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In this paper, we consider the properties of entire solutions to second order 
differential equation

f ′′ + Af ′ + Bf = 0, (∗)

where A(z) and B(z) �≡ 0 are entire functions. Under certain assumptions on A(z)
and B(z), we prove that every non-trivial solution f of equation (*) is of infinite 
lower order, and then obtain the measure estimation of the limiting directions of 
Julia sets for those infinite lower order entire solutions. The existence of Baker 
domain for f (n) is also discussed.
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1. Introduction and main results

This paper is devoted to considering the properties of solutions to second order differential equations

f ′′(z) + A(z)f ′(z) + B(z)f(z) = 0, (1.1)

where A(z) and B(z) are entire functions. It’s well known that every non-trivial solution of equation (1.1) is 
entire function. Furthermore, every non-trivial solution of equation (1.1) is of infinite order, whenever either 
A(z) and B(z) are entire functions with ρ(A) < ρ(B), or A(z) is a polynomial and B(z) is transcendental, 
or ρ(B) < ρ(A) ≤ 1

2 , see Gundersen [7], Hellerstein, Miles and Rossi [11], Korhonen et al. [14], and Ozawa 
[20].
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We assume that reader is familiar with the fundamental results and standard notations of the Nevanlinna 
value distribution theory of meromorphic functions (see [10,30]). In particular, we use ρ(f), resp. μ(f), to 
denote the order, resp. the lower order, of an entire function f(z), λ(f), resp. λ(f), to denote the exponent 
of convergence of zeros, resp. of distinct zeros, of f(z) (see [30]) frequently in what follows.

Recently, a number of papers appear to proving that, under certain conditions upon B(z), every non-
trivial solution to equation (1.1) is of infinite order, whenever the coefficient A(z) in equation (1.1) is a 
non-trivial solution to equation

w′′ + P (z)w = 0, (1.2)

where P (z) = anz
n + · · · + a0 is a polynomial of degree n ≥ 1, see e.g. [16,17,28,29,31]. It is well-known 

that every non-trivial solution to equation (1.2) is of order (n + 2)/2. We first recall a result of this type, 
see [28]:

Theorem 1.1. Let A(z) be a non-trivial solution to equation (1.2), and let B(z) be a transcendental entire 
function with ρ(B) < 1/2. Then every non-trivial solution to equation (1.1) is of infinite order.

Let f : C → C = C ∪ {∞} be a transcendental meromorphic function, and let fn(z) (n ∈ N) denote the 
n-th iteration of f , that is, f1 = f, f2 = f ◦ f, · · · , fn = f ◦ fn−1. The Fatou set F(f) of f is the subset of 
C where the iteration fn(z) (n ∈ N) is well defined and {fn(z)} forms a normal family. The complement 
of F(f) is called the Julia set J (f) of f . It is well known that F(f) is open, J (f) is closed and non-empty. 
In general, the Julia set is very complicated. Some basic knowledge of complex dynamics of meromorphic 
functions can be found in Bergweiler’s paper [6] and Zheng’s book [33].

For transcendental entire function f , Baker [4] first observed that J (f) cannot lie in finitely many rays 
emanating from the origin. Qiao [22] introduced the definition of limiting direction of J (f), and proved 
that the J (f) of a transcendental entire function f of finite order has infinitely many limiting directions. 
Here, a limiting direction of J (f) means a limit of the set {arg zn|zn ∈ J (f) is an unbound sequence}. Set

Δ(f) = {θ ∈ [0, 2π) : arg z = θ is a limiting direction of J (f)}

Clearly, Δ(f) is closed. We use mesΔ(f) for the linear measure of Δ(f).
If f is a transcendental entire function of finite lower order μ(f), Qiao [22] proved that mesΔ(f) ≥

min{2π, π/μ(f)}. Later some observations for a transcendental meromorphic function f were made by Qiu 
and Wu [23] and Zheng [35]: if μ(f) < ∞ and δ(∞, f) > 0, then

mesΔ(f) ≥ min
{

2π, 4
μ(f) arcsin

√
δ(∞, f)

2

}
.

By using the spread relation, there are some profound results on limiting directions of entire solutions 
to differential equations, see e.g. [13,14,22,23,25,26,31]. We now recall a result obtained by Wang and Chen 
[25] as follows

Theorem 1.2. [25, Theorem 1.2] Suppose that A(z) and B(z) are entire functions such that B(z) is tran-
scendental and T (r, B) ∼ logM(r, B) as r → ∞ outside a set of finite logarithmic measure, A(z) has a 
finite deficient value a i.e., δ(a, A) > 0. For every non-trivial solution f to equation (1.1), we have

mesE(f) ≥ min
{

2π, 4
μ(A) arcsin

√
δ(a,A)

2

}
,
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where E(f) =
⋂

n∈Z
Δ(f (n)).

In this paper, we are mainly treating to the second order differential equation (1.1). We are trying to 
consider the following two questions:

Question 1.3. Under what assumptions on coefficients A(z) and B(z), can every non-trivial solution f to 
equation (1.1) be of infinite lower order?

Question 1.4. What is the measure estimation of limiting directions of Julia sets for every infinite lower 
order entire solution f to equation (1.1)?

We are now ready to provide a positive answer to Question 1.3 and Question 1.4, and state our main 
results as follows.

Theorem 1.5. Suppose that A(z) is a non-trivial solution to equation (1.2) such that the number of accu-
mulation lines of zero sequence of A(z) is strictly less than n + 2, and let B(z) be a transcendental entire 
function satisfying T (r, B) ∼ logM(r, B) as r → ∞ outside a set of finite logarithmic measure. Then, every 
non-trivial solution f to equation (1.1) is of infinite lower order and mesE(f) ≥ 2π

n+2 .

Remark 1.6. B(z) =
∑∞

n=1 anz
λn is said Fejér gaps if 

∑∞
n=1 λ

−1
n < ∞. Murai [19] pointed that T (r, B) ∼

logM(r, B) as r → ∞ outside a set of finite logarithmic measure, which shows that there really exists an 
entire function B(z) satisfying the hypothesis in Theorem 1.5.

Remark 1.7. Let γ = reiθ be a ray from origin. For each ε > 0, the exponent of convergence of the zero 
sequence of g(z) at the ray γ = reiθ is denoted by λθ(g) = lim

ε→0+
λθ,ε(g), where

λθ,ε(g) = lim sup
r→∞

log+ n(Ω(r, θ − ε, θ + ε), 1/g)
log r ,

where n(Ω(r, θ − ε, θ + ε), 1/g) counts the number of zeros of g(z) with multiplicities in the angular sector 
Ω(r, θ − ε, θ + ε). The ray γ = reiθ is now called an accumulation ray of the zero sequence of g(z) if 
λθ(g) = ρ(g), see e.g. [17,24,27].

A natural related question is now to find different conditions that ensuring every non-trivial solution to 
equation (1.1) is of infinite lower order, whenever the number of accumulation rays of the zero sequence 
of solutions to equation (1.2) equals to n + 2. Indeed, it follows from Lemma 2.6 below that the number 
of accumulation rays of the zero sequence of every non-trivial solution to equation (1.2) is not more than 
n + 2, and the set of the accumulation rays of the zero sequence of every non-trivial solution to equation 
(1.2) is a subset of {θj : 0 ≤ j ≤ n + 1}, where θj = 2jπ−arg an

n+2 , j = 0, 1, · · · , n + 1 mentioned in Lemma 2.6.
We now state other results of this type as follows.

Theorem 1.8. Suppose that A(z) and B(z) are two linearly independent solutions to equation (1.2). If the 
number of accumulation rays of the zero sequence of A(z) is strictly less than n + 2, then every non-trivial 
solution f to equation (1.1) is of infinite lower order and mesE(f) ≥ 2π

n+2 .

Theorem 1.9. Suppose A(z) is a non-trivial solution to equation (1.2) such that the number of accumulation 
rays of the zero sequence of A(z) is strictly less than n + 2, and let B(z) be a non-trivial solution to

w′′ + Q(z)w = 0, (1.3)
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where Q(z) = bmzm + · · · + b0 is a polynomial of degree m ≥ 1, then every non-trivial solution to equation 
(1.1) is of infinite lower order and mesE(f) ≥ 2π

n+2 .

Theorem 1.10. Suppose A(z) is a non-trivial solution to equation (1.2) such that the number of accumulation 
rays of the zero sequence of A(z) is strictly less than n +2, and let B(z) be a transcendental entire function 
with a multiply-connected Fatou component, then every non-trivial solution to equation (1.1) is of infinite 
lower order and mesE(f) ≥ 2π

n+2 .

Theorem 1.11. Suppose B(z) is a non-trivial solution to equation (1.2) such that the number of accumulation 
rays of the zero sequence of B(z) equals to n + 2 and that A(z) is an entire function, then every non-trivial 
solution f to equation (1.1) is of infinite lower order. Furthermore,

(1) if A(z) has a finite Borel exception value, then mesE(f) ≥ π;
(2) if A(z) has a finite deficient value a, i.e., δ(a, A) > 0, then

mesE(f) ≥ min
{

2π, 4
μ(A) arcsin

√
δ(a,A)

2

}
.

Remark 1.12. Let A(z) be a non-trivial solution to equation (1.2). We denote by p(A) the number of rays 
arg z = θj , which are not accumulation rays of the zero sequences of A(z), where θj = 2jπ−arg an

n+2 , j =
0, 1, . . . , n + 1 [9]. It is easy to deduce that p(A) must be an even integer from Lemma 2.6. From the Hille’s 
asymptotic theory [12], if there is an infinite number of zeros clustering around a critical ray, then the 
exponent of convergence of these clustering zeros near that one ray must be n+2

2 . Therefore, the condition 
λ(A) < ρ(A) implies that p(A) = n + 2 by Lemma 2.6. In other words, the number of accumulation rays of 
the zero sequence of A(z) is zero. Therefore, Theorem 1.8 yields

Corollary 1.13. Suppose that A(z) and B(z) are two linearly independent solutions to equation (1.2). If 
λ(A) < ρ(A), then every non-trivial solution f to equation (1.1) is of infinite lower order and mesE(f) ≥
2π
n+2 .

Theorem 1.14. Suppose that A(z) is a non-trivial solution to (1.2) such that the number of accumulation 
rays of the zero sequence of A(z) is strictly less than n + 2 and let B(z) be a finite Borel exception value b, 
i.e., B(z) − b = h(z)eQ(z) with ρ(h) < degQ(z) and Q(z) = bmzm + · · ·+ b0, bm 
= 0. If one of the following 
two conditions holds:

(1) n + 2 < 2m;
(2) n + 2 = 2m and arg an − 2 arg bm 
= (2s + 1)π, s ∈ Z,

then for every non-trivial solution to equation (1.1), all f (n)(n ∈ Z) have no Baker wandering domain, that 
is, they only have simply connected Fatou component.

2. Preliminary lemmas

We first recall Nevanlinna’s Characteristic in an angle (see [33]). Assuming that 0 < α < β < 2π, we 
denote that

Ω(α, β) = {z ∈ C : arg z ∈ (α, β)} and Ω(r, α, β) = Ω(α, β) ∩ {z : |z| < r},
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and use Ω(α, β) and Ω(r, α, β) to denote the closure of Ω(α, β) and Ω(r, α, β), respectively. For the function 
g(z), analytic in Ω(α, β), we define that

Aα,β(r, g) = ω
π

∫ r

1
( 1
tω − tω

r2ω

)
{log+ |g(reiα)| + log+ |g(reiβ)|}dt

t ,

Bα,β(r, g) = 2ω
πrω

∫ β

α
log+ |g(reiθ)| sinω(θ − α)dθ,

Cα,β(r, g) = 2
∑

1<|bν |<r

(
1

|bν |ω − |bν |ω
r2ω

)
sinω(βν − α),

where ω = π
β−α , bν = |bν |reiβν are poles (counting multiplicities) of g(z) in Ω(α, β). Nevanlinna’s angular 

characteristic of g is defined by

Sα,β(r, g) = Aα,β(r, g) + Bα,β(r, g) + Cα,β(r, g),

and the order ρα,β(g) of entire function g on Ω(α, β) is defined by

ρα,β(g) = lim sup
r→∞

log+ Sα,β(r, g)
log r = lim sup

r→∞

log+ log+ M(r,Ω(α, β), g)
log r ,

where M(r, Ω(α, β), g) := max{|g(z)| : z ∈ Ω(r, α, β)}.
Before proceeding to prove our theorems, we need the following lemmas.

Lemma 2.1. [3, Theorem 1] If f is a transcendental entire function, then the Fatou set of f has no unbounded 
multiply connected component.

Lemma 2.2. [35, Lemma 2.2] Let f(z) be analytic in Ω(r0, θ1, θ2), U is a hyperbolic domain and f :
Ω(r0, θ1, θ2) → U . If there exists a point a ∈ ∂U \ {∞}, such that CU (a) > 0, then there exists a con-
stant d > 0 such that for sufficiently small ε > 0, we have

|f(z)| = O(|z|d), z → ∞, z ∈ Ω(r0; θ1 + ε, θ2 − ε).

Remark 2.3. [35, p. 4] The open set W is hyperbolic if C \W has at least three points. For any a ∈ C \W , 
we define

CW (a) = inf{λW (z)|z − a| : ∀z ∈ W},

where λW (z) is the hyperbolic density on W . Note that |z−a| ≥ δW (z) where δW (z) is the Euclidean distance 
of z ∈ W to ∂W . It is well known that if every component of W is simply connected, then CW (a) ≥ 1

2 .

Lemma 2.4. [32, Theorem 2.5.1] Let f(z) be a meromorphic function on Ω(α − ε, β + ε) for ε > 0 and 
0 < α < β < 2π. Then

Aα,β

(
r,
f ′

f

)
+ Bα,β

(
r,
f ′

f

)
≤ K(log+ Sα−ε,β+ε(r, f) + log r + 1)

for r > 1 possibly except a set with finite linear measure.

Lemma 2.5. [13, Lemma 2.2] Let z = reiς , r > r0 + 1 and α ≤ ς ≤ β, where 0 < β − α ≤ 2π. Suppose 
that g(z) is analytic in Ω(r, α, β) with ρα,β(g) < ∞. Choose two real numbers, α1 and β1, satisfying that 
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α < α1 < β1 < β. Then, for every εj ∈
(
0, βj−αj

2

)
(j = 1, 2, · · · , n − 1) outside a set of zero linear 

measure, where n ≥ 2 is an integer, with

αj = α +
j−1∑
s=1

εs, βj = β −
j−1∑
s=1

εs, j = 2, 3, · · · , n− 1,

there exist K > 0 and M > 0 depending only on g(z), ε1, ε2, · · · , εn−1 and Ω(αn−1, βn−1), and not depending 
on z, such that

∣∣∣∣g′(z)g(z)

∣∣∣∣ ≤ KrM (sin k(ς − α))−2

and

∣∣∣∣g(n)(z)
g(z)

∣∣∣∣ ≤ KrM

⎛
⎝sin k(ς − α)

n−1∏
j=1

sin kj(ς − αj)

⎞
⎠

−2

for all z ∈ Ω(αn−1, βn−1) outside an R-set H, where k = π
β−α and kj = π

βj−αj
, (j = 1, · · · , n − 1).

Furthermore, some auxiliary results of equation (1.2) are also needed. Let A(z) be an entire function with 
finite positive order ρ(A). We say that A(z) blows up exponentially, resp. A(z) decays to zero exponentially, 
in Ω(α, β) if, for any θ ∈ (α, β),

lim
r→∞

log log |A(reiθ)|
log r = ρ(A), resp. lim

r→∞
log log |A(reiθ)|−1

log r = ρ(A).

Lemma 2.6. [12, Chapter 7.4] Let A(z) be a non-trivial solution to equation (1.2). Set θj = 2jπ−arg an

n+2 and 
Sj = Ω(θj , θj+1), where j = 0, 1, · · · , n + 1 and θn+2 = θ0 + 2π. Then A(z) has the following properties:

(1) In each sector Sj, A(z) either blows up or decays to zero exponentially.
(2) If, for some j, A(z) decays to zero in Sj, then it must blow up in Sj−1 and Sj+1. However, it is possible 

for A(z) to blow up in several adjacent sectors.
(3) If A(z) decays to zero in Sj, then A(z) has at most finitely many zeros in any closed sub-sector within 

Sj−1 ∪ Sj ∪ Sj+1.
(4) If A(z) blows up in Sj−1 and Sj, then for each ε > 0, A(z) has infinitely many zeros in each sector 

Ω(θj − ε, θj + ε), and furthermore, as r → ∞,

n(Ω(r, θj − ε, θj + ε), 0, A) = (1 + o(1))
2
√

|an|
π(n + 2)r

n+2
2 ,

where n(Ω(r, θj−ε, θj+ε), 0, A) is the numbers of zeros of A(z) counting multiplicity in Ω(r, θj−ε, θj+ε).

Remark 2.7. If the number of accumulation rays of zeros sequence of A(z) is exactly n + 2, then we know 
A(z) blows up exponentially in each sector Sj = Ω(θj , θj+1) by the condition (3) of Lemma 2.6, also see 
[21, Lemma 2.7].

Lemma 2.8. Suppose that A(z) and B(z) satisfy the hypothesis of Theorem 1.5. Then, every non-trivial 
solution f to equation (1.1) satisfies μ(f) = ∞.
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Proof. Since the number of accumulation lines of zero sequence of A(z) is strictly less than n +2, we obtain 
from Remark 1.7 that there exists at least a j0 ∈ {0, 1, . . . , n + 1} such that the ray arg z = θj0 is not the 
accumulation line of the zero sequence of A(z). This implies that A(z) decays to zero exponentially in Sj0−1
or Sj0 . Otherwise, if A(z) blows up in Sj0−1 and Sj0 , we have from (4) of Lemma 2.6 that

λθj0
(A) = lim

ε→0
lim sup
r→∞

log+ n(Ω(r, θj0 − ε, θj0 + ε), 0, A)
log r = n + 2

2 = ρ(A),

a contradiction. Thus, without loss of generality, we assume that A(z) decays to zero exponentially in sector 
Sj0 = Ω(θj0 , θj0+1), 0 ≤ j0 ≤ n + 1. Therefore, for any θ ∈ Dj0 = {arg z|z ∈ Sj0}, we have

lim
r→∞

log log |A(reiθ)|−1

log r = ρ(A) = n + 2
2 (2.1)

and mesDj0 = 2π
n+2 . So, there exists an arbitrarily small ε > 0, and for all sufficiently large |z| = r (z ∈ Sj0), 

we have

|A(reiθ)| ≤ exp(−rρ(A)−ε). (2.2)

Set, for some constant k ∈ (0, 1),

Gk(r) = {θ ∈ [0, 2π) : log+ |B(reiθ)| ≤ k logM(r,B)}. (2.3)

Since B(z) is an entire function satisfying T (r, B) ∼ logM(r, B) as r → ∞ outside a set E1 of finite 
logarithmic measure, we have from (2.3) that

2π logM(r,B) ∼2πm(r,B)

=
∫

Gk(r)

log+ |B(reiθ)|dθ +
∫

[0,2π)\Gk(r)

log+ |B(reiθ)|dθ

≤kmesGk logM(r,B) + (2π − mesGk(r)) logM(r,B)

(2.4)

as r(
∈ E1) → ∞. It is not hard to see that mesGk(r) → 0 as r(
∈ E1) → ∞. Set

Fj0(r) =
{
θ ∈ Dj0 \Gk(r)

|A(reiθ)| ≤ exp(−rρ(A)−ε),
[M(r,B)]k < |B(reiθ)|

}
(2.5)

as r 
∈ E1. We deduce from (2.2)-(2.5) that mesFj0(r) = 2π
n+2 > 0. Set

F (r) =
⋃

j0∈{0,1,...,n+1}
Fj0(r). (2.6)

Then

F (r) =
{
θ ∈ [0, 2π)

|A(reiθ)| ≤ exp(−rρ(A)−ε),
[M(r,B)]k < |B(reiθ)|

}
(2.7)

as r 
∈ E1.



8 J.-L. Lin et al. / J. Math. Anal. Appl. 536 (2024) 128204
We now have from the estimation of the logarithmic derivative given by Gundersen [8, Theorem 3] that

∣∣∣∣f (j)(z)
f(z)

∣∣∣∣ ≤ C

(
T (αr, f)

r
logα r log T (αr, f)

)j

, j = 1, 2 (2.8)

for all z satisfying |z| 
∈ E2 ∪ [0, 1], where E2 ⊂ (1, ∞) is a set of finite linear measure, C > 0 and α > 1 are 
constants.

Thus, it follows from (1.1), (2.7) and (2.8) that there exists an sequence z = reiθ such that for all sufficient 
large r 
∈ E1 ∪ E2 ∪ [0, 1] and for θ = arg z ∈ F (r), we have

(M(r,B))k < |B(z)| ≤ C(T (2r, f))4(1 + exp(−rρ(A)−ε))

≤ C(T (2r, f))4(1 + o(1)),
(2.9)

where C > 0 is a constant. Since B(z) is a transcendental entire function, we know that

lim inf
r→∞

logM(r,B)
log r = +∞. (2.10)

Therefore, we obtain from (2.9) and (2.10) that μ(f) = ∞. �
Lemma 2.9. [18] Suppose that P (z) = anz

n + · · · + a0(n ∈ N+) is a non-constant polynomial, and that 
g(z)(
≡ 0) is an entire function with ρ(g) < n. Set A(z) = g(z)eP (z), z = reiθ, and δ(P, θ) = �(aneiθ). 
Then for any given ε > 0, there exists a set H1 ⊂ [0, 2π) of linear measure zero such that for any θ ∈
[0, 2π) \ (H1 ∪H2), there is R > 0 such that for |z| = r > R, we have

(1) if δ(P, θ) > 0, then

exp{(1 − ε)δ(P, θ)rn} < |A(reiθ)| < exp{(1 + ε)δ(P, θ)rn};

(2) if δ(P, θ) < 0, then

exp{(1 + ε)δ(P, θ)rn} < |A(reiθ)| < exp{(1 − ε)δ(P, θ)rn},

where H2 = {θ ∈ [0, 2π) : δ(P, θ) = 0}.

Remark 2.10. For the polynomial P (z), we define

Sj(P, θ) =
{
θ : −arg an

n
+ (2j − 1) π

2n < θ < −arg an
n

+ (2j + 1) π

2n

}

for j = 0, 1, · · · , 2n − 1. From the basic property of polynomials [18], if θ ∈ Sj(P, θ), then δ(P, θ) > 0 for 
even j, and δ(P, δ) < 0 for odd j.

Lemma 2.11. [1] Let f(z) be a meromorphic function of finite lower order μ := μ(f), and have one deficient 
value a. Let Λ(r) be a positive function with Λ(r) = o(T (r, f)) as r → ∞. Then for any fixed sequence of 
Pólya peaks {rn} of order μ, we have

lim inf
r→∞

mesDΛ(rn, a) ≥ min
{

2π, 4
μ

arcsin
√

δ(a, f)
2

}
,

where DΛ(r, a) is defined by
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DΛ(r,∞) = {θ ∈ [−π, π) : |f(reiθ)| > eΛ(r)}

and for finite a,

DΛ(r, a) = {θ ∈ [−π, π) : |f(reiθ − a)| < e−Λ(r)}.

Baker [2] showed that for a transcendental meromorphic function, every multiply-connected Fatou com-
ponent has a Baker wandering domain. From [34], J (f) has only bounded components if a transcendental 
meromorphic function f has a Baker wandering domain. Thus, every multiply-connected Fatou component 
of a transcendental meromorphic function f has only bounded Julia components. The following Lemma 2.12
can be applied to a transcendental meromorphic function having a multiply-connected Fatou component.

Lemma 2.12. [34, Corollary 1] Suppose f is a transcendental meromorphic function having at most finite 
poles. If J (f) has only bounded components, then for any complex number, there exists a constant 0 < β < 1
and two sequences of positive numbers {rn} and {Rn} with rn → ∞ and Rn/rn → ∞(n → ∞) such that

M(r, f)β ≤ L(r, f) for r ∈ H,

where H =
⋃∞

n=1{r : rn < r < Rn}.

3. Proof of Theorem 1.5

Proof. Lemma 2.8 shows that every non-trivial solution f to equation (1.1) satisfies μ(f) = ∞. Thus, we 
then estimate the measure of E(f). Suppose, contrary to the assertion, that mesE(f) < 2π

n+2 := σ, and so 
t := σ − mesE(f) > 0.

Since E(f) is a closed, we have Φ := (0, 2π) \ E(f) is open and Φ can be covered by at most countably 
many open intervals. Thus, we can choose finitely many open intervals Ii = (αi, βi) (i = 1, 2, · · · , m) in Φ
such that

mes
(

Φ \
m⋃
i=1

Ii

)
<

t

4 . (3.1)

Furthermore, it is easy to see that

(αi, βi) ∩E(f) = ∅ and Ω(r;αi, βi) ∩ J (f (ni)) = ∅ (3.2)

for sufficiently large r. It follows from Lemma 2.1 and (3.2) that, for each i = 1, 2, · · · , m, there exist the 
corresponding ri and an unbounded Fatou component Ui of F(f (ni)) such that Ω(ri, αi, βi) ⊂ Ui. Therefore, 
we take a unbounded and connected closed section Γi on boundary ∂Ui such that C\Γi is simply connected. 
Clearly, C \ Γi is hyperbolic and open. By Remark 2.3, we have CC\Γi

(a) ≥ 1
2 (a ∈ Γi). Since the mapping 

f (ni) : Ω(ri; αi, βi) → C \ Γi is analytic for all i, it follows from Lemma 2.2 that there exists a positive 
constant d such that

|f (ni)(z)| = O(|z|d) as |z| → ∞ (3.3)

for z ∈
m⋃

Ω(ri, αi + ε, βi − ε).

i=1
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Case 3.1. ni > 0. We note that

f (ni−1)(z) =
z∫

0

f (ni)(ζ)dζ + c,

where c is a constant, and the integral path is the segment of a straight line from 0 to z. From this and 

(3.3), it is easy to deduce |f (ni−1)(z)| = O(|z|d+1) for z ∈
m⋃
i=1

Ω(ri, αi + ε, βi − ε). Repeating the discussion 

ni times, we can obtain

|f(z)| = O(|z|d+ni) for z ∈
m⋃
i=1

Ω(ri, αi + ε, βi − ε).

Thus, we immediately have

Sαi+ε,βi−ε(r, f) = O(log r), i = 1, 2, · · · ,m. (3.4)

Case 3.2. ni < 0. For any angular domain Ω(α, β), we have

Sα,β(r, f (ni+1)) ≤ Sα,β

(
r,
f (ni+1)

f (ni)

)
+ Sα,β(r, f (ni)).

Thus, we obtain from (3.3) and Lemma 2.4 that

Sαi+ε′,βi−ε′(r, f (ni+1)) = O(log r)

for |ni|ε′ = ε. Repeating the discussion |ni| times, we also obtain

Sαi+ε,βi−ε(r, f) = O(log r) (3.5)

By Lemma 2.5, there exists two constants M > 0 and K > 0 such that

∣∣∣∣f (s)(z)
f(z)

∣∣∣∣ ≤ KrM (s = 1, 2, · · · , n) (3.6)

for all z ∈
m⋃
i=1

Ω(αi + 2ε, βi − 2ε) outside a R-set H.

It follows from (2.5) and (2.6) that there exists a subsequence {rn}(rn 
∈ E1) with lim
n→∞

rn = ∞ satisfying

F (rn) =
{
θ ∈ [0, 2π) |A(rneiθ)| ≤ exp(−r

ρ(A)−ε
n ),

[M(rn, B)]k < |B(rneiθ)|

}
,

and mesF (rn) = mesF (r) ≥ mesFj0(r) = 2π
n+2 > 0, which means that

mesF (rn) = mes
{
θ ∈ [0, 2π) |A(rneiθ) ≤ exp(−r

ρ(A)−ε
n ),

[M(r ,B)]k < |B(r eiθ)|

}
≥ 2π

n + 2 = σ. (3.7)

n n
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Next, we assert that the intersection of F (rn) and 
⋃m

i=1 I
∗
i is non-empty, where I∗i = (αi + 2ε, βi − 2ε). 

By 
⋃m

i=1 Ii ⊂ Φ, it is easy to have that

mes
(
F (rn)

⋂(
m⋃
i=1

Ii

))
= mes

(
Φ
⋂

F (rn)
)
− mes

((
Φ \

m⋃
i=1

Ii

)⋂
F (rn)

)

≥ mes
(
F (rn) \

(
E(f)

⋂
F (rn)

))
− mes

(
Φ \

m⋃
i=1

Ii

)
.

(3.1) and (3.7) yield that

mes
(
F (rn)

⋂(
m⋃
i=1

Ii

))
≥ mesF (rn) − mesE(f) − mes

(
Φ \

m⋃
i=1

Ii

)

= σ − mesE(f) − mes
(

Φ \
m⋃
i=1

Ii

)
≥ 3

4 t > 0.

On the other hand,

mes
(

m⋃
i=1

I∗i

)
≥ mes

(
m⋃
i=1

Ii

)
− 2εm. (3.8)

If we take ε sufficiently small, we can conclude that

mes
(
F (rn) ∩

m⋃
i=1

I∗i

)
≥ 3

8 t.

Thus, there must exist an open interval I∗k of all I∗i such that F (rn) ∩ I∗k 
= ∅ as ε → 0 and for infinitely 
many n,

mes(F (rn) ∩ I∗k) > 3t
8m > 0.

According to (1.1), (3.6) and (3.7), for any θ ∈ F (rn) ∩ I∗k , we have

[M(rn, B)]k < |B(rneiθ)| ≤ O(rMn )
(
1 + exp(−rρ(A)−ε

n )
)

as rn(
∈ (E1 ∪ H)) → ∞. This contradicts the assumption that B(z) is a transcendental entire function. 
Thus the proof of Theorem 1.5 is completed. �
4. Proof of Theorem 1.8

Proof. We firstly prove that every non-trivial solution f to equation (1.1) satisfies μ(f) = ∞. By the 
assumptions of Theorem 1.8 and Remark 1.12, we obtain that p(A) ≥ 2. Similar to the proof of Lemma 2.8, 
there exists at least a sector of the n + 2 sectors, say Sj0 , 0 ≤ j0 ≤ n + 1 such that, for any θ ∈ Dj0 =
{arg z|z ∈ Sj0}, mesDj0 = 2π

n+2 . Thus, (2.1) and (2.2) hold for an arbitrarily small ε > 0 and θ ∈ Dj0 .
By the Proof of [17, Theorem 1.8], it is impossible that both A(z) and B(z) decay to zero exponentially 

in a common sector. Hence, B(z) blows up exponentially in Sj0 , that is, for any θ ∈ Dj0 ,
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lim
r→∞

log log |B(reiθ)|
log r = ρ(B) = n + 2

2 . (4.1)

Set

F0(r) =
{
θ ∈ [0, 2π) |A(reiθ)| ≤ exp(−rρ(A)−ε),

|B(reiθ)| ≥ exp(rρ(B)−ε)

}
, (4.2)

and so mesF0(r) = mesDj0 = 2π
n+2 > 0.

Thus, we obtain from (1.1), (2.8) and (4.2) that there exists a sequence of points z = reiθ such that, for 
all sufficient large r 
∈ E2 ∪ [0, 1] and for θ = arg z ∈ F0(r),

exp(rρ(B)−ε) ≤ |B(reiθ)| ≤ C(T (2r, f))4(1 + exp(−rρ(A)−ε))

≤ C(T (2r, f))4(1 + o(1))

where C > 0 is a constant. Thus, we get μ(f) = ∞.
We secondly prove mesE(f) ≥ 2π

n+2 . Suppose, contrary to the assertion, that mesE(f) < 2π
n+2 := σ, and 

so t := σ − mesE(f) > 0. Choose a sequence {rn} with lim
n→∞

rn = ∞ satisfying

F0(rn) =
{
θ ∈ [0, 2π) |A(rneiθ)| ≤ exp(−r

ρ(A)−ε
n ),

|B(rneiθ)| ≥ exp(rρ(B)−ε
n )

}
(4.3)

and so mesF0(rn) = mesF0(r) ≥ 2π
n+2 .

Similar to the proof of Theorem 1.5, we get that

mes
(
F0(rn) ∩

m⋃
i=1

I∗i

)
≥ 3

8 t,

for all sufficiently small ε. Thus, we obtain from (1.1), (3.6) and (4.3) that, for θ ∈ F0(rn) ∩ I∗i ,

exp(rρ(B)−ε
n ) ≤ |B(rneiθ)| ≤ O(rMn )

(
1 + exp(−rρ(A)−ε

n )
)

as rn(
∈ H) → ∞, a contradiction. Therefore, we have mesE(f) ≥ σ. �
5. Proof of Theorem 1.9

Proof. By Lemma 2.6, we obtain that

θj(A) = 2jπ − arg an
n + 2 and θk(B) = 2kπ − arg bm

m + 2 .

Suppose that Sj(A) = Ω(θj(A), θj+1(A)) and Sk(B) = Ω(θk(B), θk+1(B)), where j = 0, · · · , n + 1; k =
0, · · · , m +1. Since the number of accumulation rays of the zero sequence of A(z) is strictly less than n + 2, 
there exists a j0 ∈ {0, · · · , n + 1} such that A(z) decays to zero exponentially in Sj0(A).

We now discuss the following three cases.

Case 1. m = n.

Case 1.1. arg an = arg bm.
Obviously, θj(A) = θk(B). Then for θ ∈ (θj0(A), θj0+1(A)), A(z) and B(z) have two possible growth 

types on the ray arg z = θ:
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Type a. A(reiθ) satisfies (2.1) and B(reiθ) satisfies (4.1).
Type b. A(reiθ) satisfies (2.1) and B(reiθ) satisfies

lim
r→∞

log log |B(reiθ)|−1

log r = ρ(B) = n + 2
2 . (5.1)

We now assert that A(reiθ) and B(reiθ) just satisfy Type a in Sj0(A). Otherwise, suppose that |f ′′(z)| is 
unbounded on the ray arg z = θ. Using [15, Lemma 3.1], there exists an infinite sequence of points zl = rle

iθ

tending to infinity such that f ′′(zl) → ∞ and

∣∣∣∣f (s)(zl)
f ′′(zl)

∣∣∣∣ ≤ 1
(2 − s)! (1 + o(1))|zl|2−s, s = 0, 1,

as l → ∞. It follows from (1.1) and Type b that

1 ≤ |A(zl)|
∣∣∣∣ f ′(zl)
f ′′(zl)

∣∣∣∣ + |B(zl)|
∣∣∣∣ f(zl)
f ′′(zl)

∣∣∣∣
≤ (1 + o(1))|zl|2 exp{−r

n+2
2 −ε

l } → 0, as l → ∞.

This contradiction implies that |f ′′(z)| is bounded on the ray arg z = θ. Therefore, |f(z)| ≤ M |z|2 on the ray 
arg z = θ, where M is a positive constant. Furthermore, |f(z)| ≤ M |z|2 for z ∈ C by the Phragmén-Lindelöf 
principle, contradicting to the fact that f is transcendental.

Based on Type a, we set

F0(r) =
{
θ ∈ [0, 2π) |A(reiθ)| ≤ exp(−rρ(A)−ε),

|B(reiθ)| ≥ exp(rρ(B)−ε)

}
, (5.2)

and so mesF0(r) ≥ mesDj0 = 2π
n+2 . It follows from (1.1), (2.8) and (5.2) that there exists a sequence of 

points z = reiθ such that for θ ∈ F0(r) and for all sufficient large |z| = r 
∈ E2 ∪ [0, 1], we have

exp(r
n+2

2 −ε) ≤ |B(z)| ≤ C(T (2r, f))4(1 + exp(−r
n+2

2 −ε))

≤ C(T (2r, f))4(1 + o(1))

where C > 0 is a constant. Thus, we obtain μ(f) = ∞.
The remainder is trivial by similar reasoning as in the proof of Theorem 1.8.

Subcase 1.2. arg an 
= arg bm.
Without loss of generality, we assume that arg an > arg bm. For z ∈ Sj0(A), we set

Ω1 = Sj0(A) ∩ Sj0(B) = {z : θj0(B) < arg z < θj0+1(A)},

and

Ω2 = Sj0(A) \ Sj0(B) = {z : θj0(A) < arg z < θj0(B)}.

Obviously, A(z) and B(z) satisfy one of Type a and Type b on the ray arg z = θ ∈ (θj0(B), θj0+1(A)).
If A(reiθ) and B(reiθ) satisfy Type a in Ω1, it means that B(reiθ) blows up exponentially in Sj0(B). 

According to Lemma 2.6, A(z) and B(z) also have two possible growth types in Ω2. One is that A(z) and 
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B(z) satisfy Type a in Ω2, another is that A(z) and B(z) satisfy Type b in Ω2. However, from the proof of 
Subcase 1.1, we know that A(z) and B(z) only satisfy Type a in Ω2.

If A(reiθ) and B(reiθ) satisfy the growth Type b in Ω1, it is impossible by the proof of Subcase 1.1.
Hence, A(reiθ) and B(reiθ) satisfy Type a in Sj0(A). Using the method of the proof of Subcase 1.1, we 

again obtain μ(f) = ∞ and mesE(f) ≥ n+2
2 .

Case 2. m < n.
For z ∈ Sj0(A), we split our proof into two subcases.

Subcase 2.1. For j0, there exists a k0 (k0 = 0, · · · , m + 1) such that Sj0(A) ⊂ Sk0(B). Similar to Subcase 
1.1, A(reiθ) and B(reiθ) satisfy Type a in Sj0(A).

Subcase 2.2. For j0, there exists a k0 (k0 = 0, · · · , m + 1) such that Sj0(A) is not a subset of Sk0(B) and 
Sj0(A) ∩ Sk0(B) 
= ∅. Let

Ω1 = Sj0(A) ∩ Sk0(B) and Ω2 = Sj0(A) \ Sk0(B).

We now divide Sj0(A) into Ω1 and Ω2. Similar to Subcase 1.2, we obtain A(reiθ) and B(reiθ) satisfy Type 
a in Sj0(A).

Similar to Case 1, we also have μ(f) = ∞ and mesE(f) ≥ n+2
2 .

Case 3. m > n.
For z ∈ Sj0(A), we again split our proof into two subcases.

Subcase 3.1. For j0, there exists a k0 (k0 = 0, · · · , m + 1) such that Sj0(A) ⊃ Sk0(B). We divide Sj0(A)
into Sk0(B) and Sj0(A) \Sk0(B). In Sk0(B), either A(z) and B(z) both decay to zero exponentially or A(z)
decays to zero exponentially and B(z) blows up. It is easy to know that A(z) decays to zero exponentially 
and B(z) blows up in Sk0(B). Similar to the above, we get A(z) decays to zero exponentially and B(z)
blows up in Sj0(A) \ Sk0(B).

Subcase 3.2. For j0, there exists a k0 (k0 = 0, · · · , m + 1) such that Sk0(B) is not a subset of Sj0(A) and 
Sj0(A) ∩ Sk0(B) 
= ∅. Similarly, we divide Sj0(A) into two sectors. Then A(z) decays to zero exponentially 
and B(z) blows up in Sj0(A).

Similar to Case 1, we again have μ(f) = ∞ and mesE(f) ≥ n+2
2 . �

6. Proof of Theorem 1.10

Proof. Let f be a non-trivial solution to equation (1.1). Since the number of accumulation lines of zero 
sequence of A(z) is strictly less than n + 2, there exists at least a sector Sj0(0 ≤ j0 ≤ n + 1) such that, for 
any θ ∈ Dj0 = {arg z|z ∈ Sj0}, mesDj0 = 2π

n+2 . Thus, (2.1) and (2.2) hold for an arbitrarily small ε > 0 and 
θ ∈ Dj0 .

Since B(z) is a transcendental entire function with a multiply-connected Fatou component, we obtain 
from Lemma 2.12 that, for 0 < β < 1 and r ∈ H1 =

⋃∞
n=1{r : rn < r < Rn},

M(r,B)β ≤ L(r,B) ≤ |B(reiθ)| (6.1)

Thus, it follows from (1.1), (2.2), (2.8) and (6.1) that

M(r,B)β < |B(reiθ)| ≤ C(T (2r, f))4
(
1 + exp(−rρ(A)−ε)

)
(6.2)
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for large r ∈ H2 \ (E1 ∪ [0, 1]) and θ ∈ Dj0 . Thus, we obtain from (2.10) and (6.2) that μ(f) = ∞.
Set

Fj0(r) =
{
θ ∈ Dj0

|A(reiθ)| ≤ exp(−rρ(A)−ε),
[M(r,B)]β < |B(reiθ)|

}

as r(∈ H1) → ∞, and

F (r) =
⋃

j0∈{0,1,...,n+1}
Fj0(r)

=
{
θ ∈ [0, 2π) |A(reiθ)| ≤ exp(−rρ(A)−ε),

[M(r,B)]β < |B(reiθ)|

} (6.3)

as r(∈ H1) → ∞. Then we get that mesF (r) ≥ mesFj0(r) = 2π
n+2 . The remainder is similar to the proof of 

Theorem 1.5, for θ ∈ F (r) ∩ I∗i , we obtain from (1.1), (3.6) and (6.3) that

[M(r,B)]β < |B(reiθ)| ≤ O(rM )
(
1 + exp(−rρ(A)−ε)

)
as r(∈ H1 \H) → ∞, contradicting to the assumption that B(z) is a transcendental entire function. Hence, 
Theorem 1.10 is arrived. �
7. Proof of Theorem 1.11

Proof. Since the number of accumulation lines of zero sequence of B(z) equals to n +2, we know that B(z)
blows up exponentially in every sector Sj(0 ≤ j ≤ n + 1) by Remark 2.7, and (4.1) holds for any θ ∈ S ={

arg z|z ∈
⋃n+1

j=0 Sj

}
. Furthermore, there exists an arbitrarily small ε > 0 such that, for z ∈

⋃n+1
j=0 Sj ,

|B(reiθ)| ≥ exp(rρ(B)−ε). (7.1)

(1) If c ∈ C is a Borel exceptional value of A(z), then

A(z) − c = g(z)eQ(z), (7.2)

with Q(z) = bmzm + · · · + b0 (bm 
= 0) and ρ(g) < ρ(A) = degQ(z). By Lemma 2.9 and Remark 2.10, we 
set, for q = 0, 1, . . . , 2m − 1,

Dq(Q, θ) =
{
θ : −arg bm

m
+ (2q − 1)π

2m < θ < −arg bm
m

+ (2q + 1)π
2m

}
.

Obviously,

mesDq(Q, θ) = π

m
,

and, for any 0 ≤ q1 
= q2 ≤ 2m − 1,

Dq1(Q, θ) ∩Dq2(Q, θ) = ∅.

Since ρ(g) < ρ(A) = m, it follows from (7.2) and Lemma 2.9 that

|A(z) − c| ≤ exp{(1 − ε)δ(Q, θ)rm} (7.3)
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as |z| → ∞ for θ ∈ Dq(Q, θ) \H2 with odd q and zero linear measure set H2 ⊂ [0, 2π).
According to Remark 2.10, Dq(Q, θ) with odd q have m open intervals. Thus, there exists a sector Sk

such that θ ∈ Sk ∩ Dq(Q, θ) \ H2 with odd q, we still have (7.1) holds. It follows from (1.1), (2.8), (7.1)
and (7.3) that there exists a sequence z = reiθ such that for θ ∈ Sk ∩Dq(Q, θ) \H2 with odd q, and for all 
sufficient large r 
∈ E2 ∪ [0, 1], we have

exp(rρ(B)−ε) ≤
∣∣∣∣f ′′(z)
f(z)

∣∣∣∣ + |(A(z) − c) + c|
∣∣∣∣f ′(z)
f(z)

∣∣∣∣
≤ C(T (2r, f))4

(
exp{(1 − ε)δ(Q, θ)rd} + c + 1

)
≤ C(T (2r, f))4(1 + c + o(1)).

Therefore, every non-trivial solution to (1.1) satisfies μ(f) = ∞.
We then affirm that the union of such Dq(Q, θ) is contained in E(f) and mesE(f) ≥ π. Otherwise, there 

must exists a Dq0(Q, θ) 
⊆ E(f) with odd q0. By [26, Lemma 2.5], there exists an interval (α, β) ⊆ Dq0(Q, θ)
such that

∣∣∣∣f (s)(z)
f(z)

∣∣∣∣ ≤ KrM (s = 1, 2) (7.4)

for all z ∈ Ω(α, β) with |z| = r 
∈ E3, where mesE3 < ∞ and K, M are positive constants. Substituting 
(7.1), (7.3) and (7.4) into (1.1), we obtain that, for θ ∈ (α, β) and sufficiently large r 
∈ H2 ∪ E3,

exp(rρ(B)−ε) ≤ |B(z)| ≤ KrM
(
1 + |c| + exp{(1 − ε)δ(Q, θ)rd}

)
,

which is impossible since δ(Q, θ) < 0.
(2) Since A(z) has a finite deficient value a, we obtain from Lemma 2.11 that there exists an increasing 

and unbounded sequence {rk} such that

mesD(rk) ≥ σ − t/4,

where D(r) = {θ ∈ [−π, π) : log |A(reiθ) − a| < 1} for all rk 
∈ {|z| : z ∈ H3} with a R-set H3.
Obviously,

|A(rkeiθ)| ≤ e + |a| (7.5)

for θ ∈ D(rk).
Thus, we have from (1.1), (2.8), (7.1) and (7.5) that

exp(rρ(B)−ε
k′ ) ≤

∣∣∣∣f ′′(rk′eiθ)
f(rk′eiθ)

∣∣∣∣ + |A(rk′eiθ)|
∣∣∣∣f ′(rk′eiθ)
f(rk′eiθ)

∣∣∣∣ ≤ C(T (2rk′ , f))4(1 + e + |a|)

for all sufficient large rk′(∈ {rk}) 
∈ E2 ∪ [0, 1] and for θ ∈ D(rk′) ∩ S(rk′). Therefore, we obtain μ(f) = ∞.
Next, we assume that

mesE(f) < σ := min
{

2π, 4
μ(A) arcsin

√
δ(a,A)

2

}
,

then t = σ−mesE(f) > 0. Similarly as in the proof of Theorem 1.5, we denote F2(rk) = D(rk) ∩S(rk) and 
so
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mesF2(rk) = mes
{
θ ∈ [−π, π)

|A(rkeiθ)| ≤ e + |a|,
|B(rkeiθ)| ≥ exp(rρ(B)−ε

k )

}
≥ σ − t

4 . (7.6)

Clearly,

mes
((

m⋃
i=1

Ii

)⋂
F2(rk)

)
= mes

(
Φ
⋂

F2(rk)
)
− mes

((
Φ \

m⋃
i=1

Ii

)⋂
F2(rk)

)

= mesF2(rk) − mesE(f) − mes
(

Φ \
m⋃
i=1

Ii

)

≥ σ − t

4 − mesE(f) − t

4 = t

2 .

According to (3.8), we have

mes
(
F2(rk) ∩

m⋃
i=1

(I∗i )
)

≥ t

4 .

Furthermore, there exists an open interval I∗i such that for infinitely many k,

mes(F2(rk) ∩ I∗i ) > t

4m > 0.

Hence, we obtain from (1.1), (3.6) and (7.6) that

exp(rρ(B)−ε
k ) ≤ |B(rkeiθ)| ≤ O(rMk )(1 + |a| + e)

for θ ∈ F2(rk) ∩ I∗i , a contradiction. Thus, we have mesE(f) ≥ σ. �
8. Proof of Theorem 1.14

Proof. Since the number of accumulation rays of the zero sequence of A(z) is strictly less than n + 2, there 
exists a j0 ∈ {0, · · · , n + 1} such that A(z) decays to zero exponentially in Sj0 and (2.1) holds.

(1) n + 2 < 2m.
We affirm that there exists an odd number k0 (k0 = 1, 3, · · · , 2m − 1) such that δ(Q, θ) < 0 and 

Sk0(Q, θ) ∩ Sj0 is a non-empty open interval. Otherwise, there exists an even number k′ such that Sj0

contained in Sk′(Q, θ). Since

mesSj0 = 2π
n + 2 and mesSk′(Q, θ) = π

m
,

we have 2π
n+2 < π

m , contradicting to n + 2 < 2m.
(2) n + 2 = 2m and arg an − 2 arg bm 
= (2s + 1)π, s ∈ Z.
We also affirm that there exists an odd number k0 (k0 = 1, 3, · · · , 2m − 1) such that δ(Q, θ) < 0 and 

Sk0(Q, θ) ∩ Sj0 is a non-empty open interval. Otherwise, there must exist an even number k1 such that 
Sj0 = Sk1(Q, θ). Since n + 2 = 2m, then

θj0 = 2j0π − arg an
n + 2 and θ′k1

= −arg bm
m

+ (2k1 − 1)π
2m .

This implies that θj0 = θ′k , and so arg an − 2 arg bm = [2(j0 − k1) + 1]π, a contradiction.

1
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From above two cases, there exists θ1, θ2 ∈ Sk0(Q, θ) ∩ Sj0 satisfying θ1 < θ2 such that δ(Q, θ) < 0 for 
θ ∈ (θ1, θ2) and A(reiθ) and B(reiθ) decay to zero exponentially. By the Phragmén-Lindelöf principle, we 
know |A(z)| and |B(z)| are bounded for all z ∈ Ω(θ1, θ2). Therefore,

max{|A(z)|, |B(z)|} < M for all z ∈ Ω(θ1, θ2),

where M > 0 is a constant.
For n ≤ 0, we obtain from (1.1) that g(z) = f (n)(z) must satisfy equation

g(m) + A(z)g(m−1) + B(z)g(m−2) = 0, (8.1)

where m = −n + 2. Set h(r) = g(reiθ), and so h(k)(r) = ekiθg(k)(reiθ) for k ∈ N. Then

h(m) + A(reiθ)eiθh(m−1) + B(reiθ)e2iθh(m−2) = 0. (8.2)

Define V (r) = exp(2Mr). Then V (r) satisfies the equation

V (m) −MV (m−1) − 2M2V (m−2) = 0. (8.3)

Set

M0 = max{1, |g(0)|, |2M |−j |g(j)(0)|, j = 1, 2, · · · ,m}.

Then

|g(0)| ≤ M0V (0), |g(j)(0)| ≤ M0V
(j)(0)(1, 2, · · · ,m).

We obtain from (8.1), (8.2) and [5, Satz 1] that

|g(reiθ)| = |h(r)| ≤ M0V (r) = M0 exp(2Mr)

for all θ ∈ [θ1, θ2]. Thus,

log+ |f (n)(reiθ)| ≤ Kr, z ∈ Ω(θ1, θ2),

where K > 0 is a constant. Since f(z) is entire, so for n ≤ 0, we have

Sθ1,θ2(r, f (n)) = O(r). (8.4)

For n > 0, we obtain from (8.4) and Lemma 2.4 that, for ε > 0,

Sθ1+ε,θ2−ε(r, f (n)) = O(r) (8.5)

for r 
∈ E4, E4 is a set of finite linear measure.
We now assume that g = f (n) has a Baker wandering domain, and so J (g) only has bounded component. 

It follows from Lemma 2.11 that there exists d (0 < d < 1) such that

|g(z)| ≥ M(r, g)d, r ∈ H0,

where H0 is a set of infinite logarithmic measure. Thus,



J.-L. Lin et al. / J. Math. Anal. Appl. 536 (2024) 128204 19
Sα,β(r, g) ≥ Bα,β(r, g) 2ω
πrω

β∫
α

log+ |g(reiθ)| sinω(θ − α)dθ

≥ 2ω
πrω

β∫
α

d log+ M(r, g) 2
π
ω(θ − α)dθ

= 2d
rω

logM(r, g), r ∈ H0 \ E4,

where α = θ1 + ε, β = θ2 − ε, and ω = π/(θ1 − θ2 − 2ε) for n > 0, while α = θ1, β = θ2, and ω = π/(θ1 − θ2)
for n ≤ 0. Combining this with (8.4) and (8.5), we obtain

logM(r, g) ≤ rω

2dSα,β(r, g) = rω

2dSα,β(r, f (n)) = O(r1+ω), r ∈ H0 \ E4,

which implies μ(g) < ∞.
Similarly, there exists an even number k′ such that Sk′(Q, θ) ∩Sj0 is not empty open interval. We obtain 

from (1.1), (2.1) and (2.8) that

exp{(1 − ε)δ(Q, θ)rm} <

∣∣∣∣f ′′(z)
f(z)

∣∣∣∣ + |A(z)|
∣∣∣∣f ′(z)
f(z)

∣∣∣∣
≤ C(T (2r, f))4(1 + exp(−r

n+2
2 −ε)

≤ C(T (2r, f))4(1 + o(1))

for all z ∈ Sk′(Q, θ) ∩ Sj0 and for sufficient large |z| = r 
∈ E2 ∪ [0, 1], where E2 is a set of finite measure. 
Thus we obtain μ(f) = ∞, contradicting to μ(f) = μ(f (n)) = μ(g) < ∞ for all n ∈ Z. Therefore, g = f (n)

has no Baker wandering domain. �
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