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Abstract In this paper, we consider entire solutions of higher order homogeneous differen-

tial equations with the entire coefficients having the same order, and prove that the entire

solutions are of infinite lower order. The properties on the radial distribution, the limit di-

rection of the Julia set and the existence of a Baker wandering domain of the entire solutions

are also discussed.
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1 Introduction

We assume that the reader is familiar with the fundamental results and the standard

notations of Nevanlinna’s value distribution of meromorphic functions (see [9, 14, 24, 30]). For

a meromorphic function f(z) in the complex plane C, the order ρ(f) and the lower order µ(f)

are defined by, respectively,

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
and µ(f) = lim inf

r→∞

log+ T (r, f)

log r
.

If f is entire function, then the Nevanlinna characteristic T (r, f) can be replaced with logM(r, f),

where M(r, f) = max{|f(z)| : |z| ≤ r}. Let a ∈ C and n(r, f = a) denote the numbers of

f(z)− a = 0 in disk {z : |z| ≤ r}. If

lim sup
r→∞

log n(r, f = a)

log r
< ρ(f),
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then a is called the Borel exceptional value of f .

This paper is devoted to considering the properties, such as the growth order, the radial

oscillation and limiting direction of Julia sets, and the existence of a Baker wandering domain,

of solutions to higher order linear differential equations

f (k) +Ak−1(z)f (k−1) + · · ·+A0(z)f = 0, (1.1)

where Aj(z) (j = 0, 1, 2, · · · , k − 1) are entire functions. Due to the classical result by Wittich

[23], all solutions to (1.1) are entire functions with finite order if and only if all coefficients

are polynomials. If max{ρ(Aj), j = 1, 2, · · · , k − 1} < ρ(A0), then every non-trivial solution to

(1.1) is of infinite order. Furthermore, if the coefficients have the properties on the Phragmén-

Lindelöf indicator function, every non-trivial solution to (1.1) is also of infinite order [10]. In this

paper, we concentrate on looking at the situation when the coefficients of (1.1) are exponential

polynomials with the same degree, that is, all coefficients have the same order.

2 Radial Distribution of Entire Solutions

We first recall Nevanlinna’s Characteristic in an angle (see [29]). Assumeing that 0 < α <

β < 2π, we denote that

Ω(α, β) = {z ∈ C : arg z ∈ (α, β)} and Ω(r, α, β) = Ω(α, β) ∩ {z : |z| < r},

and use Ω(α, β) and Ω(r, α, β) to denote the closure of Ω(α, β) and Ω(r, α, β), respectively. For

the function g(z), analytic in Ω(α, β), we define that

Aα,β(r, g) =
ω

π

∫ r

1

(
1

tω
− tω

r2ω

)
{log+ |g(reiα)|+ log+ |g(reiβ)|}dt

t
,

Bα,β(r, g) =
2ω

πrω

∫ β

α

log+ |g(reiθ)| sinω(θ − α)dθ,

Cα,β(r, g) = 2
∑

1<|bν |<r

(
1

|bν |ω
− |bν |

ω

r2ω

)
sinω(βν − α),

where ω = π
β−α , bν = |bν |reiβν are poles (counting multiplicities) of g(z) in Ω(α, β). Nevanlin-

na’s angular characteristic of g is defined by

Sα,β(r, g) = Aα,β(r, g) +Bα,β(r, g) + Cα,β(r, g),

and the order ρα,β(g) of g on Ω(α, β) is defined by

ρα,β(g) = lim sup
r→∞

log+ Sα,β(r, g)

log r
= lim sup

r→∞

log+ log+M(r,Ω(α, β), g)

log r
,

where M(r,Ω(α, β), g) := max{|g(z)| : z ∈ Ω(r, α, β)}. If g is analytic on C, ρ(g) ≥ ρα,β(g).

If ρα,β(g) = ∞, then ρ(g) = ∞. Otherwise, the above may not be true. For example, for

g(z) = exp{ez}, we have that ρ−π/2,π/2(g) = ρ(g) =∞, but ρπ/2,3π/2(g) = 0.

Moreover, the sectorial order ρθ,ε(g) and the radial order ρθ(g) are defined by

ρθ,ε(g) = lim sup
r→∞

log+ log+M(r,Ω(θ − ε, θ + ε), g)

log r
and ρθ(g) = lim

ε→0
ρθ,ε(g).

Define that

I(g) := {θ ∈ [0, 2π) : ρθ(g) =∞}.
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Clearly, I(g) is closed, so it is measurable. We use mes I(g) for the linear measure of I(g). For

instance, mes I(g) = π when g(z) = exp{ez}.
A natural question that arises is: what is the lower boundary of mes I(g) when the entire

function g(z) is of infinite order? The radial distribution of transcendental entire solutions has

been well studied, for instance, see [13, 16, 18, 25]. We now recall Huang and Wang’s result on

the differential equation.

Theorem 2.1 ([13, Theorem 1.3]) Suppose that A(z) and B(z) are entire functions with

µ(B) > ρ(A). If g(z) is a non-trivial solution of the equation

g′′ +A(z)′ +B(z)g = 0, (2.1)

then mes I(g) ≥ min{2π, π/µ(B)}.
Theorem 2.1 tells us that mes I(g) = 2π when µ(B) ≤ 1/2. Furthermore, we also note that

equation (2.1) and all other previous results have dominated coefficients. Now, we consider that

all entire coefficients have the same order and obtain

Theorem 2.2 Suppose that gj(z) = ωj(z)e
Pj(z) +αj (j = 0, 1, · · · , k− 1), where αj ∈ C,

Pj(z) = ajnz
n+ · · ·+aj0 are polynomials with degree n (≥ 1) and ajn = |ajn|eiϕjn 6= 0, ϕjn ∈ [0, 2π)

and ωj(z) 6≡ 0 are meromorphic functions with ρ(ωj) < n. If there exists φ ∈ [0, π) such that

either

(1) π − φ < ϕjn − ϕ0
n < π + φ, or

(2) π − φ < ϕjn − ϕ0
n + 2π < π + φ, or

(3) ajn = cja
0
n (0 < cj < 1),

then every non-trivial solution f(z) of equation

f (k) + gk−1(z)f (k−1) + · · ·+ g1(z)f
′
+ g0(z)f = 0 (2.2)

satisfies that µ(f) =∞ and that mes I(f) ≥ λ−1
λ π for some λ > 1.

Before proceeding to the actual proof of Theorem 2.2, we introduce some lemmas.

Lemma 2.3 ([8, Theorem 2]) Let f(z) be a transcendental meromorphic function and

let α > 1 be a real constant. Then there exists a set E ⊂ [0, 2π) that has linear measure of

zero, and there exists a constant B > 0 such that if θ ∈ [0, 2π)\E, then there exists a constant

R0 = R0(θ) > 1 such that, for all z satisfying arg z = θ and |z| = r > R0, we have that∣∣∣∣f (j)(z)

f (i)(z)

∣∣∣∣ ≤ B[T (αr, f) log T (αr, f)]j−i, (0 ≤ i < j).

Lemma 2.4 ([15]) Suppose that P (z) = (α + iβ)zn + · · · is a non-constant polynomial

with degree n ≥ 1, that α, β are real constants, and that ω(z) 6≡ 0 is a meromorphic function

with ρ(ω) < n. Set g(z) = ω(z)eP (z), z = reiθ, and δ(P, θ) = α cosnθ − β sinnθ. Then, for

any given ε > 0, there exists a set H1 ⊂ [0, 2π) of linear measure of zero such that, for any

θ ∈ [0, 2π)\(H1 ∪H2) and |z| = r > r0(θ, ε), we have that

(i) if δ(P, θ) > 0, then exp{(1− ε)δ(P, θ)rn} < |g(reiθ)| < exp{(1 + ε)δ(P, θ)rn};
(ii) if δ(P, θ) < 0, then exp{(1 + ε)δ(P, θ)rn} < |g(reiθ)| < exp{(1− ε)δ(P, θ)rn},

where H2 = {θ ∈ [0, 2π) : δ(P, θ) = 0}.
Remark 2.5 As described in Lemma 2.4,

(i) if we set that α+ iβ = an = |an|eiϕn , then we have that δ(P, θ) = |an| cos(ϕn + nθ);
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(ii) for every given ε (0 < ε < π
2λn ) when λ > 1, we define a 2n open angular domain

Sj(P, θ) =

{
θ : −ϕn

n
+

(2j − 1)

2n
π + ε < θ < −ϕn

n
+

(2j + 1)

2n
π − ε

}
, j = 0, 1, · · · , 2n− 1.

Obviously, if θ ∈ Sj(P, θ), then δ(P, θ) > 0 for even j, and δ(P, θ) < 0 for odd j.

Lemma 2.6 Suppose that gj(z) = ωj(z)e
Pj(z) + αj (j = 0, 1, · · · , k − 1), where αj ∈ C,

Pj(z) = ajnz
n+· · ·+aj0 are polynomials with degree n (≥ 1) and ajn = |ajn|eiϕjn 6= 0, ϕjn ∈ [0, 2π),

and ωj(z) 6≡ 0 are meromorphic functions with ρ(ωj) < n. If there exists φ ∈ [0, π) such that

either

(1) φ < ϕjn − ϕ0
n < π + φ, or

(2) φ < ϕjn − ϕ0
n + 2π < π + φ, or

(3) ajn = cja
0
n (0 < cj < 1),

then every non-trivial solution f(z) of equation (2.2) satisfies that µ(f) =∞.

Proof By Lemma 2.3, for all z satisfying that arg z = θ ∈ [0, 2π)\E1 and that |z| = r ≥
R > R(θ) > 1, we obtain that∣∣∣∣f (j)(z)

f(z)

∣∣∣∣ ≤ BT (2r, f)2k, j = 1, 2, · · · , k, (2.3)

where E1 is a set of linear measure zero and B is a positive constant.

By Lemma 2.4 and Remark 2.5, there exists a set H0 = {θ ∈ [0, 2π) : δ(P0, θ) > 0} such

that, for all z satisfying that arg z = θ ∈ H = H0\E1, one of the following statements holds:

(a) δ(Pj , θ) < 0 (j = 1, 2, · · · , k − 1) for some proper φ and θ ∈ H3 when one of the

conditions (1) or (2) holds, where H3 is a subset of H with a positive linear measure;

(b) δ(Pj , θ) > 0 (j = 1, 2, · · · , k − 1) for θ ∈ H0 when condition (3) holds.

Set c = max{cj : j = 1, 2, · · · , k − 1}. Then 0 < c < 1. Furthermore, by Lemma 2.4, for any

given ε (0 < ε < 1−c
1+c ) and a sufficiently large |z| = r, we have that

|g0(z)− α0| ≥ exp{(1− ε)δ(P0, θ)r
n} (2.4)

and

|gj(z)− αj | ≤ exp{(1− ε)δ(Pj , θ)rn} < 1, (j = 1, 2, · · · , k − 1) (2.5)

in case (a), and

|gj(z)− αj | ≤ exp{(1 + ε)cδ(P0, θ)r
n}, (j = 1, 2, · · · , k − 1), (2.6)

in case (b). Therefore, for all z satisfying that arg z = θ ∈ H3, for any given ε
(

0 < ε < 1−c
1+c

)
and a sufficiently large |z| = r, we obtain from (2.2)–(2.6) that

exp{(1− ε)δ(P0, θ)r
n} ≤ |g0 − α0|

≤ |α0|+
∣∣∣∣f (k)

f

∣∣∣∣+
(
|gk−1 − αk−1|+ |αk−1|

) ∣∣∣∣f (k−1)

f

∣∣∣∣+ · · ·+
(
|g1 − α1|+ |α1|

) ∣∣∣∣f ′f
∣∣∣∣

≤ BT (2r, f)2k exp{(1 + ε)cδ(P0, θ)r
n}, (2.7)

when one of the conditions (1), (2) or (3) holds. We further obtain that µ(f) = ∞ from (2.7)

and the fact that 0 < ε < 1−c
1+c . �
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Lemma 2.7 ([11, Lemma 7]) Let z = reiθ, r0 + 1 < r and α ≤ θ ≤ β, where 0 < β −α ≤
2π. Suppose that n(≥ 2) is an integer, and that g(z) is analytic in Ω(α, β) with ρ(α,β) < ∞.

Then, for every εj ∈
(

0,
βj−αj

2

)
\E (j = 1, 2, · · · , n− 1) outside a set E of linear measure zero

with αj = α+
j−1∑
s=1

εs and βj = β −
j−1∑
s=1

εs, there exist K > 0 and M > 0 such that

∣∣∣∣g(n)(z)

g(z)

∣∣∣∣ ≤ KrM( sin k(θ − α)
n−1∏
j=1

sin kεj (θ − αj)
)−2

for all z ∈ Ω(αn−1, βn−1) outside an R-set D, where k = π
β−α and kεj =

π

βj − αj
(j =

1, 2, · · · , n− 1).

Remark 2.8 ([14]) Define that D(zn, rn) = {z : |z − zn| < rn}, and the set of form

D =
∞⋃
n=1

D(zn, rn) is called the R-set if
∞∑
n=1

rn <∞ and zn →∞ (n→∞).

Lemma 2.9 Suppose that g(z) = ω(z)eP (z), where P (z) = (α+iβ)zn+· · · is a polynomial

with degree n, α, β ∈ R, and ω(z) 6≡ 0 is a meromorophic function with ρ(ω) < n. Set z = reiθ

and δ(P, θ) = α cosnθ − β sinnθ. Then, for some constant λ > 1,

mes H+(θ) := mes {θ : δ(P, θ) > 0} > λ− 1

λ
π.

Proof of Theorem 2.2 By Lemma 2.4 and Remark 2.5, for all given ε (0 < ε < π
2λn )

when λ > 1, we have that

δ(P, θ) > 0 when θ ∈ Sj(P, θ) (j = 0, 2, · · · , 2n− 2).

We note that

mes Sj(P, θ) =
π

n
− 2ε >

λ− 1

λn
π (j = 0, 2, · · · , 2n− 2),

and so

mes H+(θ) := mes {θ : δ(P, θ) > 0} = n ·mes Sj(P, θ) >
λ− 1

λ
π.

�

We now proceed to the actual proof of Theorem 2.2.

Proof By Lemma 2.6, we easily obtain that every non-trivial solution f(z) of equation

(2.2) satisfies that µ(f) =∞. We now just estimate the measure of I(f). We first assume that

mes I(f) < λ−1
λ π, and so η := λ−1

λ π −mes I(f) > 0.

Since I(f) is closed, Φ := (0, 2π)\I(f) is open. Thus it can be covered by at most countably

many open intervals. We can choose finitely many open intervals Ii = (αi, βi) (i = 1, 2, · · · ,m)

satisfying [αi, βi] ⊂ Φ and mes
(

Φ\
m⋃
i=1

Ii

)
< η

4 . For the definitions of I(f) and Ii, we have that

Ii ∩ I(f) = ∅ and ραi,βi(f) <∞ (i = 1, 2, · · · ,m).

By Lemma 2.7, for sufficiently small γ > 0, there exist two constants K > 0 and M > 0

such that ∣∣∣∣f (j)(z)

f(z)

∣∣∣∣ ≤ KrM (j = 1, 2, · · · , k) (2.8)

for all z ∈ Ω(αi + 2γ, βi − 2γ) outside an R-set D.
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Denote that

H+
0 (θ) := {θ : δ(P0, θ) > 0}. (2.9)

Then we obtain from Lemma 2.9 that, for some constant λ > 1,

mes H+
0 (θ) >

λ− 1

λ
π.

Similarly to the proof in Lemma 2.6, we obtain that

δ(Pj , θ) < 0, j = 1, 2, · · · , k − 1 (2.10)

for some proper φ and θ ∈ H+
0 (θ)\H1 when one of the conditions (1) or (2) holds, and

δ(Pj , θ) > 0, j = 1, 2, · · · , k − 1 (2.11)

for θ ∈ H+
0 (θ) when condition (3) holds, where H1 is a set with a linear measure of zero.

Since

mes(H+
0 (θ) ∩ Φ) = mes(H+

0 (θ)\(I(f) ∩H+
0 (θ))) ≥ mes H+

0 (θ)−mes I(f) > η >
3η

4
,

and then

mes

(
H+

0 (θ) ∩
m⋃
i=1

Ii

)
= mes(H+

0 (θ) ∩ Φ)−mes

(
H+

0 (θ) ∩

(
Φ\

m⋃
i=1

Ii

))
>

3η

4
− η

4
=
η

2
,

there exists at least an open interval Ii = (αi, βi) of
m⋃
i=1

Ii such that

mes
(
H+

0 (θ) ∩ Ii
)
>

η

2m
> 0,

and so H̃ := H+
0 (θ) ∩ (αi + 2γ, βi − 2γ) 6= ∅. Therefore, we obtain from (2.2), (2.4)–(2.6) and

(2.8)–(2.11), for each θ ∈ H̃, that there exists a sequence {zs = rse
iθ} with rs → ∞ (s → ∞)

such that

exp {(1− ε)δ(P0, θ)r
n
s } ≤ |g0(rse

iθ)− α0|

≤ |α0|+
∣∣∣∣f (k)

f

∣∣∣∣+
(
|gk−1 − αk−1|+ |αk−1|

) ∣∣∣∣f (k−1)

f

∣∣∣∣+ · · ·+
(
|g1 − α1|+ |α1|

) ∣∣∣∣f ′f
∣∣∣∣

≤ KrMs exp {(1 + ε)cδ(P0, θ)r
n
s } . (2.12)

A contradiction arrives from (2.12), and so mes I(f) ≥ λ−1
λ π. �

3 Limiting Direction on Julia Sets of Entire Solutions

Before stating our main results, we first recall some definitions. Let f : C→ C = C
⋃
{∞}

be a transcendental meromorphic function, and let fn (n ∈ N) denote the nth iterate of f , that

is, f1 = f, f2 = f ◦ f, · · · , fn = f ◦ (fn−1). Define the Fatou set of f by F(f), which is the

set of those points in C such that fn is defined and normal in some neighborhood of z, and

the Julia set of f by J (f), the complement of F(f). It is well known that F(f) is open and

completely invariant and that J (f) is closed and non-empty.

Given θ ∈ [0, 2π), if Ω(θ− ε, θ+ ε)
⋂
J (f) is unbounded for any ε > 0, then we call the ray

arg z = θ the limiting direction of J (f). Denote that

∆(f) := {θ ∈ [0, 2π) : arg z = θ is the limiting direction of J (f)}.
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Obviously, ∆(f) is closed, and so it is measurable. We use mes ∆(f) for the linear measure of

∆(f). The limiting direction of J (f) of the transcendental meromorphic functions has been

well studied; see, for instance, [1, 11, 12, 16, 17, 19–22, 26]. For the transcendental entire

function f , Qiao [16] proved that mes ∆(f) = 2π when µ(f) < 1
2 , and that mes ∆(f) ≥ π/µ(f)

when µ(f) ≥ 1
2 .

For the transcendental meromorphic function f , a value θ ∈ [0, 2π) is said to be a transcen-

dental direction of f if there exists an unbounded sequence of {zn} such that

lim
n→∞

arg zn = θ and lim
n→∞

log |f(zn)|
log |zn|

= +∞.

We use TD(f) to denote the union of all transcendental directions, and so TD(f) is a non-empty

compact set in [0, 2π) and TD(f) ⊆ ∆(f) [21].

We secondly recall the differential monomials and differential polynomials of f . By differ-

ential monomial, we mean an expression of type

k∏
s=0

(f (s))nsj = fn0j (f
′
)n1j · · · (f (k))nkj ,

where n0j , n1j , · · · , nkj are non-negative integers. A differential polynomial P (z, f) is a finite

sum of differential monomials, that is, an expression of the form

P (z, f) =
l∑

j=1

k∏
s=0

aj(f
(s))nsj ,

where aj are meromorphic. γP is defined by

γP := min
1≤j≤l

(
k∑
s=0

nsj

)
.

Recently, Wang et al. [21] investigated the limiting direction and transcendental direction of

transcendental entire solutions of complex differential equations, and obtained

Theorem 3.1 ([21, Theorem 1.3]) Suppose that s and m are integers, F (z) is a tran-

scendental entire function of finite lower order, and that P (z, f) is a differential polynomial in

f with γP ≥ s, where all coefficients aj(z) (j = 1, 2, · · · , l) are polynomials if µ(F ) = 0, or

all aj(z) (j = 1, 2, · · · , l) are entire functions with ρ(aj) < µ(F ) if µ(F ) > 0. Then, for every

non-zero transcendental entire solution f of the differential equation

P (z, f) + F (z)fs = 0, (3.1)

we have that TD(f (m) ∩ TD(F )) ⊆ ∆(f (m)) and

mes(∆(f (m))) ≥ mes(TD(f (m)) ∩ TD(F )) ≥ min

{
2π,

π

µ(F )

}
.

We now consider the higher order homogeneous differential equations (2.2) with entire

coefficients having the same order, and obtain

Theorem 3.2 Let m ∈ Z. Suppose that the entire coefficients gj(z) (j = 0, 1, · · · , k − 1)

of equation (2.2) satisfy the conditions given in Theorem 2.2. Then every non-trivial solution

f(z) of equation (2.2) satisfies that

TD(f (m)) ∩ TD(g0) ⊆ ∆(f (m)), mes(∆(f (m))) ≥ mes(TD(f (m)) ∩ TD(g0)) ≥ π

n
.
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Before proving Theorem 3.2, we introduce some preliminary lemmas.

Lemma 3.3 ([5]) Let f(z) be a transcendental meormorphic function with finite lower

order µ and have a positive deficiency

δ(∞, f) := 1− lim sup
r→∞

N(r, f)

T (r, f)
> 0.

Let Λ(r) be a positive function such that Λ(r) = o(T (r, f)) as r → ∞, and let DΛ(r) = {θ ∈
[0, 2π) : |f(reiθ)| > eΛ(r)}. Then, for any fixed sequence of Pólya peaks {rn} of order µ, we

have that

lim inf
n→∞

mes(DΛ(rn)) ≥ min

{
2π,

4

µ
arcsin

√
δ(∞, f)

2

}
.

Lemma 3.4 ([21]) Let f(z) be a transcendental meromorphic function with finite lower

order µ and δ(∞, f) > 0, and let Λ(r) be a positive function such that Λ(r) = o(T (r, f)) and

Λ(r)/ log r →∞ as r →∞. Then

min

{
2π,

4

µ
arcsin

√
δ(∞, f)

2

}
≤ mes(EΛ(f)) ≤ mes(∆(f)),

where EΛ(f) :=
∞⋂
n=1

Bn and Bn :=
∞⋃
j=n

DΛ(rj).

Lemma 3.5 ([30, Theorem 2.5.1]) Let f(z) be a meromorphic function on Ω(α− ε, β+ ε)

for ε > 0 and 0 < α < β < 2π. Then

Sα,β

(
r,
f ′

f

)
≤ K(log+ Sα−ε,β+ε(r, f) + log r + 1),

where K > 0 and r > 1, possibly except for a set with a finite linear measure.

Lemma 3.6 Let f(z) be transcendental entire function, and let m ∈ Z. Then TD(f) ⊆
TD(f (m)).

Proof By Lemma 2.9 in [21], we just need to prove that the conclusion holds when m < 0.

For any given θ /∈ TD(f (m)), it follows from the definition of the transcendental direction that

there exist ε > 0 and K0 > 0 such that, for all z = reiθ ∈ Ω(θ − ε, θ + ε),

log |f (m)(reiθ)|
log r

≤ K0,

and so

Sθ−ε,θ+ε(r, f
(m)) = O(log r). (3.2)

By Lemma 3.5 and (3.2), there exists a set E of linear measure zero such that, for all r ∈
[1,∞)\E,

Sθ−ε+ε1,θ+ε−ε1

(
r,
f (m+1)

f (m)

)
≤ K(log+ Sθ−ε,θ+ε(r, f

(m)) + log r + 1) = O(log r), (3.3)

and so

Sθ−ε+ε1,θ+ε−ε1(r, f (m+1)) ≤ Sθ−ε+ε1,θ+ε−ε1
(
r,
f (m+1)

f (m)

)
+ Sθ−ε+ε1,θ+ε−ε1(r, f (m))

= O(log r),
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where 0 < |m|ε1 < ε
2 .

Repeating the above processes |m| times, we have that

Sθ− ε2 ,θ+
ε
2
(r, f) = O(log r). (3.4)

Thus, it follows from (3.4) that, for all z = reiθ ∈ Ω(r; θ − ε
2 , θ + ε

2 ),

lim
r→∞

log |f(reiθ)|
log r

< +∞,

which implies that θ /∈ TD(f). Hence TD(f) ⊂ TD(f (m)). �

We now proceed to the proof of Theorem 3.2.

Proof of Theorem 3.2 Since m ∈ Z, we will spilt our proof into two cases.

Case 1 m = 0.

Since g0(z) = ω0(z)eP0(z) + α0, we deduce from Lemmas 3.3 and 3.4 that |g0(reiθ)| → ∞
as r →∞ for all θ ∈ EΛ(g0). Therefore, we deduce from Lemma 2.4 that θ ∈ H+

0 (θ), and then

EΛ(g0) ⊆ H+
0 (θ). We assert that θ ∈ TD(f). Otherwise, if θ /∈ TD(f), there exist ε > 0 and

K1 > 0 such that, for all z = reiθ ∈ Ω(θ − ε, θ + ε),

log |f(reiθ)|
log r

≤ K1.

Therefore, by Lemma 2.7, for sufficiently small ε1 (0 < ε1 < ε), there exist two constants K1 > 0

and M1 > 0 such that ∣∣∣∣f (s)(reiθ)

f(reiθ)

∣∣∣∣ ≤M1r
K2 (s = 1, 2, 3, · · · , k) (3.5)

for all z = reiθ ∈ Ω(θ − ε1, θ + ε1), outside an R-set D.

Thus, we obtain from (2.2), (2.4)–(2.6), (2.10), (2.11) and (3.5) that, for any given ε

(0 < ε < 1−c
1+c ),

exp{(1− ε)δ(P0, θ)r
n} ≤ |g0 − α0|

≤ |α0|+
∣∣∣∣f (k)

f

∣∣∣∣+
(
|gk−1 − αk−1|+ |αk−1|

) ∣∣∣∣f (k−1)

f

∣∣∣∣+ · · ·+
(
|g1 − α1|+ |α1|

) ∣∣∣∣f ′f
∣∣∣∣

≤ BrK2 exp{(1 + ε)cδ(P0, θ)r
n}, (3.6)

when θ ∈ H+
0 (θ) and z = reiθ ∈ Ω(θ − ε1, θ + ε1)\D. A contradiction arrives from (3.6). Thus,

θ ∈ TD(f) and

EΛ(g0) ⊆ H+
0 (θ) ⊆ TD(f) ⊆ ∆(f). (3.7)

Since g0(z) = ω0(z)eP0(z) + α0, it follows from Lemma 3.4 that EΛ(g0) ⊆ TD(g0) and

mes(EΛ(g0)) ≥ min
{

2π,
π

n

}
=
π

n
. (3.8)

Thus, (3.7) and (3.8) yield that

EΛ(g0) ⊆ TD(f) ∩ TD(g0) ⊆ ∆(f),

mes(∆(f)) ≥ mes(TD(f) ∩ TD(g0)) ≥ π

n
.

Case 2 m 6= 0.
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It follows from Lemma 3.6 and the proof of Case 1 that TD(f) ∩ TD(g0) ⊆ TD(f (m)) ∩
TD(g0). Thus

EΛ(g0) ⊆ TD(f (m)) ∩ TD(g0) ⊆ ∆(f (m)),

mes(∆(f (m))) ≥ mes(TD(f (m)) ∩ TD(g0)) ≥ π

n
,

since EΛ(g0) ⊆ TD(f). �

4 Baker Wandering Domain of Entire Solutions

Let U be a connected component of F(f). Then fn(U) is contained in a component of

F(f), denoted by Un. If, for some integer p ≥ 1, fp(U) ⊂ Up = U , then U is called a periodic

component of F(f), such the smallest integer p is the period of the periodic component U . If,

for some n, Un is periodic but U is not periodic, then U is called pre-periodic. U is called a

wandering domain if it is neither periodic nor pre-periodic, that is, Un 6= Um for all n 6= m. If

U is wandering and all Un are multiply-connected and surround 0, and the Euclidean distance

is dist(0, Un) → ∞ as n → ∞, then U is called the Baker wandering domain. By Sullivan’s

famous theorem, rational functions have no wandering domains. For a transcendental entire

function, it has been shown by Baker [3] that such domains may exist; each multiply-connected

component of F(f) must be a Baker wandering domain (see [2, 7, 28, 29]). There are some

criteria of non-existence for the Baker wandering domains [4, 7], which also determine whether

there exists only a simply connected Fatou component for given entire functions.

As is well all known, the properties of solutions of differential equations are always con-

trolled by the behavior of coefficients. When there is a dominated coefficient g0 in the sense that

T (r, gj) = o(T (r, g0)) (j = 1, 2, · · · , k − 1) as r → ∞, the dynamical properties of differential

equations (3.2) have been investigated in [11, 12, 20]. However, we are interested in the dy-

namical properties of solutions of differential equations (2.2) without the dominated coefficient,

that is, where all coefficients are of the same growth order. Wang and Chen [20] considered the

second order differential equation and obtained

Theorem 4.1 ([20, Theorem 1.2]) Suppose that Bj (j = 1, 2) are constants and that

Aj(z) (j = 1, 2) are entire functions, and that Pj(z) = ajz
kj + · · · (j = 1, 2) are two polynomials

of degree kj ≥ 0. Suppose that any one of the following two conditions holds:

(1) k1 < k2;

(2) k1 = k2 and a1
a2

= b /∈ R or b ∈ (0, 1).

Then, for every solution f(6≡ 0) of

f ′′ + (A1(z)eP1(z) +B1)f
′
+ (A2(z)eP2(z) +B2)f = 0, (4.1)

all f (n)(n ∈ Z) have no Baker wandering domain, that is, they only have a simply connected

Fatou component.

We focus our interest on the higher differential equations (2.2) with coefficients having the

same order and obtian

Theorem 4.2 Suppose that the entire coefficients gj(z) (j = 0, 1, · · · , k − 1) of equation

(2.2) satisfy the conditions given in Theorem 2.2. Then, for every non-trivial solution f(z) of
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equation (2.2), f (m)(z)(m ∈ Z) have no Baker wandering domain, that is, they only have a

simply connected Fatou component.

We now present some Lemmas.

Lemma 4.3 ([28, Corollary 1]) Let f(z) be a transcendental meromorphic function with

at most finitely many poles. If J (f) has only bounded components, then for any complex

number a ∈ C, there exists a constant 0 < d < 1 and two sequences {rn} and {Rn} of positive

numbers with rn →∞ and Rn/rn →∞(n→∞) such that

M(r, a, f)d ≤ L(r, a, f), r ∈ G,

where M(r, a, f) = max{|f(z)| : |z − a| = r}, L(r, a, f) = min{|f(z)| : |z − a| = r} and

G =
∞⋃
n=1
{r : rn < r < Rn}, which has an infinite logarithmic measure.

Lemma 4.4 ([6]) Let pj(x) (j = 1, 2, · · · , n) and f(x) be a continuous complex value

functions on the interval [a, b], and let Pj(x)(j = 1, 2, · · · , n) and F (x) be non-negative con-

tinuous functions with |pj(x)| ≤ Pj(x) and f(x) ≤ F (x). Suppose that v(x) and V (x) are the

solutions of the differential equations

v(n) −
n∑
j=1

pj(x)v(n−j) = f(x)

and

V (n) −
n∑
j=1

Pj(x)V (n−j) = F (x),

respectively. Then, if V (k)(a) ≥ |v(k)(a)| (k = 0, 1, · · · , n− 1), we have that

|v(k)(x)| ≤ V (k)(x), x ∈ [a, b].

We now proceed to the actual proof of Theorem 4.2.

Proof We now assume that u(z) = f (m)(z) (m ∈ Z) has a Baker wandering domain,

and complete the proof by reduction to absurdity. Zheng [27] shows that the Julia set of

a transcendental meromorphic function with at most finitely many poles has only bounded

components if and only if it has a Baker wandering domain. Since u is a transcendental entire

function, J (u) has only bounded components. Thus, it follows from Lemma 4.3 that there

exists 0 < d < 1 such that

|u(z)| ≥M(r, u)d, r ∈ G, (4.2)

where G is a set with infinite logarithmic measure.

Set H+
j (θ) = {θ : δ(Pj , θ) > 0} and H−j (θ) = {θ : δ(Pj , θ) < 0} (j = 0, 1, · · · , k − 1). If one

of the conditions (1) or (2) holds, we can choose a proper φ such that mesH+
0 (θ)∩(

k−1⋂
j=1

H−j (θ)) >

0. Therefore, we further obtain from Remark 2.5(ii) that there exist odd integers l0, l1, · · · , lk−1

such that
k−1⋂
j=0

Slj (Pj , θ) 6= ∅. If condition (3) holds, we have that H−0 (θ) = H−j (θ) (j =

1, 2, · · · , k − 1). Therefore, we again obtain from Remark 2.5(ii) that Sl(Pj , θ) = Sl(P0, θ) (l =

0, 1, · · · , 2n− 1, j = 1, 2, · · · , k− 1). Thus, there exist θ1, θ2 ∈
k−1⋂
j=0

Slj (Pj , θ) with θ1 < θ2 such
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that

δ(Pj , θi) < 0, j = 0, 1, · · · , k − 1, i = 1, 2.

By Phragmén-Lindelöf Theorem and Lemma 2.4, there exists a positive constant M0 such that

max{|gj(z)| : j = 0, 1, · · · , k − 1} ≤M0, z ∈ Ω(θ1, θ2). (4.3)

We now split our proof into two cases.

Case a m ≤ 0.

It follows from (2.2) that u(z) = f (m)(z) satisfies the differential equation

u(n)(z) + gk−1(z)u(n−1)(z) + · · ·+ g1(z)g(n−k+1)(z) + g0(z)u(n−k)(z) = 0, (4.4)

where n = −m+ k.

Set v(r) = u(reiθ), θ ∈ [θ1, θ2]. Then v(j)(r) = eijθu(j)(reiθ) (j ∈ N), and equation (4.4)

turns into

v(n) + gk−1(reiθ)eiθv(n−1) + · · ·+ g1(reiθ)ei(k−1)θv(n−k+1) + g0(reiθ)eikθv(n−k) = 0. (4.5)

Set M = max{M0,M(r0, u
(j)), j = 0, 1, · · · , k − 1} and l ≥ ω = π

θ2−θ1 . We note that[
exp(rl)

](s)
= Ps(l−1)(r) exp(rl), s ∈ N,

where Ps(l−1)(r) are polynomials in r with degree s(l−1). Therefore V (r) = M exp(rl) satisfies

the differential equation

V (n) −
k∑
j=1

1

k

( n∏
s=n−j+1

Ps(l−1)(r)

)
V (n−j) = 0. (4.6)

Clearly, |v(j)(r0)| = |eijθu(j)(reiθ)| ≤ V (j)(r0), j ∈ N. Thus, we conclude from Lemma 4.4,

(4.5) and (4.6) that, for sufficiently large r0 and r ≥ r0,

|f (m)(reiθ)| = |v(r)| ≤ V (r) = M exp(rl) for all z = reiθ ∈ Ω(r; θ1, θ2). (4.7)

If m = 0, (4.2) and (4.7) yield that

M(r, f)d ≤M exp(rl),

which implies that µ(f) ≤ l, which contradicts to Lemma 2.6.

Since f is entire function, we have that Cθ1,θ2(r, fm) = 0 = Cθ1,θ2(r, u) = 0. Thus, we

obtain from (4.2) and (4.7) that, for all r ≥ r0 and m ≤ 0,

Sθ1,θ2(r, f (m)) = Aθ1,θ2(r, f (m)) +Bθ1,θ2(r, f (m)) = O(rl−ω), (4.8)

and

Sθ1,θ2(r, f (m)) ≥ Bα,β(r, f (m)) =
2ω

πrω

∫ θ2

θ1

log+ |f (m)(reiθ)| sinω(θ − θ1)dθ

≥ 2ω

πrω

∫ θ2

θ1

d log+M(r, f (m))
2ω

π
(θ − θ1)dθ

=
2d

rω
logM(r, f (m)), r ∈ G. (4.9)

Clearly, (4.8)and (4.9) imply that µ(f) = µ(f (m)) <∞, which again contradicts to Lemma 2.6.
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Case b m > 0.

Lemma 3.5 gives that

Sθ1+ε,θ2−ε

(
r,
f (m)

f

)
≤
m−1∑
j=0

Sθ1+ε,θ2−ε

(
r,
f (j+1)

f (j)

)

≤ K
(m−1∑

j=0

log+ Sθ1,θ2(r, f (j)) + log r + 1

)
, r 6∈ F, (4.10)

where K > 0 and F is a set with a finite linear measure.

When m = 1, we deduce from (4.8) and (4.10) that

Sθ1+ε,θ2−ε

(
r,
f

′

f

)
= K

(
log+ Sθ1,θ2(r, f) + log r + 1

)
= O(log r), r 6∈ F (4.11)

and

Sθ1+ε,θ2−ε(r, f
′
) ≤ Sθ1+ε,θ2−ε

(
r,
f

′

f

)
+ Sθ1+ε,θ2−ε(r, f) = O(rl−ω), r ∈ G\F. (4.12)

By mathematical induction, we obtain from (4.11) and (4.12) that

Sθ1+ε,θ2−ε

(
r,
f (m)

f

)
= O(log r), Sθ1+ε,θ2−ε(r, f

(m)) = O(rl−ω), r ∈ G\F. (4.13)

Thus, we deduce from (4.2) and (4.13) that, for r ≥ r0 and m > 0,

Sθ1+ε,θ2−ε(r, f
(m)) ≥ Bθ1+ε,θ2−ε(r, f

(m))

=
2ω

πrω

∫ θ2−ε

θ1+ε

log+ |f (m)(reiθ)| sinω(θ − θ1 − ε)dθ

≥ 2ω

πrω

∫ θ2−ε

θ1+ε

d log+M(r, f (m))
2ω

π
(θ − θ1 − ε)dθ

=
2d

rω
logM(r, f (m)), r ∈ G\F. (4.14)

Obviously, (4.13) and (4.14) yield that µ(f) = µ(f (m)) <∞, which contradicts to Lemma 2.6.

Thus, Cases a and b imply that, for every non-trivial solution f(z) of equation (2.2),

f (m)(z)(m ∈ Z) have no Baker wandering domain. That is, they only have a simply connected

Fatou component. �
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