
Nonlinearity
            

PAPER

Vector-valued Ruelle operator for weakly contractive IFS and Dini matrix
potentials
To cite this article: Fei-Fei Deng and Yuan-Ling Ye 2023 Nonlinearity 36 3661

 

View the article online for updates and enhancements.

This content was downloaded from IP address 183.63.102.89 on 31/05/2023 at 08:17

https://doi.org/10.1088/1361-6544/acd21e


Nonlinearity

Nonlinearity 36 (2023) 3661–3683 https://doi.org/10.1088/1361-6544/acd21e

Vector-valued Ruelle operator for weakly
contractive IFS and Dini matrix potentials

Fei-Fei Deng and Yuan-Ling Ye∗

School of Mathematical Sciences, South China Normal University, Guangzhou
510631, People’s Republic of China

E-mail: ylye@scnu.edu.cn

Received 14 July 2022; revised 2 April 2023
Accepted for publication 3 May 2023
Published 31 May 2023

Recommended by Dr Mark F Demers

Abstract
The (scalar) Ruelle operator theory is well-known both in fractal geometry and
dynamical systems. In this paper we consider vector-valued Ruelle operators
for weakly contractive iterative function systems associated with Dini matrix
potentials. We generalize the result in the paper (J. Math. Anal. Appl. 299 341–
56) to weakly contractive iterated function system. More exactly, our main
theorem gives a sufficient condition for the vector-valued Ruelle operator with
the Perron–Frobenius property.
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1. Introduction

Throughout the paper we always let X be a nonempty compact subset of Euclidean space
(Rd, | · |). Let 1< m ∈ N and let wi : X→ X (1⩽ i⩽ m) be weakly contractive maps (see e.g.
[6] or [24]). We call (X,{wi}mi=1) a weakly contractive iterated function system (IFS). We
known from [6] that there exists a unique non-empty compact subset E⊆ X such that

E=
m⋃
i=1

wi(E),

which is called the invariant set of the IFS (X,{wi}mi=1). In the following we always assume
that X=E for simplicity. If we associate the IFS (X,{wi}mi=1) with a family of Dini continu-
ous probability potentials {pi}mi=1, we discuss the Perron–Frobenius property of the system
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(X,{wi}mi=1,{pi}mi=1) [12]. Among the other results, we show that there exists a unique prob-
ability measure µ on E such that

µ=
m∑
i=1

pi(x)µ ◦w−1
i ,

provided that the system (X,{wi}mi=1,{pi}mi=1) satisfies the following condition:

m∑
i=1

pi(x)

(
sup
y,z∈X
y̸=z

|wi(y)−wi(z)|
|y− z|

)
<

m∑
i=1

pi(x) = 1.

And we call µ an invariant measure of the system (X,{wi}mi=1,{pi}mi=1) [8, 12, 24]. It is one
of the important topics to study the multifractal structure of measure µ. The Ruelle operator
was introduced to study IFS’s by Fan and Lau in [3] where contractive IFS with Dini potentials
were considered. It is followed by many works in the literature (see e.g. [3–5, 9, 10, 14–17, 22]
and the references there). Ruelle operator theory can be applied to the study of Lq-spectrum and
multifractal structure of measure µ (see e.g. [3, 9, 21–23]). There are some studies focusing
on vector-valued Ruelle operators. Leung [13] considered vector-valued subMarkov operators
and recurrent IFS. The second author set up Ruelle operator theory for contractive vector-
valued system [21]. The uniqueness and ergodicity of invariant measures for aMarkov operator
are discussed [20].

The main motivation of this paper includes the following four aspects. The first is that we
have set up Ruelle operator theory for the weakly contractive IFS [12]. Can we extend the
results in [12] to weakly contractive vector-valued system? That is, if we associate weakly
contractive IFS (X,{wi}mi=1) with a family of non-negative d× d matrix potentials {A(i)}mi=1
instead of positive scalar potentials {pi}mi=1, what will happen? The second is that Leung [13]
considered a d× d non-negative continuous matrix potential function D(·) =

(
di j(·)

)
d×d and

the operator L : C(X,Rd)→ C(X,Rd) defined by

(Lf)i(x) =
d∑
j=1

di j(x)fj(wj(x)), 1⩽ i ⩽ d.

He got an analogous result of Ruelle operator theorem. What will happen if we use a set
of d× d continuous matrix potentials {A(i)}mi=1 to replace a single matrix potential D? This
is to say that we want to consider the weakly contractive IFS (X,{wi}mi=1) associated with
d× d continuous matrix potentials {A(i)}mi=1, and study the operator T : C(X,Rd)→ C(X,Rd)
defined by

T f(x) =
m∑
i=1

A(i)(x)f(wi(x)). (1.1)

Does the analogous result of Ruelle operator theorem hold for T ? It is known that the separa-
tion property plays an important role in studying the multifractal structure of an IFS (see e.g.
[3, 4, 9–11, 22] and the references there). It is difficult to study themultifractal structure for IFS
with overlaps. Luckily enough, we find that, in some interesting cases, the invariant measures
of a weakly contractive IFSwith overlaps can be put into the vector forms, which are the vector-
valued invariant measures of some weakly contractive vector-valued system without overlaps
(see the following examples 3.11 and 3.12). From this, we see that there is a close relationship
between weakly contractive IFS with overlaps and weakly contractive vector-valued system
without overlaps. Hence, it is necessary to study vector-valued Ruelle operator. The fourth is
that, in paper [21], we set up Ruelle operator theory for the operator T defined by contractive
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vector-valued system (X,{wi}mi=1,{A(i)}mi=1) as in (1.1). And then in paper [22], by making
use of the results in [21], we succeeded in studying multifractal structure of contractive IFS
with overlaps. Recently we considered the multifractal analysis for one-dimensional weakly
contractive IFS with non-overlapping [23]. However, there is few multifractal analysis works
done for weakly contractive IFS with overlaps. Can we study multifractal structure of weakly
contractive IFS with overlaps as we did in [21, 22]? To answer this question, we need first to
generalize the work of paper [21] to weakly contractive IFS.

In this paper we consider a weakly contractive IFS (X,{wi}mi=1) and a set of d× d non-
negative matrix potentials {A(i)}mi=1. We always assume that the following two hypotheses are
satisfied:

(H1) each coordinate function of A(i) is either positive Dini continuous or zero;
(H2)

∑m
i=1A

(i) is primitive.

The triple (X,{wi}mi=1,{A(i)}mi=1) is called weakly contractive vector-valued system.
For any x= (x1,x2, . . . ,xd)t ∈ Rd, define |x|=max1⩽i⩽d |xi|. Let C(X,Rd) denote the set of

all continuousRd-valued functions onX. For any f= ( f1, f2, . . . , fd)t ∈ C(X,Rd), define ∥f∥∞ =
maxx∈X |f(x)|. It is easy to check that C(X,Rd) is a Banach space with the norm ∥ · ∥∞.

We can define a vector-valued Ruelle operator T : C(X,Rd)→ C(X,Rd) by

T f(x) =
m∑
i=1

A(i)(x)f(wi(x)), f ∈ C(X,Rd). (1.2)

It is easy to know that the operator T is a bounded linear operator. We use ϱ(T) to denote the
spectral radius of the operate T, and we often denote it by ϱ for short if there is not confusion
caused. Then we have

ϱ(T) = lim
n→∞

∥Tn∥ 1
n . (1.3)

The essential spectral radius ϱess(T) of T is a well-known concept in functional analysis (see
e.g. [1, 2]).

Let M(X,Rd) be the set of all regular Borel Rd-valued measures on X. For any µ=

(µ1,µ2, . . . ,µd)
t ∈M(X,Rd), let µ(f) =

∑d
i=1

´
fi dµi. We call µ a probability measure if

µ(1) = 1, i.e.
∑d

i=1µi(X) = 1. And we use T∗ to denote the dual operator of T.
For any 1⩽ i⩽ m, let

ri = sup
x,y∈X
x ̸=y

|wi(x)−wi(y)|
|x− y|

. (1.4)

The following theorem is the main result of this paper, which is a special case of theorem 3.1.
Theorem Let (X,{wi}mi=1) be a weakly contractive IFS, and let matrix potentials {A(i)}mi=1
satisfy the hypotheses (H1) and (H2). Assume the system (X,{wi}mi=1,{A(i)}mi=1) satisfies the
condition: ∥∥∥∥∥

m∑
i=1

riA
(i)(x)1

∥∥∥∥∥
∞

< ϱ. (1.5)

Then there exists a unique vector-valued function 0d×1 < h ∈ C(X,Rd) and a unique vector-
valued probability measure µ ∈M(X,Rd) such that

(1) Th= ϱh, T∗µ= ϱµ and µ(h) = 1;
(2) for any f ∈ C(X,Rd), limn→∞ ∥ϱ−nTnf−µ(f)h∥∞ = 0.
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The above theorem is a vector form generalization of the classical Ruelle operator the-
orem. It is known that the contractive IFS with Dini continuous potentials has the bounded
distortion property (BDP) (see e.g. [3, 21]). By using the BDP, we can prove vector-valued
Ruelle operator theorem [21]. However, the weakly contractive systems considered do not
have the BDP in general. It creates difficulties for us to set up vector-valued Ruelle operator
theorem. In paper [25] we consider weakly contractive IFS with Lipschitz continuous mat-
rix potentials. We can regard vector-valued Ruelle operator T acting on the space L(X,Rd)
of Lipschitz continuous vector-valued functions. Then we prove, by making use of Ionescu–
Tulcea and Marinescu theorem, that the operator T is quasi-compact acting on L(X,Rd); and
in this case, we have ϱess(T)< ϱ(T). However when matrix potentials are Dini continuous,
even if the assumption (1.5) is satisfied, the essential spectral radius ϱess(T) and the spectral
radius ϱ(T)may be equal, which introduces difficulties in establishing the Ruelle operator the-
orem. To prove our main result (theorem 3.1), we set up proposition 3.3, which states that the
sequence {ϱ−nTn1}∞n=1 is both uniformly bounded and equicontinuous. We can apply Arzela–
Ascoli theorem to yield a vector-valued eigenfunction corresponding to the spectral radius
ϱ(T). By making use of the eigenfunction, we can define a ‘normalized’ vector-valued Ruelle
operator, and show the main result of the paper.

We organize the paper as follow. In section 2 we present some notations and elementary
facts about the weakly contractive vector-valued system. In section 3 we study the Perron–
Frobenius property of the vector-valued Ruelle operator. Finally, we present two examples to
illustrate the necessity to study the vector-valued Ruelle operators.

2. Preliminaries

For any A= (aij)m×n,B= (bij)m×n ∈ Rm×n, we use A⩾ B (or A>B) to mean that aij ⩾ bij (or
aij > bij) for any 1⩽ i ⩽ m,1⩽ j ⩽ n. And let 0m×n =

(
0
)
m×n

, i.e.

0m×n = (aij)m×n with aij = 0for all 1⩽ i ⩽ m,1⩽ j ⩽ n.

A non-negative d× d matrix B is called primitive if there exists a positive integer n such that
Bn > 0d×d [18].

Let
(
Yi,di(·, ·)

)
, i = 1,2, be two metric spaces, and let u :

(
Y1,d1(·, ·)

)
→
(
Y2,d2(·, ·)

)
be a

continuous map. The modulus of continuity of u is defined as

αu(t) := sup
x,y∈Y1

d1(x,y)⩽t

d2(u(x),u(y)) for all t> 0.

A map w : X→ X is called contraction if there exists a constant 0< c< 1 such that

αw(t)⩽ ct for all t> 0.

A map w : X→ X is said to be weakly contractive if

αw(t)< t for all t> 0.

A function p : X→ R is said to be Dini continuous if there exists a r> 0 such thatˆ r

0

αp(t)
t

dt<∞.

We would like to point out that Dini continuity is weaker than Hölder continuity.
Throughout the paper we always let (X,{wi}mi=1) be a weakly contractive IFS. Without loss

of generality, we may assume that

|X|= sup{|x− y| : x,y ∈ X}= 1.
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We always assume that the hypotheses (H1) and (H2) are satisfied. Let T be the vector-valued
Ruelle operator defined as (1.2); and let ϱ be the spectral radius of T given by (1.3).

LetΣ= {1,2, . . . ,m}N andΣn = {1,2, . . . ,m}n. For any I= i1i2 . . . in ∈ Σn, we use |I|(= n)
to denote the length of I. Let

wI(x) = wi1 ◦wi2 ◦ . . . ◦win(x).
Let

AwI(x) = A(in)(x)A(in−1)(win(x)) . . .A
(i1)(wi2 ◦wi3 ◦ . . . ◦win(x)).

Denote AwI(x) = (a(I)jk (x))d×d, and then we have, in particular, A(i)(x) =
(
a(i)jk (x)

)
d×d

.

From (1.2), we can conclude inductively that

Tnf(x) =
∑
|I|=n

AwI(x)f(wI(x)) for all n ∈ N.

Let

α0(t) =maxα
loga(i)jk

(t) for any t> 0, (2.1)

where the maximum is taken over all entries a(i)jk which are strictly positive. From (H1), it
follows that ˆ 1

0

α0(t)
t

dt<∞. (2.2)

Proposition 2.1. Let (X,{wi}mi=1) be a weakly contractive IFS. Then

lim
n→∞

max
|I|=n

|wI(X)|= 0.

Proof. Let (i) γn :=max
|I|=n

|wI(X)| for all n ∈ N;

(ii) τ(t) := max
1⩽i⩽m

αwi(t) for all t⩾ 0.
(2.3)

Note that X is a compact subset of Rd. From the weak contractiveness of {wi}mi=1, we deduce
that 

(i) 0⩽ γn+1 ⩽ γn for all n ∈ N;
(ii) τ(t)< t for all t> 0;

(iii) τ(t) is right continuous on [0,1].

(2.4)

From (2.4)(i), we may let

a := lim
n→∞

γn ⩾ 0.

We claim that a= 0. Otherwise, suppose that a> 0, then we have

γn ⩾ a> 0.

From this, together with (2.3) and (2.4)(ii), we can deduce that

a⩽ γn+1 ⩽ τ(γn)< γn for all n ∈ N.

From this, together with (2.4)(iii), we conclude that

0< a⩽ lim
n→∞

τ(γn) = τ(a)⩽ lim
n→∞

γn = a.
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This implies that τ(a) = a> 0. This contradicts with (2.4)(ii). Hence the claim is proved.

Lemma 2.2. Let {A(i)}mi=1 satisfy the hypotheses (H1) and (H2). Then

Tn1(x)> 0d×1 for all n ∈ Nand x ∈ X.

Proof. From (H2), it follows that there exists some n0 > 0 such that∑
|I|=n

AwI(x)> 0d×d for all n⩾ n0. (2.5)

Let A(i)(x) =
(
a(i)jk (x)

)
d×d

. Define B(i) =
(
b(i)jk

)
d×d

, where

b(i)jk =min
x∈X

a(i)jk (x) for all 1⩽ i ⩽ mand 1⩽ j,k⩽ d.

From (H1), together with the compactness of X, it follows that

b(i)jk = 0 if and only if a(i)jk (x) = 0 for all x ∈ X.

From this, together with (2.5), we conclude that(
m∑
i=1

B(i)

)n

> 0d×d for all n⩾ n0.

Thus no row of
∑m

i=1B
(i) is identically zero vector. From this, it follows that for any n> 0

Tn1(x) =
∑
|I|=n

AwI(x)1⩾
(

m∑
i=1

B(i)

)n

1> 0d×1.

The following proposition 2.3 is an analogous result of [12, proposition 2.2(i)].

Proposition 2.3. Let T be the operator defined as (1.2). Then we have

min
x∈X

ϱ−n|Tn1(x)|⩽ 1⩽max
x∈X

ϱ−n|Tn1(x)| for all n ∈ N.

Proof. It can be proved similarly to the proof of [12, proposition 2.2(i)], and we omit it.

3. Perron–Frobenius property

In this section, we will study the Perron–Frobenius property of the vector-valued Ruelle
operator T defined as (1.2). For any 1⩽ i ⩽ m, we let ri be as (1.4). And for any
I= i1i2 . . . in ∈ Σn, let

rI = ri1ri2 . . .rin ,

and define

RI = sup
x,y∈X
x̸=y

|wI(x)−wI(y)|
|x− y|

.

It is the Lipschitz constant of wI . It is obvious that

RI ⩽ rI for all I ∈ Σn.

The following theorem 3.1 is the main result of the paper.
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Theorem3.1. Let (X,{wi}mi=1) be aweakly contractive IFS, and let matrix potentials {A(i)}mi=1
satisfy the hypotheses (H1) and (H2). If there exists k such that∥∥∥∥∥∥

∑
|I|=k

RIAwI(x)1

∥∥∥∥∥∥
∞

< ϱk, (3.1)

then there exists a unique vector-valued function 0d×1 < h ∈ C(X,Rd) and a unique vector-
valued probability measure µ ∈M(X,Rd) such that

(1) Th= ϱh, T∗µ= ϱµ and µ(h) = 1;
(2) for any f ∈ C(X,Rd), limn→∞ ∥ϱ−nTnf−µ(f)h∥∞ = 0.

We say that the vector-valued Ruelle operator theorem for T holds if the assertion of the-
orem 3.1 holds. To prove theorem 3.1, we need some preparations.

Lemma 3.2. If the vector-valued Ruelle operator theorem for Tq holds for some q⩾ 2, then
the vector-valued Ruelle operator theorem for T holds.

Proof. The spectral radius for Tq is ϱq. Since the vector-valued Ruelle operator theorem for
Tq holds, we have a unique vector-valued function 0d×1 < h ∈ C(X,Rd) and a unique vector-
valued probability measure µ ∈M(X,Rd) such that

Tqh= ϱqh, (Tq)∗µ= ϱqµ, < µ,h>= 1.

Moreover, for any f ∈ C(X,Rd),

lim
n→∞

∥
(
ϱq
)−n(

Tq
)n
f−µ(f)h∥∞ = 0.

It follows that for f= Th, we have

lim
n→∞

ϱ−nqTnq
(
Th
)
=< µ,Th> h= lim

n→∞
T
(
ϱ−nqTnqh

)
=< µ,h> Th= Th.

This implies that

Th=< µ,Th> h.

From this, we deduce that

Th= ϱh.

Similarly, we have T∗µ= ϱµ.
For the convergence, take any f ∈ C(X,Rd), we have

lim
n→∞

∥ϱ−nq−jTnq+jf− ϱ−j < µ,T jf> h∥= 0 for any 0⩽ j < q.

Note that

< µ,T jf>=< (T∗)jµ, f>= ϱ j < µ, f> .

We get that

lim
n→∞

∥ϱ−nTnf−< µ, f> h∥= 0.

Hence, the vector-valued Ruelle operator theorem for T holds.
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Proposition 3.3. Let (X,{wi}mi=1) be a weakly contractive IFS, and let matrix potentials
{A(i)}mi=1 satisfy the hypotheses (H1) and (H2). If the system (X,{wi}mi=1,{A(i)}mi=1) satisfies
the condition: ∥∥∥∥∥

m∑
i=1

riA
(i)(x)1

∥∥∥∥∥
∞

< ϱ, (3.2)

then for any f ∈ C(X,Rd), {ϱ−nTnf}∞n=1 is uniformly bounded and equicontinuous.

Proposition 3.3 plays an important role in studying the Perron–Frobenius property of the
vector-valued Ruelle operator. To prove proposition 3.3, we need to set up the following lemma
3.4, proposition 3.5 and lemma 3.6 first.

For any n ∈ N and I= i1i2 . . . in ∈ Σn, we define

I|lk = ik+1ik+2 . . . il for all 0⩽ k< l⩽ n.

We let for convenience I|kk = ∅ for all 0⩽ k⩽ n. It is obvious that

AwI(x) = AwI|nk
(x)Aw

I|k0

(
wI|nkx

)
for all 0⩽ k⩽ n.

Let α0 be the function defined by (2.1). Note that for any given θ : 0< θ < 1,

∞∑
k=0

α0(θ
k+1)⩽ 1

1− θ

∞∑
k=0

ˆ θk

θk+1

α0(t)
t

dt=
1

1− θ

ˆ 1

0

α0(t)
t

dt.

From this, together with (2.2), it follows that

a :=
∞∑
k=0

α0(θ
k)<∞. (3.3)

For any 0⩽ t⩽ 1 we define

ϕ(t) =
∞∑
k=0

α0(θ
kt).

We know from (3.3) that ϕ(t) is continuous and 0= ϕ(0)⩽ ϕ(1) = a. For any 0⩽ t⩽ 1 and
any I ∈ Σn, we define

σI(t) =
n∑

k=0

α0
(
αwI|nk

(t)
)
.

By the definition of AwI(·), we have

AwI(x)⩽ eσI(|x−y|)AwI(y) for all x,y ∈ X. (3.4)

For any given θ : 0< θ < 1, let{
P(n,k) = {I ∈ Σn : k is smallest with rI|nk ⩾ θn−k}, 0⩽ k< n,

P(n,n) = {I ∈ Σn : rI|nk < θn−k for all 0⩽ k< n}.
(3.5)

It is easy to see that

Σn =
n⋃

k=0

P(n,k). (3.6)
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The system (X,{wi}mi=1,{A(i)}mi=1) is said to have the BDP, if there exists a constant C⩾ 1
such that

AwI(x)⩽ CAwI(y) for all I ∈
∞⋃
n=1

Σn and x,y ∈ X.

Although the system (X,{wi}mi=1,{A(i)}mi=1) does not have BDP in general, we present a useful
basic property of the system in the following lemma 3.4.

Lemma 3.4. Let the system
(
X,{wi}mi=1,{A(i)}mi=1

)
be as in proposition 3.3. Then for any

I ∈ P(n,k)

(i) σI(t)⩽ ϕ(t)+ (n− k)α0(t);
(ii) 0d×d ⩽ AwI(x)⩽ eϕ(|x−y|)AwI|nk

(x)Aw
I|k0
(y) for all x, y ∈ X.

Proof. (i) For any I= i1i2 . . . in ∈ P(n,k) and for any 0⩽ j< k, we have

rI|nk ⩾ θn−k and rI|nj = rI|kj · rI|nk < θn−j.

And then we have

RI|kj ⩽ rI|kj =
rI|kj · rI|nk
rI|nk

< θk−j.

From this, it follows that for any I= i1i2 . . . in ∈ P(n,k) and t> 0

sup
|x−y|⩽t

|wI|kj (x)−wI|kj (y)|⩽ θk−jt for any 0⩽ j < k. (3.7)

From this, together with the weak contractiveness of {wi}mi=1, we get (i).
(ii) From (3.7), together with (2.1), we deduce that for any 0⩽ j< k and any x, y ∈ X

0d×d ⩽ A(ij)(wij+1 ◦wij+2 ◦ . . . ◦wik(x))

⩽ A(ij)(wij+1 ◦wij+2 ◦ . . . ◦wik(y))eα0(θ
k−j|x−y|).

It follows that for any I ∈ P(n,k) and any x, y ∈ X,

0d×d ⩽ Aw
I|k0
(x)⩽ Aw

I|k0
(y)e

∑k
i=1α0(θk−i|x−y|) ⩽ eϕ(|x−y|)Aw

I|k0
(y). (3.8)

Recall that AwI|nk
(x)⩾ 0d×d. From this, we conclude that for any I ∈ P(n,k) and any x, y ∈ X,

0d×d ⩽ AwI(x) = AwI|nk
(x)Aw

I|k0
(wI|nkx)

⩽ eϕ(|x−y|)AwI|nk
(x)Aw

I|k0
(y) (by (3.8)).

Proposition 3.5. Let the system (X,{wi}mi=1,{A(i)}mi=1) be as in proposition 3.3. Then there
exist constants ξ ⩾ ζ > 0 such that

ζ1⩽ ϱ−nTn1(x)⩽ ξ 1 for all n> 0and x ∈ X. (3.9)
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Proof. We prove the existence of the upper bound of (3.9) first. Note that X is compact.
From (3.2), we can find an 0< η < 1 such that

m∑
i=1

riA
(i)(x)1⩽ ηϱ1 for all x ∈ X.

Note that

∑
|J|=n+1

rJAwJ(x)1=
m∑
j=1

rjA
(j)(x)

∑
|I|=n

rIAwI
(
wj(x)

)
1

 .
From this, we can prove, by induction, that for any n> 0∑

|I|=n

rIAwI(x)1⩽ (ηϱ)n1 for all x ∈ X. (3.10)

Choose θ : 0< η < θ < 1 and let P(n,k) (0⩽ k⩽ n) be as in (3.5). Let 0< δ := η
θ < 1 and let

G= 1 · 1t ∈ Rd×d. We claim that there exists a constant M> 0 such that for any n ∈ N

ϱ−n
∑

I∈P(n,k)

AwI(x)⩽Mδn−kG for all 0⩽ k⩽ n. (3.11)

Indeed, for any I ∈ P(n,0) we have rI ⩾ θn > 0. From this, together with (3.10), we conclude
that ∑

I∈P(n,0)

θnAwI(x)1⩽
∑
|I|=n

rIAwI(x)1⩽ (ηϱ)n1.

From this, we deduce that

0d×d ⩽ ϱ−n
∑

I∈P(n,0)

AwI(x)⩽ δnG for all n> 0 and x ∈ X. (3.12)

By proposition 2.3, there exists some xk ∈ X such that

0d×d ⩽ ϱ−k
∑
|I|=k

AwI(xk)⩽ G for all k> 0. (3.13)

Note that for any I ∈ P(n,k), we have I|nk ∈ P(n− k,0). It follows that

0d×d ⩽ ϱ−n
∑

I∈P(n,k)

AwI(x)

⩽ ϱ−n
∑

I∈P(n,k)

eaAwI|nk
(x)Aw

I|k0
(xk)

(
by lemma 3.4(ii)

)

⩽ ea

ϱ−(n−k)
∑

I′∈P(n−k,0)

AwI′ (x)

ϱ−k
∑
|I′′|=k

AwI′′ (xk)


⩽ eaδn−kG ·G

(
by (3.12) and (3.13)

)
=Mδn−kG for some M> 0.
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Hence the claim (3.11) is proved. It follows that

ϱ−n
∑
|I|=n

AwI(x) =
n∑

k=0

ϱ−n
∑

I∈P(n,k)

AwI(x)

 (by (3.6))

⩽
n∑

k=0

Mδn−kG
(
by (3.11)

)
⩽
(
M

∞∑
k=0

δk

)
G := γG.

Hence for any n> 0 and for any x ∈ X, we have

ϱ−nTn1(x)⩽ γd1 := ξ 1. (3.14)

Now we try to prove the lower bound in (3.9). For this, we let

σI =
n∑

k=0

α0(|wI|nk (X)|) for any I ∈ Σn.

From this, together with lemma 3.4(i), we conclude that

σI = σI(1)⩽ a+(n− k)α0(1) for all I ∈ P(n,k). (3.15)

By applying proposition 2.3 and (3.14), we get that for any n> 0 there exists yn ∈ X such that

1⩽ Cn := ϱ−n
∣∣∣∑
|I|=n

AwI(yn)1
∣∣∣⩽ ξ. (3.16)

Note that 0< δ < 1 and then
∑∞

k=0 k · δk <∞. It follows that

ϱ−n
∑
|I|=n

σIAwI(yn) = ϱ−n
n∑

k=0

∑
I∈P(n,k)

σIAwI(yn)

⩽
(
M

n∑
k=0

(
a+(n− k)α0(1)

)
δn−k

)
G

(
by (3.11)and (3.15)

)
⩽ γ′G for some γ′ > 0.

Thus

0d×1 ⩽ ϱ−n
∑
|I|=n

σIAwI(yn)1⩽ γ ′d1. (3.17)

From this, it follows that

ϱ−nTn1(x) = ϱ−n
∑
|I|=n

AwI(x)1⩾ ϱ−n
∑
|I|=n

e−σIAwI(yn)1

⩾ ϱ−n

Cn

∑
|I|=n

e−σIAwI(yn)1 (by(3.16)). (3.18)
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Let e⃗i be the d-dimensional row vector with that the ith coordinate is 1 and the rest are 0.
From (3.16), for any n> 0 there exists 1⩽ in ⩽ d such that

Cn = ϱ−n⃗ein
∑
|I|=n

AwI(yn)1.

Then ∑
|I|=n

ϱ−n

Cn
e⃗inAwI(yn)1= 1.

Note that ex is convex. From this, we conclude that

ϱ−n⃗ein ·

∑
|I|=n

AwI(x)1

 ⩾
∑
|I|=n

(
ϱ−n

Cn
e⃗inAwI(yn)1

)
e−σI (by (3.18))

⩾ exp

−ϱ
−n

Cn
e⃗in
∑
|I|=n

σIAwI(yn)1


⩾ exp(−γ ′d) (by (3.17)). (3.19)

Let n0 and B(i) = (b(i)jk )d×d be as in the proof of lemma 2.2. For any I= i1i2 . . . in ∈ Σn, let

B(I) = B(in)B(in−1) . . .B(i1). By lemma 2.2, there exists a constant b> 0 such that

ϱ−n0
∑
|I|=n0

B(I) ⩾ bG.

Note that A(i)(x)⩾ B(i) ⩾ 0d×d. It follows that for any n⩾ n0

ϱ−n
∑
|I|=n

AwI(x)1⩾

ϱ−n0
∑

|I′|=n0

B(I′)

ϱ−(n−n0)
∑

|I′′|=n−n0

AwI′′ (wI′(x))

1

⩾ (bexp(−γ′d))1 (by (3.19)).

By applying lemma 2.2, for any n< n0, we get a constant b ′
n > 0 such that

ϱ−n
∑
|I|=n

AwI(x)1⩾ ϱ−n
∑
|I|=n

B(I)1⩾ b ′
n1 for all x ∈ X. (3.20)

Let b ′ :=min1⩽n<n0 b
′
n > 0. Then for any n< n0,

ϱ−nTn1(x)⩾ b′1> 0d×1 for any x ∈ X.

Let ζ =min{b ′,bexp(−γ ′d)}> 0. From the above arguments, we deduce that

ϱ−nTn1(x)⩾ ζ1 for all n ∈ Nand x ∈ X.

This completes the proof.

Now we consider the equicontinuity of the sequence {ϱ−nTn1}∞n=1.

Lemma 3.6. Under the assumption of proposition 3.3, there exists a continuous function ψ
defined on [0,1] such that ψ(0) = 0, and for any n> 0,

ϱ−n|Tn1(x)−Tn1(y)|⩽ ψ(|x− y|) for any x,y ∈ X.
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Proof. The notations are adopted from proposition 3.5. Define

ψ(t) = dM
∞∑
k=0

δk
(
eϕ(t)+kα0(t) − 1

)
, 0⩽ t⩽ 1.

Note that ϕ(0) = α0(0) = 0 and 0< δ < 1. From this, together with the continuity of ϕ and
α0, we can deduce that ψ(·) is well-defined, and furthermore, ψ is continuous, and ψ(0) = 0.

For any x,y ∈ X, let t= |x− y|. It follows that

ϱ−n|Tn1(x)−Tn1(y)|= ϱ−n|
n∑

k=0

∑
I∈P(n,k)

(
AwI(x)−AwI(y)

)
1|

(
by (3.6)

)
⩽ ϱ−n

∣∣ n∑
k=0

∑
I∈P(n,k)

(
eσI(t) − 1

)
·AwI(y)1

∣∣ (
by (3.4)

)
⩽ dM

n∑
k=0

δn−k
(
eϕ(t)+(n−k)α0(t)−1

) (
by (3.11)and lemma 3.4(i)

)
⩽ dM

∞∑
k=0

δk
(
eϕ(t)+kα0(t) − 1

)
= ψ(t).

This completes the proof.

Proof of proposition 3.3. Let

C+
(
X,Rd

)
=
{
f ∈ C

(
X,Rd

)
: f> 0d×1

}
.

Note that X is compact. For any f ∈ C+
(
X,Rd

)
there exist constants d2 ⩾ d1 > 0 such that

d11⩽ f⩽ d21. From this, together with proposition 3.5, it follows that there exist constants
ξ ⩾ ζ > 0 such that

ζd11⩽ ϱ−nTnf(x)⩽ ξ d21 for all n> 0 and x ∈ X.

Hence for any f ∈ C+(X,Rd), {ϱ−nTnf}∞n=1 is uniformly bounded.
For any f ∈ C+(X,Rd) and x,y ∈ X, we have

|ϱ−nTnf(y)− ϱ−nTnf(x)|
⩽ ϱ−n

∣∣∑
|I|=n

(
AwI(y)−AwI(x)

)
f(wI(y))

∣∣
+ ϱ−n

∣∣∑
|I|=n

AwI(x)
(
f(wI(y))− f(wI(x))

)∣∣
⩽ ||f||∞ϱ−n

∣∣∑
|I|=n

(
AwI(y)−AwI(x)

)
1
∣∣

+

∣∣ϱ−n
∑
|I|=n

AwI(x)1
∣∣(max

|I|=n

∣∣f(wI(y))− f(wI(x))
∣∣)

⩽ ||f||∞ψ(|y− x|)+ ξ ·max
|I|=n

∣∣f(wI(y))− f(wI(x))
∣∣ (by lemma 3.6

)
.

By lemma 3.6, ψ is continuous on [0,1], and ψ(0) = 0. This, together with the continuity of
f and the weak contractivity of {wi}mi=1, implies that for any f ∈ C+

(
X,Rd

)
, {ϱ−nTnf}∞n=1 is

equicontinuous.
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For any f ∈ C
(
X,Rd

)
, we can choose a> 0d×1 such that f+ a> 0d×1. Then both

{ϱ−nTn(f+ a)}∞n=1 and {ϱ−nTna}∞n=1 are uniformly bounded and equicontinuous sub-
sets of C+

(
X,Rd

)
. Hence for any f ∈ C

(
X,Rd

)
, {ϱ−nTnf}∞n=1 is uniformly bounded and

equicontinuous.

Now we are able to prove the existence of the eigen-function of the vector-valued Ruelle
operator, which is important for us to study the Perron–Frobenius property of the vector-valued
Ruelle operator.

Proposition 3.7. Let the system
(
X,{wi}mi=1,{A(i)}mi=1

)
be as in proposition 3.3. Then there

exists a 0d×1 < h ∈ C
(
X,Rd

)
such that Th= ϱh.

Proof. Let

fn(x) =
1
n

n−1∑
i=0

ϱ−iT i1(x), n ∈ N.

From proposition 3.3, we deduce that the sequence {fn}∞n=1 is uniformly bounded and equicon-
tinuous. From this, we conclude, by applying Arzela–Ascoli theorem, that there exists a
0d×1 < h ∈ C

(
X,Rd

)
and a subsequence {fni}∞i=1 such that limi→∞ ||fni −h||∞ = 0. Then

∥Th− ϱh∥∞ = lim
i→∞

∥Tfni − ϱfni∥∞

= lim
i→∞

ϱ

ni
∥ϱ−niTni1− 1∥∞

⩽ lim
i→∞

ϱ(ξ+ 1)
ni

= 0.

This implies that ∥Th− ϱh∥∞ = 0, and then Th= ϱh.

Let 0d×1 < h ∈ C
(
X,Rd

)
be the eigen-function determined by proposition 3.7, i.e. Th=

ϱh. We denote h= (h1,h2, . . . ,hd)t. For any 1⩽ i ⩽ m, let

q(i)jk (x) =
hk(wi(x))
ϱhj(x)

a(i)jk (x), for all 1⩽ j,k⩽ d,

and define

Q(i)(x) =
(
q(i)jk (x)

)
d×d

. (3.21)

For any I= i1i2 . . . in ∈ Σn, we define

QwI(x) = Q(in)(x)Q(in−1)(win(x)) . . .Q
(i1)(wi2 ◦ . . . ◦win(x)).

Denote QwI(x) = (q(I)j k (x))d×d. From Th= ϱh, together with the definition of Q(i)’s, we con-
clude that ∑

|I|=n

QwI(x)1= 1 for all n ∈ N. (3.22)

Define a ‘normalized’ operator L : C
(
X,Rd

)
→ C

(
X,Rd

)
by

Lf(x) =
m∑
i=1

Q(i)(x)f
(
wi(x)

)
. (3.23)
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Let

H(x) =


h1(x) 0 . . . 0
0 h2(x) . . . 0
...

...
. . .

...
0 0 . . . hd(x)

 .
Then H is invertible, i.e. H ·H−1 = H−1 ·H= E, where E is identity matrix. It can be checked
that

ϱ−1T(Hf)(x) = H(x)L(f)(x).

And by induction, we have

ϱ−nTn(Hf)(x) = H(x)Ln(f)(x) for all n ∈ N. (3.24)

Proposition 3.8. Let the system (X,{wi}mi=1,{A(i)}mi=1) be as in proposition 3.3, and let
Q(i) (1⩽ i ⩽ m) be defined as (3.21). Then {Q(i)}mi=1 satisfy the following two conditions:

(i) each coordinate function of Q(i) is either positive continuous or zero;
(ii)

∑m
i=1Q

(i) is primitive.

Proof. From (3.21), together with (H1) and 0d×1 < h ∈ C
(
X,Rd

)
, it follows that for any 1⩽

i ⩽ m and 1⩽ j,k⩽ d, q(i)jk (·) is either positive continuous or zero on X.
We let

b= min
1⩽i⩽m

min
1⩽ j,k⩽d

min
x∈X

hk(wi(x))
hj(x)

and c= max
1⩽i⩽m

max
1⩽ j,k⩽d

max
x∈X

hk(wi(x))
hj(x)

.

From the compactness of X, together with 0d×1 < h ∈ C
(
X,Rd

)
, we deduce that 0< b⩽ c<

∞. And from (3.21), it follows that for any 1⩽ j,k⩽ d and I ∈ Σn

ϱ−nb · a(I)j k (x)⩽ q(I)j k (x)⩽ ϱ−nc · a(I)j k (x).

This implies that

ϱ−nbAwI(x)⩽ QwI(x)⩽ ϱ−ncAwI(x) for all I ∈ Σn.

From this, together with (H2), we conclude that there exists n0 such that∑
|I|=n

QwI(x)⩾ ϱ−nb
∑
|I|=n

AwI(x)> 0d×d for all n⩾ n0. (3.25)

This implies that
∑m

i=1Q
(i)(x) is primitive.

Proposition 3.9. Let the system (X,{wi}mi=1,{A(i)}mi=1) be as in proposition 3.3, and let L be
the operator defined as (3.23). Then there exists a unique vector-valued invariant probability
measure ν such that

lim
n→∞

||Lnf−ν(f) · 1||∞ = 0 for any f ∈ C
(
X,Rd

)
.

Proof. For any f ∈ C(X,Rd), we have Hf ∈ C(X,Rd). From proposition 3.3, we know that
{ϱ−nTn(Hf)}∞n=1 is uniformly bounded and equicontinuous. From this, together with 0d×1 <
h ∈ C(X,Rd), we deduce that {ϱ−nH−1Tn(Hf)}∞n=1 is uniformly bounded and equicontinu-
ous. This, combined with (3.24), implies that for any f ∈ C(X,Rd), the sequence {Lnf}∞n=1 is
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uniformly bounded and equicontinuous. From this, we can get, by applying Arzela–Ascoli
theorem, a f̃ ∈ C(X,Rd) and a subsequence {Lnif}∞i=1 such that

lim
i→∞

∥Lnif− f̃∥∞ = 0. (3.26)

We claim that for any f ∈ C(X,Rd) there exists a constant bf such that f̃= bf · 1. Indeed, for
any f= ( f1, f2, . . . , fd)t ∈ C(X,Rd), let

λ0( fk) =max
x∈X

fk(x), and λ(f) = max
1⩽k⩽d

λ0( fk).

From (3.22), it follows that for any f ∈ C(X,Rd), {λ(Lnf)}∞n=1 is a decreasing sequence, i.e.

λ(Ln+1f)⩽ λ(Lnf) for all n> 0. (3.27)

From this, together with (3.26), we deduce that for any k ∈ N,{
(i) λ(Lkf̃)⩽ λ(̃f);
(ii) λ(̃f)⩽ λ(Lkf).

(3.28)

Note that the operator L is continuous. And from (3.26), we conclude that for any k ∈ N

lim
i→∞

∥Lk+nif−Lkf̃∥∞ = lim
i→∞

∥Lk
(
Lnif− f̃

)
∥∞ = 0.

From this, together with (3.28)(ii), we deduce that

λ(̃f)⩽ λ(Lkf̃) for all k ∈ N.

This, combined with (3.28)(i), implies that

λ(̃f) = λ(Lkf̃) for all k ∈ N. (3.29)

We denote Lnf̃=
(
(Lnf̃)1,(Lnf̃)2, . . . ,(Lnf̃)d

)t
. Note that X is compact, and f̃ is continuous.

From this, it follows that for any n ∈ N there exists a 1⩽ jn ⩽ d and a xn,jn ∈ X such that

λ(̃f) = λ(Lnf̃) = λ0
(
(Lnf̃)jn

)
= (Lnf̃)jn(xn, jn). (3.30)

Note that QwI(x) =
(
q(I)j k (x)

)
d×d

and

Lnf̃(x) =
∑
|I|=n

QwI(x)̃f
(
wI(x)

)
. (3.31)

From this, together with (3.30), it follows that

λ(̃f) = λ(Lnf̃) =
∑
|I|=n

d∑
k=1

q(I)jnk(xn,jn )̃fk
(
wI(xn, jn)

)
.

From this, together with (3.22), we deduce that for any 1⩽ k⩽ d and I ∈ Σn

λ(̃f) = f̃k
(
wI(xn, jn)

)
if q(I)jnk(xn, jn)> 0.

By proposition 3.8(ii), for any 1⩽ j,k⩽ d and n⩾ n0 there exists an I(n)j k ∈ Σn such that

q

(
I(n)j k

)
j k (x)> 0 for all x ∈ X. (3.32)
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Hence for any 1⩽ k⩽ d and n⩾ n0 there exists an I(n)jnk
∈ Σn such that

λ(̃f) = λ0(f̃k) = f̃k
(
w
I(n)jnk

(xn, jn)
)
.

Note that

Lℓ+nf̃= Lℓ(Lnf̃).

From this, together with (3.29), we deduce similarly further that for any 1⩽ k⩽ d and any
n⩾ 1

λ0(f̃k) = λ(̃f) = λ(Lnf̃) = λ0
(
(Lnf̃)k

)
. (3.33)

This implies that we may choose any one 1⩽ k⩽ d to replace jn in (3.30).
For any f= ( f1, f2, . . . , fd)t ∈ C

(
X,Rd

)
, let

τ0( fk) =min
x∈X

fk(x),and τ(f) = min
1⩽k⩽d

τ0( fk).

Similar to the proof of (3.33), we can prove that for any 1⩽ k⩽ d and any n⩾ 1

τ0(f̃k) = τ (̃f) = τ(Lnf̃) = τ0
(
(Lnf̃)k

)
.

From this, together with (3.33), we deduce that, by applying (3.31) and (3.32), for any 1⩽ k⩽
d and n⩾ n0 there exist x(k)n ,y(k)n ∈ X and I(k)n ∈ Σn such thatλ(̃f) = λ0(f̃k) = f̃k

(
w
I(k)n

(x(k)n )
)
;

τ (̃f) = τ0(f̃k) = f̃k
(
w
I(k)n

(y(k)n )
)
.

(3.34)

Let x0 be a fixed point in X. Then for any 1⩽ k⩽ d,

w
I(k)n

(x0) ∈ X for all n ∈ N.

This implies that the sequence {w
I(k)n

(x0)}∞n=n0 contains a convergent subsequence
{w

I(k)nℓ
(x0)}∞ℓ=1, and we let

zk = lim
ℓ→∞

w
I(k)nℓ

(x0).

Then zk ∈ X. Let

an =max
|I|=n

|wI(X)| for all n ∈ N.

By proposition 2.1, we have

lim
n→∞

an = 0.

From this, we conclude that

lim
ℓ→∞

w
I(k)nℓ

(x(k)nℓ ) = lim
ℓ→∞

w
I(k)nℓ

(y(k)nℓ ) = lim
ℓ→∞

w
I(k)nℓ

(x0) = zk ∈ X.
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From this, together with (3.34), we deduce that for any 1⩽ k⩽ d

λ(̃f) = λ0(f̃k) = lim
ℓ→∞

f̃k
(
w
I(k)nℓ

(x(k)nℓ )
)
= f̃k(zk)

= lim
ℓ→∞

f̃k
(
w
I(k)nℓ

(y(k)nℓ )
)
= τ0(f̃k) = τ (̃f).

This implies that

f̃= λ(̃f) = bf · 1 for some constant bf,

and the claim is proved. Furthermore, from the claim, together with (3.27) and (3.28), we can
deduce that

lim
n→∞

||Lnf− bf · 1||∞ = 0.

Define ν : C(X,Rd)→ R by

ν(f) = bf, f ∈ C(X,Rd).

Then ν(1) = 1. And we can check that

ν(αf+βg) = αν(f)+βν(g) for all α, β ∈ R and f,g ∈ C
(
X,Rd

)
.

Hence, ν is a vector-valued probability measure on X. Note that

ν(L(f)) = bL(f) = bf = ν(f).

We have L∗ν = ν. Suppose that there exists another vector-valued probability measure υ such
that L∗υ = υ. Then for any f ∈ C

(
K,Rd

)
υ(f) = lim

n→∞
L∗nυ(f) = lim

n→∞
υ(Lnf) = υ(ν(f) · 1) = ν(f).

Thus υ = ν.

Proof of theorem 3.1. From lemma 3.2, we know that if the vector-valued Ruelle operator
theorem for Tq holds for some q⩾ 2, then the vector-valued Ruelle operator theorem for T
holds. From this, we may assume k= 1 in the condition (3.1) so that it is reduced to (3.2).

By proposition 3.7, we let 0d×1 < h ∈ C
(
X,Rd

)
satisfy the equation: Th= ϱh. Let L be

the ‘normalized’ operator defined as (3.23). For any f ∈ C
(
X,Rd

)
, we have H−1f ∈ C

(
X,Rd

)
.

This, combined with proposition 3.9, implies that there exists a unique vector-valued invariant
probability measure ν such that

lim
n→∞

||Ln(H−1f)−ν(H−1f) · 1||∞ = 0.

Define µ ∈M(X,Rd) by

µ(f) = ν(H−1f), f ∈ C(X,Rd).

From this, together with (3.24), it follows that

lim
n→∞

||ϱ−nTn(f)−µ(f) ·h||∞ = 0. (3.35)

Let fn and fni be the vector-valued functions as in the proof of proposition 3.7. Then we have

lim
i→∞

||fni −h||∞ = 0.
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From this, together with (3.35), we conclude that

lim
n→∞

||ϱ−nTn1−h||∞ = 0.

From this, we can deduce that µ(1) = 1, i.e. µ is a vector-valued probability measure.
From the definition of µ, it follows that

µ(h) = ν(H−1h) = ν(1) = 1.

Note that L∗ν = ν. From this, together with (3.24), we deduce that for any f ∈ C
(
X,Rd

)
µ(T f) = ϱµ(H ·L(H−1f)) = ϱν(L(H−1f)) = ϱν(H−1f) = ϱµ(f).

From this, we conclude that T∗µ= ϱµ. The uniqueness of h and µ can be deduced easily
from (3.35).

Note that a lower bound of the spectral radius can be obtained as

min
x∈X

∣∣∣∣∣
m∑
i=1

A(i)(x)1

∣∣∣∣∣⩽ ϱ.

From this, together with theorem 3.1, we get the following corollary immediately.

Corollary 3.10. Let (X,{wi}mi=1) be a weakly contractive IFS, and let matrix potentials
{A(i)}mi=1 satisfy the hypotheses (H1) and (H2). Assume the system (X,{wi}mi=1,{A(i)}mi=1)
satisfies the condition:∥∥∥∥∥

m∑
i=1

riA
(i)(x)1

∥∥∥∥∥
∞

<min
x∈X

∣∣∣∣∣
m∑
i=1

A(i)(x)1

∣∣∣∣∣ . (3.36)

Then the vector-valued Ruelle theorem holds.

We would like to point out that the condition (3.36) is checkable. At the end of the paper,
we present examples to show that, in some cases, invariant measure of a weakly contractive
IFS with overlaps can be put into vector form, which is the vector-valued invariant measure of
some newly definedweakly contractive non-overlapping IFS associated withmatrix potentials.
The first example is almost copied from paper [25].

Example 3.11. Let X= [0,2], and let s1(x) = x
1+2x , s2(x) =

x+2
5 , s3(x) = x+3

5 , si+3(x) =
si(x)+ 1 (1⩽ i ⩽ 3), x ∈ X.

It is easy to see that both s1 and s4 are weakly contractive maps; and si (i ̸= 1,4) are all
contractive maps. Hence (X, {si}6i=1) is a weakly contractive IFS. It is easy to see that

X=
6⋃
i=1

si(X),

i.e. X is the invariant set of the IFS
(
X, {si}6i=1

)
.

Let {pi}6i=1 be a set of Dini continuous positive potentials on X with

6∑
i=1

pi
(
si(x)

)
= 1.
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We know from paper [24] that there exists a unique probability measure ν on X such that

ν =
6∑
i=1

pi(x)ν ◦ s−1
i . (3.37)

We, however, find that

s2 ◦ s6(x) = s3 ◦ s3(x) =
x
52

+
3
52

+
3
5
.

This implies that the IFS (X, {si}6i=1) has overlaps. It creates difficulty for us to study themeas-
ure ν, such as the multi-fractal structure of the measure ν. Luckily enough, we can transform
the measure ν into a vector-valued measure µ on R :

µ(D) =

(
ν(D∩ [0,1])

ν((D∩ [0,1])+ 1)

)
,

for any Borel subset D⊆ R. In fact, let K= [0,1], and define for any x ∈ K

w1(x) = s1(x) = x
1+2x ;

w2(x) = s1(x+ 1) = x+1
3+2x ;

w3(x) = s2(x) = x+2
5 ;

w4(x) = s2(x+ 1) = s3(x) = x+3
5 ;

w5(x) = s3(x+ 1) = x+4
5 .

(3.38)

Then we have
⋃5
i=1wi(K) = K, and moreover

wi(K
◦)
⋂
wj(K

◦) = ∅ for any i ̸= j.

This implies that the IFS (K,{wi }5i=1) has non-overlapping.
We can check directly that supp(µ)⊆ K. From (3.38), we can deduce that (3.37) is equi-

valent to the following:

µ=
5∑
i=1

Bi(x)µ ◦w−1
i . (3.39)

Where

B1 =

(
p1 0
p4 0

)
, B2 =

(
0 p1
0 p4

)
, B3 =

(
p2 0
p5 0

)
,

B4 =

(
p3 p2
p6 p5

)
, B5 =

(
0 p3
0 p6

)
.

Let A(i) = Bti ◦wi. Then a non-overlapping system (K,{wi}5i=1,{A(i)}5i=1) is set up. It is obvi-
ous that the hypotheses (H1) and (H2) are satisfied. Now we consider a vector-valued Ruelle
operator T : C

(
K,Rd

)
→ C

(
K,Rd

)
defined by

Tf(x) =
5∑
i=1

A(i)(x)f(wi(x)), f ∈ C
(
K,Rd

)
.

From (3.39), it follows that T∗µ= µ, i.e. µ is a vector-valued invariant probability measure
of the system (K,{wi}5i=1,{A(i)}5i=1).

The following example 3.12 is more general.
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Example 3.12. Let S be aC1 function defined on an open interval containing [0,1] and assume
that S satisfies the following condition:{

S(0) = 0, S(1) = 1
2 ;

0< S ′(x)< 1= S ′(0) = S ′(1) for all 0< x< 1.
(3.40)

Let X := [0,2]. For any 0⩽ i ⩽ 2, we define Si : X→ X by

Si (x) = S(x− [x])+
[x]
2

+
i
2
. (3.41)

(Recall that [x] is the integer part of x.) From (3.40), we conclude that the IFS
(
X, {Si}2i=0

)
is

weakly contractive. It is easy to see that

X=
2⋃
i=0

Si(X),

i.e. X is the invariant set of IFS (X, {Si}2i=0). Moreover, we can deduce from (3.41) that

S0 ◦ S2 = S1 ◦ S0 and S1 ◦ S2 = S2 ◦ S0.

This implies that the IFS (X, {Si}2i=0) has overlaps.
Let {pi}2i=0 be a family of Dini continuous positive potentials on X satisfying the condition:

2∑
i=0

pi(Si(x)) = 1. (3.42)

Note that S0 ◦ S1(X)⊂ (0,1). This, combined with (3.40), implies that S0 ◦ S0 ◦ S1(x) is con-
tractive. From this, it follows that the weakly contractive system

(
X, {Si}2i=0, {pi}2i=0

)
satis-

fies the condition of [24, theorem 4.3] for k= 3. Hence from this, we know that there exists a
unique probability measure ν on X such that

ν =
2∑
i=0

pi ν ◦ S−1
i . (3.43)

It is difficult to study the measure ν, such as the Lq-spectrum of the measure ν, as the IFS
(X, {Si}2i=0) has overlaps. Luckily enough again, we can split the measure ν into a vector-
valued measure µ on R defined by

µ(D) =

(
ν(D∩ [0,1])

ν(D∩ [0,1] + 1)

)
,

for any Borel subsetD⊂ R. In fact, let K= [0,1], and from (3.41), we define for any 0⩽ i ⩽ 1

wi(x) = S(x)+
i
2
, x ∈ K. (3.44)

Then we have w0(K)
⋃
w1(K) = K, and moreover

w0(K
◦)
⋂
w1(K

◦) = ∅.

This implies that the IFS (K,{wi }1i=0) has non-overlapping.
It follows directly that supp(µ)⊆ [0,1]. From (3.44), we can deduce that (3.43) is equival-

ent to the following:

µ= B0µ ◦w−1
0 +B1µ ◦w−1

1 , (3.45)
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where

B0 =

(
p0 0
p2 p1

)
, B1 =

(
p1 p0
0 p2

)
.

Let A(i) = Bti ◦wi. Then a non-overlapping system (K,{wi}1i=0,{A(i)}1i=0) is set up. It is obvi-
ous that the hypotheses (H1) and (H2) are satisfied. Now we consider vector-valued Ruelle
operator T : C(K,Rd)→ C(K,Rd) defined by

Tf(x) =
1∑
i=0

A(i)(x)f(wi(x)), f ∈ C(K,Rd).

From (3.45), we see that µ is a vector-valued invariant probability measure of the system
(K,{wi}1i=0,{A(i)}1i=0), i.e. T

∗µ= µ.

We would like to point out that the vector-valued measures in the above examples are the
invariant measures of newly defined IFSs with non-overlapping. They have a close relation-
ship with invariant probability measures of the systems with overlaps. This hints us that it is
necessary to set up vector-valued Ruelle operator theory.
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