of K is given by

|K| = diam(A) = sup{d(x, y) : x, y ∈ K}.

And we call a countable collection of subsets {Ui}∞i=1 is a δ-cover of Y , if 0 < |Ui| ≤ δ and Y ⊂
⋃∞

i=1 Ui.
For any δ > 0, we define

Hs
δ(Y ) = inf

{ ∞∑
i=1

|Ui|s : {Ui} is a δ-cover of Y
}
. (2.1)

The value Hs
δ(Y ) increases or at least does not decrease as δ → 0. We let

Hs(Y ) = lim
δ→0

Hs
δ(Y ).

Further, there exists a critical value such that Hs(Y ) jumps from infinity to zero, and we let

dimH(Y ) = inf{s ≥ 0 : Hs(Y ) = 0} = sup{s : Hs(Y ) = +∞}.

This critical value dimH(Y ) is called the Hausdorff dimension of Y [4].

2.2. Distance entropy

In this subsection, we assume that (X, d) is a non-empty separable metric space. The distance entropy 
for nonautonomous system was motivated by Dai and Jiang [3]. Biś [1] defined this entropy-like invariant 
for nonautonomous systems.

Let f1,∞ be a sequence of continuous selfmaps of X. For any ε > 0 and any K ⊆ X, let n(f1,∞, K, ε) be 
the largest nonnegative integer such that

|f j
1 (K)| < ε ∀j ∈ [0, n(f1,∞,K, ε)). (2.2)

For the convenience, we let n(f1,∞, K, ε) = 0 if |K| ≥ ε; and

n(f1,∞,K, ε) = +∞ if |f j
1 (K)| < ε ∀j ∈ N.

The number n(f1,∞, K, ε) is called the step length of K with respect to f1,∞.
For any K = {Ki}∞i=1 ⊆ X and s ≥ 0, we denote

diamε(f1,∞,Ki) = exp(−n(f1,∞,Ki, ε)),

and
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Dε(f1,∞,K, s) =
∞∑
i=1

(diamε(f1,∞,Ki))s.

Now for any given ε > 0 and s ≥ 0, we define a measure for any subset Y ⊆ X by

Ms
ε (f1,∞, Y ) = inf

{
Dε(f1,∞,K, s) : Y ⊆

∞⋃
i=1

Ki, n(f1,∞,Ki, ε) > − log ε
}
.

Let

Ms(f1,∞, Y ) := lim
ε→0

Ms
ε (f1,∞, Y ).

Similar to the Hausdorff dimension, there is a critical value such that Ms(f1,∞, Y ) jumps from +∞ to 
0. And we let

entH(f1,∞, Y ) := inf{s : Ms(f1,∞, Y ) = 0} = sup{s : Ms(f1,∞, Y ) = ∞}.

We call entH(f1,∞, Y ) the topological distance entropy (or distance entropy) of f1,∞ (respect to d) on the 
set Y . Especially, we denote entH(f1,∞, X) by entH(f1,∞) for short. In case to emphasize the metric d, we 
also denote the distance entropy by entH,d(f1,∞).

2.3. Bowen topological entropy

In this subsection, we assume that X is a non-empty topological space. Li [10] defined the Bowen topo-
logical entropy for nonautonomous systems.

Let U be a finite open cover of X. We write K ≺ U if K is contained in some elements of U . And we 
denote similarly that

{Ki}i∈I ≺ U if Ki ≺ U for each i ∈ I.

Let

�(f1,∞,U ,K) = max{n ∈ N : f j
1K ≺ U for 0 ≤ j ≤ n− 1}.

For the convenience, we let �(f1,∞, U , K) = 0 if K ⊀ U , and let

�(f1,∞,U ,K) = +∞ if f j
1K ≺ U for all j.

Define

B(f1,∞,U ,K) = exp(−�(f1,∞,U ,K)),

and for any s ∈ R and K = {Ki}∞i=1, we define

B(f1,∞,U ,K, s) =
∞∑
i=1

(B(f1,∞,U ,Ki))s.

For any given subset Y ⊆ X, we define a measure by

Ms(f1,∞, Y,U) = lim
ε→0

inf
{
B(f1,∞,U ,K, s) : Y ⊂

∞⋃
Ki, B(f1,∞,U ,Ki) < ε,Ki ∈ K

}
.

i=1
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Similarly, there is a critical value such that Ms(f1,∞, Y, U) jumps from +∞ to 0, and we define it as

Bh(f1,∞, Y,U) = inf{s : Ms(f1,∞, Y,U) = 0}.

The Bowen topological entropy of f1,∞ restricted on Y is given by

Bh(f1,∞, Y ) = sup
U

{Bh(f1,∞, Y,U)},

where U ranges over all finite open covers of X. We denote Bh(f1,∞, X) by Bh(f1,∞) for short [10]. The 
Bowen topological entropy is called sometimes the Bowen’s dimension entropy [3].

Remark 2.1. We would like to remark that, under the assumption that X is separable metric space, one of 
the differences between the Bowen topological entropy and distance entropy is that Bowen uses all finite 
open covers U of X, and the distance entropy covers are only by open ε-balls (see [3] and [12]).

3. The properties of various topological entropies

The property of the classical topological entropy has been discussed in Kolyada [9], we focus mainly on 
distance entropy and Bowen entropy in this section. We show that the distance entropy and Bowen entropy 
have some properties similar to the Hausdorff dimension.

Proposition 3.1. Let (X, d) be a non-empty separable metric space, and let f1,∞ be a sequence of continuous 
selfmaps on X. Let U be a finite open cover of X. Then the following properties hold.

(1) For any ε > 0, s > 0,

Ms
ε (f1,∞, ∅) = 0, Ms(f1,∞, ∅,U) = 0;

(2) Monotonicity: For any E ⊆ F ⊆ X, we have

entH(f1,∞, E) ≤ entH(f1,∞, F ), Bh(f1,∞, E) ≤ Bh(f1,∞, F );

(3) Countable subadditivity: Let Z :=
⋃∞

i=1 Zi ⊆ X. For any ε > 0 and s > 0, we have

Ms
ε (f1,∞, Z) ≤

∞∑
i=1

Ms
ε (f1,∞, Zi),

and

Ms(f1,∞, Z,U) ≤
∞∑
i=1

Ms(f1,∞, Zi,U);

(4) For any given ε > 0 and s > 0, Ms
ε (Z) := Ms

ε (f1,∞, Z) and Ms
U (Z) := Ms(f1,∞, Z, U) are outer 

measures on the space of all subsets of X;
(5) Countable stability: For any Z =

⋃∞
i=1 Zi ⊆ X,

entH(f1,∞,∪∞
i=1Zi) = sup

i≥1
entH(f1,∞, Zi);

Bh(f1,∞, Z) = supBh(f1,∞, Zi).

i≥1
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Proof. (1) is obvious. For (2) and (3), the monotonicity and countable subadditivity follow directly from 
the definitions.

(4) We need only to verify the monotonicity. Indeed, let K = {Ki}∞i=1. If F ⊆ ∪∞
i=1Ki and E ⊆ F ⊆ X, 

then by definitions, it is easy to see that for any given ε > 0, s > 0 and U , we have

Ms
ε (f1,∞, E) ≤ Ms

ε (f1,∞, F ) and Ms(f1,∞, E,U) ≤ Ms(f1,∞, F,U).

From this, together with (1) and (3), we conclude that both of Ms
ε (Z) := Ms

ε (f1,∞, Z) and Ms
U (Z) :=

Ms(f1,∞, Z, U) are outer measures on the space of all subsets of X.
(5) By the monotonicity, we have

entH(f1,∞,∪∞
i=1Zi) ≥ entH(f1,∞, Zi), ∀i ≥ 1.

If supi≥1 entH(f1,∞, Zi) = +∞, there is nothing to prove.
If s := supi≥1 entH(f1,∞, Zi) < ∞, then for any ε > 0,

entH(f1,∞, Zi) < s + ε for all i ≥ 1.

From the definition of entH(f1,∞, Zi), it follows that

Ms+ε(f1,∞, Zi) = 0.

By the countable subadditivity of the outer measure, we have

Ms+ε
ε (f1,∞,∪∞

i=1Zi) ≤
∞∑
i=1

Ms+ε
ε (f1,∞, Zi) = 0.

This implies that

entH(f1,∞,∪∞
i=1Zi) ≤ s + ε.

From the arbitrariness of ε, it follows that

entH(f1,∞,∪∞
i=1Zi) ≤ sup

i≥1
entH(f1,∞, Zi).

Then

entH(f1,∞,∪∞
i=1Zi) = sup

i≥1
entH(f1,∞, Zi).

The second one can be proved similarly, and we omit it. �
Corollary 3.2. Let (X, d) be a metric space and let f1,∞ be a sequence of uniformly continuous on X. Let K
and Ki, i ≥ 1, be compact subsets of X. If K ⊆

⋃m
i=1 Ki, then

entH(f1,∞,K) ≤ max
1≤i≤m

entH(f1,∞,Ki), Bh(f1,∞,K) ≤ max
1≤i≤m

Bh(f1,∞,Ki).

Definition 3.3. [8,9] Let (X; f1,∞) and (Y ; g1,∞) be two nonautonomous dynamical systems. Denote by 
π1,∞ = {πi}∞i=1 sequence of equicontinuous surjective maps from X to Y . If πi+1 ◦ fi = gi ◦ πi for all i ≥ 1, 
we say that π1,∞ is a topological equisemiconjugacy between f1,∞ and g1,∞, and the dynamical system 
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(X; f1,∞) is topologically equisemiconjugate with (Y ; g1,∞). Furthermore, if π1,∞ is an equicontinuous se-
quence of homeomorphisms such that the sequence π−1

1,∞ = {π−1
i }∞i=1 of inverse homeomorphisms is also 

equicontinuous, we say that π1,∞ is a topological equiconjugacy between f1,∞ and g1,∞, and the dynamical 
system (X; f1,∞) is topologically equiconjugate with (Y ; g1,∞).

Theorem 3.4. Let (X, d) and (Y, �) be metric spaces satisfying the second axiom of countability, f1,∞ be a 
sequence of continuous selfmaps of X, and g1,∞ be a sequence of continuous selfmaps of Y . If (X; f1,∞) is 
equisemiconjugate with (Y ; g1,∞), then

entH(f1,∞, Z) ≥ entH(g1,∞, π1(Z)).

Further if (X; f1,∞) is topological equiconjugate with (Y ; g1,∞), then

entH(f1,∞, Z) = entH(g1,∞, π1(Z)).

Proof. Since π1,∞ is a topological equisemiconjugacy between f1,∞ and g1,∞, we have

πi+1 ◦ fi = gi ◦ πi for all i ≥ 1,

i.e.,

X X X

Y Y Y

f1

π1

f2

π2 π3 ···
g1 g2

We can check that

πj+1 ◦ f j
1 = gj1 ◦ π1 ∀j ≥ 1.

Note that π1,∞ is also equicontinuous, then for any ε > 0, there exists a δ > 0 such that δ < ε and

ρ(πi(x1), πi(x2)) < ε whenever d(x1, x2) < δ for any x1, x2 ∈ X.

For any Z ⊂ X and any countable cover K = {Ki}i≥1 of Z, note that n(f1,∞, Ki, δ) is the largest integer 
such that

sup
x1,x2∈X

d(f j
1 (x1), f j

1 (x2)) < δ for all 0 ≤ j < n(f1,∞,Ki, δ) and x1, x2 ∈ Ki.

This implies that for 0 ≤ j < n(f1,∞, Ki, δ) and x1, x2 ∈ Ki,

|gj1(π1(Ki))| = |πj+1(f j
1 (Ki))| = sup

x1,x2∈Ki

ρ(πj+1(f j
1 (x1)), πj+1(f j

1 (x2))) < ε.

From this, we deduce

n(f1,∞,Ki, δ) ≤ n(g1,∞, π1(Ki), ε).

It follows that for any s > 0,

Dδ(f1,∞,K, s) ≥ Dε(g1,∞, π1(K), s)
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and

Ms
δ (f1,∞, Z) ≥ Ms

ε (g1,∞, π1(Z)).

Hence

entH(f1,∞, Z) ≥ entH(g1,∞, π1(Z)).

If π1,∞ is further topological equiconjugate, then fi ◦ π−1
i = π−1

i+1 ◦ gi holds for all i ≥ 1, hence

entH(g1,∞, π1(Z)) ≥ entH(f1,∞, π−1
1 (π1(Z))) = entH(f1,∞, Z).

Therefore we proved that entH(f1,∞, Z) = entH(g1,∞, π1(Z)). �
We consider a special case of topological equiconjugate, if there is a homeomorphism π : X → Y such 

that π ◦ fi = gi ◦ π for all i ≥ 1.

X X X

Y Y Y

f1

π

f2

π π ···
g1 g2

Then from Theorem 3.4, we get the following Corollary 3.5.

Corollary 3.5. Let (X, d) be metric space satisfying the second axiom of countability, f1,∞ be a sequence 
of continuous selfmaps of X, and g1,∞ be a sequence of continuous selfmaps of Y . If the homeomorphism 
π : X → Y satisfies π ◦ fi = gi ◦ π for all i ≥ 1, then

entH(f1,∞, Z) = entH(g1,∞, π(Z)).

It’s well known that the Hausdorff dimension relies on the metric of the space. The distance entropy also 
depends strictly on the choice of the metric d of space X. We say two metrics d and d′ on X are uniformly 
equivalent if

Id : (X, d) → (X, d′) and Id : (X, d′) → (X, d)

are both uniformly continuous [16]. Then from Theorem 3.4, we get the following Corollary 3.6.

Corollary 3.6. If d and d′ are uniformly equivalent on X, and f1,∞ is a sequence of continuous selfmaps on 
X, then for any Y ⊆ X

entH,d(f1,∞, Y ) = entH,d′(f1,∞, Y );

in particular, entH,d(f1,∞) = entH,d′(f1,∞).

It’s reasonable to neglect the metric d of entH(f1,∞), as long as we take the homeomorphism metric of 
d.

One of our research objects is the power rule, which can be used to study the relationship between the 
entropy or pressure of Tm and m times the entropy or pressure of T in dynamical systems. Kolyada and Snoha 
showed that the power rule equality holds for the classical topological entropy of nonautonomous systems 
when the sequence f1,∞ is periodic or equicontinuous [9]. The subsequently theorem is a generalization of 
power rule for distance entropy and Bowen entropy.
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Theorem 3.7. Let X be a separable metric space, and let f1,∞ be a sequence of continuous selfmaps of X. 
Then for any m ∈ N+ and any Y ⊆ X,

(1) entH(fm
1,∞, Y ) ≤ m · entH(f1,∞, Y );

(2) entH(fm
1,∞, Y ) = m · entH(f1,∞, Y ) if f1,∞ is equicontinuous.

Proof. For the first inequality, for any K ⊆ X and any j, m ≥ 1, notice that fm
1,∞ = {fm

im+1}i≥0 and

fmj
1 (K) = fm

(j−1)m+1 ◦ · · · ◦ fm
m+1 ◦ fm

1 (K).

From (2.2), we get that for any ε > 0,

n(f1,∞,K, ε) ≤ m · n(fm
1,∞,K, ε). (3.1)

It is sufficient to prove the assertion under the assumption that n(f1,∞, K, ε) > m. As, otherwise, this 
inequality is apparent. The inequality follows immediately if we split n(f1,∞, K, ε) into several groups with 
each group has m members and count them one by one.

From (3.1), it follows that for any Y ⊆ X, we have

Mms
ε (fm

1,∞, Y ) ≤ Ms
ε (f1,∞, Y ) and Mms(fm

1,∞, Y ) ≤ Ms(f1,∞, Y ).

Then for any s > entH(f1,∞, Y ), we have

Mms(fm
1,∞, Y ) ≤ Ms(f1,∞, Y ) = 0.

This implies that s ≥ entH(fm
1,∞, Y )/m. It follows that

entH(fm
1,∞, Y ) ≤ m · entH(f1,∞, Y ).

For the second equation, if f1,∞ is equicontinuous, then for every ε > 0, we take

δ(ε) = ε + sup
i≥1

max
j=1,··· ,m−1

sup
x,y∈X

{d(f j
i (x), f j

i (y)) : d(x, y) < ε},

then limε→0 δ(ε) = 0 and

d(f j
i (x), f j

i (y)) ≤ δ(ε) whenever i ≥ 1 and j = 1, · · · ,m− 1 if d(x, y) < ε.

Now we let K = {Ki}∞i=1 be a countable cover of Y , it follows that

m · n(fm
1,∞,Ki, ε) ≤ n(f1,∞,Ki, δ(ε)) for i = 1, 2, · · · .

This means that for any s > 0 and Y ⊂ X, we have

Msm
ε (fm

1,∞, Y ) ≥ Ms
δ(ε)(f1,∞, Y ) and Msm(fm

1,∞, Y ) ≥ Ms(f1,∞, Y ).

Similarly, this implies that entH(fm
1,∞, Y ) ≥ m · entH(f1,∞, Y ) and then the assertion follows. �

Corollary 3.8. Let X be a topological space, and let f1,∞ be a sequence of continuous selfmaps of X. Then 
for any m ∈ N and any Y ⊆ X,
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Bh(fm
1,∞, Y ) ≤ m ·Bh(f1,∞, Y ).

In particular, if f1,∞ is periodic with period m ∈ N, then

Bh(fm
1,∞, Y ) = m ·Bh(f1,∞, Y ) for any Y ⊆ X.

Proof. The first part resembles the first inequality of Theorem 3.7, the key step is to figure out the relation 
between �(f1,∞, U , K) and �(fm

1,∞, U , K). Let U be a finite open cover of X. For any K ⊆ X, we denote by 
l = �(f1,∞, U , K) for simplicity, and split the set {f j

1 (K) ≺ U}l−1
j=0 into several groups with each group has 

m members, we can check that

�(f1,∞,U ,K) ≤ m · �(fm
1,∞,U ,K).

Then the rest proof is similar.
For the second part, if f1,∞ is periodic with period m ∈ N, we would like to refer to Theorem 3.4 of [8]

and Theorem 3.1 of [10] (see Lemma 3.11) for an equivalent discussion of Pesin topological entropy. �
Now we focus on the relationship between the distance entropy and the Bowen topological entropy. A 

metric space X is said to satisfy the Lebesgue covering property provided that for any (finite) open cover 
U of X there is a Lebesgue number δ such that each subset of X of diameter less than or equal to δ lies 
in some member of U . A metric space is called totally bounded (or precompact) iff for any ε > 0 there is a 
finite cover which consists of Borel sets of diameter less than or equal to ε [3].

Theorem 3.9. Let X be a separable metric space, and let f1,∞ be a sequence of continuous selfmaps of X. 
Then the following statements hold:

(1) If X satisfies the Lebesgue finite covering property, then

Bh(f1,∞, Y ) ≤ entH(f1,∞, Y ) for all Y ⊆ X;

(2) if X satisfies the totally bounded property, then

Bh(f1,∞, Y ) ≥ entH(f1,∞, Y ) for all Y ⊆ X;

(3) if X is compact, then

Bh(f1,∞, Y ) = entH(f1,∞, Y ) for all Y ⊆ X.

Proof. (1) If X satisfies the Lebesgue finite covering property, for any finite open cover U of X, let δ > 0
be a Lebesgue number of U . By the definition of entH(f1,∞, Y ), for any ε ≤ δ and any cover K = {Ki}∞i=1
of Y with e−n(f1,∞,Ki,ε) < ε, we have |f j

1 (Ki)| < ε ≤ δ and hence f j
1 (Ki) ≺ K. Therefore, we obtain that

n(f1,∞,Ki, ε) ≤ �(f1,∞,K,Ki) for all i ≥ 1.

Hence for any s ≥ 0,

Ms
ε (f1,∞,K) =

∞∑
i=1

e−s·n(f1,∞,Ki,ε) ≥
∞∑
i=1

e−s·�(f1,∞,K,Ki) = B(f1,∞,U ,K, s).

This implies that
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Ms
ε (f1,∞, Y ) ≥ inf

{
B(f1,∞,U ,K, s) : Y ⊆

∞⋃
i=1

Ki, e
−�(f1,∞,U,Ki) < ε

}
.

By letting ε → 0, we get that

Ms(f1,∞, Y,U) ≤ Ms(f1,∞, Y ).

This apparently implies that

Bh(f1,∞, Y,U) ≤ entH(f1,∞, Y ).

From this, together with the arbitrariness of the cover U , we conclude that

Bh(f1,∞, Y ) ≤ entH(f1,∞, Y ).

(2) We assume Bh(f1,∞, Y ) < ∞ for convenience. For any ε > 0, since X satisfies the totally bounded 
property, we can take a finite open cover U of X consisting of r open balls B(x1, ε), · · · , B(xr, ε). For any 
Z ⊆ X, if f j

1 (Z) ≺ U for 0 ≤ j ≤ �(f1,∞, U , Z), then f j
1 (Z) must be contained in some elements of U , hence

|f j
1 (Z)| < 2ε for 0 ≤ j ≤ �(f1,∞,U , Z).

This implies that

�(f1,∞,U , Z) ≤ n(f1,∞, Z, 2ε).

Now for any s > Bh(f1,∞, Y ), by the definition of Bowen’s topological entropy, we have

s > Bh(f1,∞, Y,U) and Ms(f1,∞, Y,U) = 0.

For any ε′ < ε, if Z = {Zi}∞i=1 covers Y and B(f1,∞, U , Zi) < ε′, then

n(f1,∞, Z, 2ε) ≥ �(f1,∞,U , Z) > − log ε′ > − log ε,

and for any s′ > 0,

B(f1,∞,U ,Z, s′) =
∞∑
i=1

(B(f1,∞,U , Zi))s
′

=
∞∑
i=1

e−s′·�(f1,∞,U,Zi)

≥
∞∑
i=1

e−s′·n(f1,∞,Zi,2ε)

= D2ε(f1,∞,Z, s′).

This implies that

inf{B(f1,∞,U ,Z, s) : B(f1,∞,U , Zi) < ε′} ≥ Ms
2ε(f1,∞, Y ).

Letting ε′ → 0, we get that the left part is exactly Ms(f1,∞, Y, U). It follows that 0 ≥ Ms
2ε(f1,∞, Y ) ≥ 0. 

Hence
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lim
ε→0

Ms
2ε(f1,∞, Y ) = 0.

This implies that s ≥ entH(f1,∞, Y ) and therefore we get

Bh(f1,∞, Y ) ≥ entH(f1,∞, Y ).

(3) If X is compact, it naturally satisfies both the Lebesgue finite covering property and totally bounded 
property. This result follows from (1) and (2). �
Theorem 3.10. Let (X, d) be a compact metric space, and let f1,∞ be a sequence of continuous selfmaps of 
X. Then for any compact subset K ⊆ X,

entH(f1,∞,K) ≤ h(f1,∞,K).

Proof. Let Kε
n = {Kn,i}i≥1 be a cover with rn(f1,∞, K, ε) members. Notice that Bn(x, ε) = {y ∈ X :

d(f j
1 (x), f j

1 (y)) < ε, 0 ≤ j ≤ n − 1} and

D2ε(f1,∞,K, s) =
∑
i≥1

e−s·n(f1,∞,Kn,i,2ε),

where n(f1,∞, Kn,i, 2ε) is the largest number such that

diam(f j
1 (Kn,i)) < 2ε for 0 ≤ j < n(f1,∞,Kn,i, 2ε).

Now for x ∈ K and y, z ∈ Kn,i, then by the triangle inequality,

d(f j
1 (y), f j

1 (z)) < d(f j
1 (x), f j

1 (y)) + d(f j
1 (x), f j

1 (z)),

then we have n(f1,∞, Kn,i, 2ε) ≥ n. It follows that

D2ε(f1,∞,K, s) ≤ rn(f1,∞,K, ε) · e−sn.

Notice again that

rn(f1,∞,K, ε) =
[
rn(f1,∞,K, ε) 1

n

]n
=

[
e

1
n log rn(f1,∞,K,ε)

]n
.

Then

Ms
2ε(f1,∞,K) ≤ D2ε(f1,∞,K, s) ≤

[
e−s+ 1

n log rn(f1,∞,K,ε)
]n

≤ lim sup
n→∞

[
e−s+ 1

n log rn(f1,∞,K,ε)
]n

.

For s > r(f1,∞, K, ε), we have Ms
2ε(f1,∞, K) = 0. Hence for s > limε→0 r(f1,∞, K, ε) = h(f1,∞, K), we have

Ms(f1,∞,K) = lim
ε→0

Ms
2ε(f1,∞,K) = 0.

This proves that entH(f1,∞, K) ≤ h(f1,∞, K). �
Lately, Li [10], Ju and Yang [8] discussed the Pesin topological entropy on subsets for nonautonomous 

systems, we denote the Pesin entropy on subset Y of compact space X by Ph(f1,∞, Y ) here.
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Lemma 3.11. [10] Let (X; f1,∞) be a nonautonomous dynamical system on a compact metric space (X, d), 
then

Bh(f1,∞, Y ) = Ph(f1,∞, Y ) for any Y ⊆ X.

From this lemma, together with Theorem 3.9, we conclude that the distance entropy, Bowen entropy and 
Pesin entropy are actually equivalent in compact metric space.

Proposition 3.12. Let (X, d) be a compact metric space, and let f1,∞ be a sequence of continuous selfmaps 
of X. Then

entH(f1,∞) = Bh(f1,∞, X) = Ph(f1,∞, X) ≤ h(f1,∞, X).

We would like to point out that, under the assumption that X is a compact space, Li [10] proposed a 
condition such that

entH(f1,∞) = Bh(f1,∞, X) = Ph(f1,∞, X) = h(f1,∞, X).

However, this condition is difficult to verify.
Let fi : X → X, i ≥ 1, be continuous. Similar to [13], we call the nonautonomous dynamical system 

(X; f1,∞) to be weakly mixing, if for any nonempty open sets U and V and for any N > 0, there exists 
k > N such that fk

1 (U) 
⋂
V �= ∅.

We recall that the classical topological entropy can also be defined by open covers [9]. Let U be a finite 
open cover of X. Note that fi : X → X is continuous for each i ≥ 1. Then for any n ≥ 1 and for any 
0 ≤ j ≤ n − 1, f−j

1 (U) is also an open cover of X. Denote by

Un
1 :=

n−1∨
j=0

f−j
1 (U) =

{ n−1⋂
j=0

f−j
1 (Aj) : Aj ∈ U

}
,

and N (U) be the minimal possible cardinality of a subcover chosen from U .
The classical topological entropy of f1,∞ on the cover U is given by

h(f1,∞,U) = lim sup
n→∞

1
n

logN (Un
1 ),

and the classical topological entropy of f1,∞ is defined by

h(f1,∞, X) = sup{h(f1,∞,U) : U is an open cover of X}.

Theorem 3.13. Let (X, d) be a compact metric space, and let (X; f1,∞) be weakly mixing. Then

entH(f1,∞) = Bh(f1,∞, X) = Ph(f1,∞, X) = h(f1,∞, X).

Proof. To prove this theorem, by noting that Theorem 3.10 and Proposition 3.12, we need only to prove 
that

Bh(f1,∞, X) ≥ h(f1,∞, X).

It is sufficient to that h(f1,∞, X) ≤ s for any s > Bh(f1,∞, X). Indeed, let s be a number with s >
Bh(f1,∞, X). We know from paper [9] that
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h(f1,∞, X) = sup{h(f1,∞,U) : U is finite open cover of X}.

Hence, we need only to prove that for any finite open cover U of X

h(f1,∞,U) ≤ s.

Now let U be an finite open cover of X. Note that for any E ⊆ X

f−n
1 (E) ≺ X for all n ∈ N.

From this, it follows that

�(f1,∞,U , E) = +∞ if X ∈ U .

This implies that for any s > 0

B(f1,∞,U ,K, s) = 0.

Hence, without loss of generality, we assume that

(X\V )◦ �= ∅ for any V ∈ U .

For any s > Bh(f1,∞, X, U), by the definition of Bh(f1,∞, X, U), there exists a countable covering 
K = {Ki}∞i=1 of X so that

B(f1,∞,U ,K, s) =
∞∑
i=1

e−s·�(f1,∞,U,Ki) ≤ 1
4 .

Define

�1 = {i : Ki ∈ K and �(f1,∞,U ,Ki) < ∞},

�2 = {i : Ki ∈ K and �(f1,∞,U ,Ki) = +∞}.

Then K = {Ki : i ∈ �1
⋃
�2}.

For any i ∈ �1, we may choose an open set Ei such that

Ki ⊂ Ei and �(f1,∞,U , Ei) = �(f1,∞,U ,Ki).

And let

K̂1 = {Ei : i ∈ �1}.

For any i ∈ �2, we have �(f1,∞, U , Ki) = +∞. This means that there exist open sets Uij ∈ U , j ∈ N, 
such that f j

1 (Ki) ⊆ Uij for all j ∈ N. In this case, we let

qi = (i + 2)
(
[ log 2

s
] + 1

)
,

and define
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Ei =
qi⋂
j=0

f−j
1 (Uij ).

It is obvious that Ei is an open set and Ki ⊆
⋂∞

j=0 f
−j
1 (Uij ) ⊆ Ei. Moreover, it follows that for any 

0 ≤ � ≤ qi,

f �
1(Ei) = f �

1(
qi⋂

j=0
f−j
1 (Uij )) ⊆ f �

1(f−�
1 (Ui�)) = Ui� ∈ U .

From this, it follows that

�(f1,∞,U , Ei) > qi.

For any V ∈ U , from the weakly mixingness of the nonautonomous dynamical system (X; f1,∞), we conclude 
that there exists a kV > qi such that

fkV
1

(
Ei

)⋂
(X\V ) �= ∅.

Let ki = max{kV : V ∈ U}. Note that #(U) < ∞. It follows that ki < ∞. Hence

qi ≤ �(f1,∞,U , Ei) ≤ ki < ∞.

Let

K̂2 = {Ei : i ∈ �2}.

Define K̂ = K̂1
⋃

K̂2. We may assume, without loss of generality, that

K̂ ≺ U .

Then K̂ is an open cover of X. And furthermore, it follows that

B(f1,∞,U , K̂, s) = B(f1,∞,U , K̂1, s) + B(f1,∞,U , K̂2, s)

≤ 1
4 +

∑
Ei∈K̂2

e−s·�(f1,∞,U,Ei)

≤ 1
4 +

∑
Ei∈K̂2

e−sqi

= 1
4 +

∑
Ei∈K2

e−s(i+2)([ log 2
s ]+1)

≤ 1
4 +

∞∑
i=1

e−(i+2) log 2

≤ 1
4 + 1

2 < 1. (3.2)

As X is compact, the open cover K̂ contains a finite subcover

D = {D1, D2, · · · , Dm}.
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Then, we have D ≺ U . Let

M = max
1≤i≤m

�(f1,∞, Di,U).

Then M < ∞.
For any (j1, · · · , jr) ∈ {1, · · · , m}r, r ∈ N, we let

�(f1,∞,U , (Dj1 , · · · , Djs)) =
s∑

r=1
�(f1,∞,U , Djr).

Define

C(Dj1 , · · · , Djs) =
{
x ∈ X : f tr+k

1 (x) ∈ Djr for all 0 ≤ k < �(f1,∞,U , Djr) and 1 ≤ r ≤ s
}
,

where tr = �(f1,∞, U , Dj1) + · · · + �(f1,∞, U , Djr−1) and t1 = 0. From the continuity of fn’s, it follows that 
C(Dj1 , · · · , Djs) is open for any (j1, · · · , js) ∈ {1, · · · , m}s.

From (3.2), we conclude that

Θ :=
∞∑
s=1

∑
j1,··· ,js

e−s·�(f1,∞,U,(Dj1 ,··· ,Djs )) =
∞∑
k=1

B(f1,∞,U , K̂, s)k < ∞. (3.3)

Note that D ≺ U , and for any 1 ≤ j ≤ m there exists a Bij ∈ U such that

fk
1 (Dj) ⊆ Bij for all 0 ≤ k < �(f1,∞,U , Dj).

From this, we deduce that for any n ≤ �(f1,∞, U , (Dj1 , · · · , Djs)),

C(Dj1 , · · · , Djs) =
s⋂

r=0

( �(f1,∞,U,Djr )−1⋂
k=0

f
−(tr+k)
1 (Djr)

)

⊆
s⋂

r=0

( �(f1,∞,U,Djr )−1⋂
k=0

f
−(tr+k)
1 (Bijr

)
)

⊆
n−1⋂
i=0

f−i
1 (Bi) for some Bi ∈ U .

This implies that

C(Dj1 , · · · , Djs) ≺
n−1∨
i=0

f−i
1 (U).

Remember that

M = max
1≤i≤m

�(f1,∞, Di,U) < ∞.

From this, together with X ⊆
⋃

D∈D and X ⊆
⋃

B∈U , we can deduce that

∇n := {C(Dj1 , · · · , Djs) : �(f1,∞,U , (Dj1 , · · · , Djs)) ∈ [n, n + M), s ≥ 1}
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forms a cover of X, and further

∇n ≺
n−1∨
i=0

f−i
1 (U).

From this, we conclude that

N
( n−1∨

j=0
f−j
1 (U)

)
≤ #

(
∇n

)
. (3.4)

Let

An =
∑

C(Dj1 ,··· ,Djs )∈∇n

e−s·�(f1,∞,U,(Dj1 ,··· ,Djs )).

Then

#
(
∇n

)
· min
C(Dj1 ,··· ,Djs )∈∇n

e−s·�(f1,∞,U,(Dj1 ,··· ,Djs )) ≤ An. (3.5)

Note that

e−s·�(f1,∞,U,(Dj1 ,··· ,Djs )) ≥ 0.

From this, together with (3.3), we deduce that

Θ =
∞∑

n=1
An < ∞.

This implies that there exists a a0 > 0 such that

An ≤ a0 for all n ∈ N. (3.6)

For any (Dj1 , · · · , Djs) with C(Dj1 , · · · , Djs) ∈ ∇n, we have

n ≥ �(f1,∞,U , (Dj1 , · · · , Djs)) −M.

It follows that

e−sn ≤ esM−s·�(f1,∞,U,(Dj1 ,··· ,Djs )).

Hence

e−sn ≤ min
C(Dj1 ,··· ,Djs )∈∇n

esM−s·�(f1,∞,U,(Dj1 ,··· ,Djs )).

From this, together with (3.4), (3.5) and (3.6), it follows that

N
( n−1∨

j=0
f−j
1 (U)

)
· e−sn ≤ #

(
∇n

)
· min
C(Dj1 ,··· ,Djs )∈∇n

esM−s·�(f1,∞,U,(Dj1 ,··· ,Djs ))

≤ eMsAn ≤ a0e
Ms.
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From this, we deduce that

h(f1,∞,U) = lim sup
n→∞

1
n

logN
( n−1∨

j=0
f−j
1 (U)

)
≤ s.

From the above argument, we get the assertion. �
4. Applications

The next theorem shows that the Hausdorff dimension of any set Y of compact space X is governed by 
the distance entropy.

Theorem 4.1. Let (X, d) be a compact metric space, and let fi : X → X be expanding with skewness λ > 1
for any i ≥ 1; namely

d(fi(x), fi(y)) ≥ λd(x, y) for any x, y ∈ X and i ≥ 1.

Then for any Y ⊆ X,

dimH(Y ) log λ ≤ entH(f1,∞, Y ).

Proof. The proof is modified from [3]. Let Y be given. If entH(f1,∞, Y ) < ∞, by the definition of distance 
entropy, we take some s such that s logλ > entH(f1,∞, Y ), then B(f1,∞, Z, s log λ, ε) < ε for some arbitrary 
ε and ε, we have to show Hs(Y ) = 0.

For arbitrary ε, ε > 0, if Z ⊆ X and n(f1,∞, Z, ε) > m, then fk
1 (Z) < ε for k = 0, 1, · · · , m. By the fact 

that d(fi(x), fi(y)) ≥ λd(x, y) for all i ≥ 1, then

λmd(x, y) ≤ d(fm
1 (x), fm

1 (y)) ≤ ε for any x, y ∈ Z.

Therefore |Z| ≤ ε
λm if n(f1,∞, Z, ε) > m (we assume that ε < ε

λm ). This implies that

λn(f1,∞,Z,ε)−1 ≤ ε

|Z| .

Hence,

n(f1,∞, Z, ε) ≤ 1 + log ε
log λ − log |Z|

log λ .

Suppose Z = {Zi}∞i=1 is a cover of Y satisfying

sup
i≥1

|Zi| < ε(< ε

λm
).

By the definition of distance entropy, we have

Dε(f1,∞,Z, s log λ) =
∞∑
i=1

e−s logλ·n(f1,∞,Zi,ε)

≥
∞∑

e
−s logλ

(
1+ log ε

log λ− log |Zi|
log λ

)

i=1
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= e−s(logλ+log ε) ·
∞∑
i=1

es log |Zi|

= e−s(logλ+log ε) ·
∞∑
i=1

|Zi|s.

Notice that the infinite summation corresponding to the Hausdorff measure, thus for this cover Z, we are 
reasonable to require Dε(f1,∞, Z, s log λ) · es(logλ+log ε) < ε. Let ε → 0, we get that Hδ(Y ) = 0, and then it 
follows that dimH(Y ) log λ ≤ entH(f1,∞, Y ). �

In the following Theorem 4.2, we consider a special subspace with some kind of uniformly Lipschitz 
constant. Let Y be a non-empty subset of the compact metric space (X, d). And suppose that there exists 
a Lipschitz constant LY ≥ 0 such that for any i ≥ 1, j ≥ 0 and x, y ∈ Y ,

d(f j+1
i (x), f j+1

i (y)) ≤ LY d(f j
i (x), f j

i (y)). (4.1)

Theorem 4.2. Let (X, d) be a compact metric space, and let f1,∞ be a sequence of continuous selfmaps of X
satisfying (4.1). Then for any Y ⊆ X,

entH(f1,∞, Y ) ≤ max{0,dimH Y · logLY }.

Proof. This proof is based on [1,3], for the sake of completely, we add the detail here.
Let Y ⊆ X satisfying (4.1). If LY ≤ 1, there is nothing to do, thus, we may assume LY > 1 below.
By the definition of Hausdorff dimension of Y (2.1),

Hs(Y ) = lim
δ→0

Hs
δ(Y ) = lim

δ→0
inf

{ ∞∑
i=1

|Ui|s : {Ui} is a δ-cover of Y
}
.

For any s > logLY dimH Y , i.e., s/ logLY > dimH Y , we have

Hs/ logLY (Y ) = 0.

For any ε > 0, we take log ε ≥ log ε/(logLY + 1), then we can construct a δ cover Z of Y , by taking 
Z = {Zi}∞i=1 with Zi ⊆ Y , such that

ε

L− log ε
Y

≤ |Zi| ≤
ε

L− log ε−1
Y

for i ≥ 1. (4.2)

This implies that

∞∑
i=1

|Zi|
s

log LY < ε. (4.3)

Notice that there always exists a n ∈ N such that n ≤ − log ε < n + 1. Then for this cover Z, together 
with (4.2), we have

ε

Ln+1
Y

≤ |Zi| <
ε

Ln−1
Y

,

and
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log ε− log |Zi|
logLY

≤ n <
log ε− log |Zi|

logLY
+ 1.

From the first inequality and (4.1), it follows that

|fk
1 (Zi)| < ε for k = 0, 1, · · · , n− 1.

Hence

n(f1,∞, Zi, ε) ≥ n ≥ log ε− log |Zi|
logLY

.

Thus for the cover Z = {Zi}∞i=1, we have diamε(f1,∞, Zi) = e−n(f1,∞,Zi,ε), and then

Dε(f1,∞,Z, s) =
∞∑
i=1

(diamε(f1,∞, Zi))s

=
∞∑
i=1

e−s·n(f1,∞,Zi,ε)

≤
∞∑
i=1

e
−s

log ε−log |Zi|
log LY

= e
−s

log LY
·log ε

∞∑
i=1

e
s

log LY
·log |Zi|

= ε
−s

log LY

∞∑
i=1

|Zi|
s

log LY .

Now, by (4.3), since ε and ε are arbitrary, then we take another arbitrary ε′ > 0 such that ε
−s

log LY ε < ε′. 
Therefore, Dε(f1,∞, Z, s) < ε′. Hence, by letting ε′ → 0, we get that Ms

ε (f1,∞, Y ) = 0, and therefore 
entH(f1,∞, Y ) ≤ s for any s > dimH Y logLY . This implies that entH(f1,∞, Y ) ≤ dimH Y logLY . �
Corollary 4.3. Under the assumption of Theorem 4.2, we have

entH(f1,∞)
logLX

≤ dimH X.

Remark 4.4. There are some basic inequalities between the Hausdorff dimension, Packing dimension and 
the lower and upper Box dimension, i.e., for any non-empty set Z ⊆ X,

dimH(Z) ≤ dimP (Z) ≤ dimB(Z), dimH(Z) ≤ dimB(Z) ≤ dimB(Z).

Note that the distance entropy, Bowen entropy and Pesin entropy are equivalent when X is compact by 
Corollary 3.12. It is free to discuss the relationship between Hausdorff dimension on subsets and other 
entropies. We would like to let readers to refer [8] for the discussion of the relationship between Box 
dimension and the Pesin entropy.

Let μ be the Borel probability measure on X. We define the local lower and upper μ-measure entropy at 
x with respect to f1,∞ as follows:

hμ(f1,∞, x) = lim lim inf − 1 logμ(Bn(x, r));

r→0 n→∞ n
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hμ(f1,∞, x) = lim
r→0

lim sup
n→∞

− 1
n

logμ(Bn(x, r)).

We say a set A ⊂ X is f1,∞-invariant if f−1
i (A) = A for all i = 1, 2, · · · . Let μ ∈ M(f1,∞, X), the set 

of all fi-invariant Borel probability measures on X. By [6], the set M(f1,∞, X) is not empty. Define the 
measure-theoretical lower and upper entropies of μ by

hμ(f1,∞) =
∫

hμ(f1,∞, x)dμ(x)

and

hμ(f1,∞) =
∫

hμ(f1,∞, x)dμ(x).

Let μ ∈ M(f1,∞, X). Then dimH μ defines as the infimum of the Hausdorff dimension of the sets of full 
measures, i.e.,

dimH μ = inf{dimH(Z) : μ(Z) = 1}.

Lemma 4.5. [17] Let f1,∞ be a sequence of continuous selfmaps on the compact space X and μ ∈ M(f1,∞, X). 
If Y is a non-empty and compact subset of X with μ(Y ) = 1, then

Ph(f1,∞, Y ) ≥ hμ(f1,∞).

Theorem 4.6. Let X be a compact space. If μ ∈ M(f1,∞, X) and f1,∞ restricted to the support of μ is 
Lipschitz continuous with constant LX (see (4.1)), then

dimH μ ≥
hμ(f1,∞)
logLX

.

Proof. Let Y ⊆ Z be a set of full measure, where Z is the support Z of μ. Since μ is invariant, Z is 
f1,∞-invariant, then by Theorem 4.2, we have

dimH(Y ) ≥ entH(f1,∞, Y )
logLX

for Y ⊆ X.

Then by noting Proposition 3.12 and Lemma 4.5, we need only to show dimH(Y ) ≥ hμ(f1,∞)
logLX

. Since dimH μ =
inf{dimH Z : μ(Z) = 1}, it is enough to take the infimum over the sets Y that are contained in the support 
of μ. This implies that

dimH μ ≥
hμ(f1,∞)
logLX

. �
At the last of the paper, we would like to present a problem for the interesting readers as follows.
Problem: Can the weakly mixing assumption be removed in Theorem 3.13?
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