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Abstract Although previous studies reported altered topolo-
gy of brain functional networks in patients with Parkinson’s
disease (PD), the modular organization of brain functional
networks in PD patients remains largely unknown. Using the
resting-state functional MRI (R-fMRI) and graph theory, we
examined the modular organization of brain functional net-
works in 32 unmedicated patients with early-to-mid motor
stage PD and 31 healthy controls. Compared to the controls,
the PD patients tended to show decreased integrity and segre-
gation, both within and between modules. This was inferred
by significantly increased intra-modular characteristic path
length (Lp) within four modules: mPFC, SN, SMN, and
FPN, decreased inter-modular functional connectivity (FC)

between mPFC and SN, SMN, and VN, and decreased intra-
modular clustering in the PD patients. Intra-modular charac-
teristic path length within the mPFC showed significantly
positive correlation with general cognitive ability in the PD
group. Receiver operating characteristic (ROC) analysis re-
vealed that FC between mPFC and SN had the highest signif-
icant accuracy in differentiating the patients from the controls.
Our findings may provide new insight in understanding the
pathological changes that underlie impairment in cognition
and movement in Parkinson’s disease.

Keywords Modularity . Graph theory .Medial prefrontal
cortex (mPFC) . Salience network (SN)

Highlights
• Characterized altered modular organization in PD patients at early-to-
mid clinical motor stages.

• PD patients showed increased intra-modular path length in mPFC, SN,
FPN, and SMN.

• Characteristic path length changed when confronted with ‘module lesion’
• Inter-modular functional connectivity between mPFC and SN can differ-
entiate PD patients from controls.
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Abbreviation
mPFC Medial prefrontal cortex
SN Salience network
FPN Fronto-parietal network
SMN Somatomotor network
VN Visual network
pCER Posterior cerebellum
DMN Default mode network

Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder characterized by a variety of motor and non-motor
abnormalities, affecting motor behaviors, executive function,
episodic memory, attention, and mood (Pont-Sunyer et al.
2014). PD is caused by a significant reduction of dopaminer-
gic cells in the substantia nigra pars compacta (Fearnley and
Lees 1991) which leads to dopamine deficiency in mesence-
phalic structures and the basal ganglia, and finally affects the
neocortex as evident from neuropathologic studies (Hawkes
et al. 2009; Braak et al. 2003; Jucker and Walker 2013). Such
wide spread dysfunction also affects functional connectivity
(FC) between brain regions, as found in numerous PD-related
resting-state BOLD fMRI (R-fMRI) studies demonstrating
abnormal functional interactions within the cortico-striato-
thalamic-cortical loop (Helmich et al. 2010; Göttlich et al.
2013; Kurani et al. 2015). Recently, a growing body of recent
R-fMRI studies using complex network measures have shown
that PD may induce abnormal topology in brain functional
networks. The networks affected include those within the tri-
ple network model - the default mode network (DMN), the
salience network (SN) and the executive/fronto-parietal net-
work (FPN)- as well as others including motor and visual
networks (Skidmore et al. 2011; Baggio et al. 2014;
Lebedev et al. 2014; Luo et al. 2015; Tinaz et al. 2015;
Putcha et al. 2015; Gorges et al. 2015). These findings suggest
that the effects of PD may not be limited to striatal network-
related dysfunction, and that a systematic characterization of
whole-brain functional networks may provide useful new in-
sights into PD.

Whole-brain functional networks can be characterized in
terms of fundamental principles of topological organization,
including the characteristic of modularity (Bullmore and
Sporns 2009; Bullmore and Bassett 2011). Modularity can
be briefly described as dividing the whole- brain functional
networks into a set of modules, each module consisting of
nodes with dense intra-modular connectivity and relatively
sparse inter-modular connectivity with nodes in other mod-
ules. Commonly used topological measures are described in
Table 2, including the clustering coefficient (prevalence of
clustered connectivity around individual nodes, a measure of
segregation) and characteristic path length (mean connectivity

weight between nodes, a measure of integration). Usually,
modules have the topological property of small-worldness,
defined as high clustering within modules and sparse but di-
rect connections between modules. Small-worldness is advan-
tageous for the nervous system, because densely intra-
connected brain regions (high clustering) within the same
module can support effective segregated processing for spe-
cialized functions (i.e. motor functions), while sparsely but
directly inter-connected brain regions (short characteristic
path length) distributed across modules can support effective
globally integrated processing underlying more general func-
tions (i.e. executive functions) Sporns and Zwi (2004)These
topological parameters are also useful for characterizing mod-
ules whose topological properties are not be fully represented
bywhole-brain measures of topological organization (He et al.
2009). In addition, topological measures such as nodal
strength and participation coefficient (Bullmore and Bassett
2011) can provide additional information about intra- and
inter- modular connectivity at the nodal level.

Neural topological organization may be impaired by neu-
rological diseases (Vaessen et al. 2013; Alexander-Bloch et al.
2010; Dubbelink et al. 2013). For example, Dubbelink et al.
(2013) showed that brain networks in Alzheimer’s disease
patients were more randomly organized than in controls. In
addition, lower intra-modular and inter-modular FC has been
reported in Alzheimer’s disease (de Haan et al. 2012; Dai et al.
2014), providing better understanding of the underlying path-
ophysiological mechanisms (Dubbelink et al. 2013).

Parkinson’s disease may also distort functional networks.
Decreased global and local efficiency (Skidmore et al. 2011;
Göttlich et al. 2013; Luo et al. 2015), changed nodal degree
(Göttlich et al. 2013), and re-distributed nodal centralities
(hubs) (Baggio et al. 2014) have been reported in PD patients
compared to controls. A significantly increased modularity
index in PD patients with mild cognitive impairment has also
been reported (Baggio et al. 2014; Lebedev et al. 2014).
Moreover, two studies (Baggio et al. 2014; Putcha et al.
2015) selected three core modules - DMN, SN, and FPN - to
explore their intra- and inter-modular FCs. They found that
PD patients showed reduced FC within DMN and SN, and
between SN and the other two modules: DMN and FPN. In
addition, another study reported lower FC within the sensori-
motor network in PD patients (Luo et al. 2015). However,
most of previous module-related studies were limited to iden-
tification of modules containing abnormal regions (Göttlich
et al. 2013; Lebedev et al. 2014) or to simply estimating the
number of modules (Baggio et al. 2014). Although altered
inter-modular FCs were found between certain modules in
PD patients, little is known about how the disease affects other
inter-modular interactions during the resting state. No studies
have reported intra-modular topological organization in PD
patients and little is known about how the severity of damage
to each module is ordered in PD patients.
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In this study, we examined the topological organization of
brain functional networks in PD patients and healthy controls,
across global, intermediate modular and nodal levels of anal-
ysis, by using R-fMRI and graph theory.We first identified the
modules present in whole-brain functional networks in PD
and controls. We then examined if intra-modular topology
and inter-modular functional connections were altered in
early-to-mid stage PD patients off medication, and if
module-based topological parameters could provide a poten-
tial biomarker for PD identification.

Materials and methods

Subjects

Thirty-six idiopathic PD patients were recruited in this study.
All of the patients were diagnosed by two experienced neu-
rologists (LW and YZ) who have more than 10 years of diag-
nostic experience in movement disorders. Diagnosis was ac-
cording to the clinical diagnostic criteria of the UK
Parkinson’s Disease Society Brain Bank. For each patient,
the severity of clinical motor symptoms was assessed accord-
ing to the Hoehn andYahr (H-Y) scale (Hoehn and Yahr 1998)
and the Unified Parkinson’s Disease Rating Scale III (UPDRS
III). The inclusion criterion for the PD patients was early-to-
mid clinical motor stage (an H-Y stage I or II). The exclusion
criteria were as follows: (a) atypical PD syndromes due to
drugs or metabolic disorders, encephalitis, or other disease
showing similar initial symptoms (i.e., multiple system atro-
phy and progressive supranuclear palsy); (b) presence of de-
mentia as determined by the clinical evaluation; (c) history of
significant neurological disorder or substance abuse or brain
injury; and (d)MRI findings of severe abnormalities or lesions
including intracranial space-occupying lesions, such as tu-
mors, parasites, or vascular malformations. The diagnostic
period for the PD patients was from November 2011 to June
2013 in the Guangdong General Hospital in Guangzhou. For
each patient, in order to minimize the impact of antiparkinson
medication and induce a relatively hypodopaminergic state
(that is, off state), antiparkinson medications had not been
taken within 24 h prior to the MRI scanning. Four PD patients
were excluded due to excessive head motion (three), failure of
normalization (one subject due to abnormal prefrontal mor-
phology) or falling asleep (zero) during the fMRI scan. Thus,
thirty-two PD patients (13 M/19 F, age = 59.3 ± 10.3 years
old) were retained for the following analysis. In addition, we
recruited thirty-one healthy subjects as the controls (12 M/
19 F, age = 61.9 ± 10.3 years old). No control subject had
any history of psychiatric or neurological disorder or brain
injury.

For all of the enrolled subjects, we assessed their general
cognitive ability by using the Chinese version of the Mini-

Mental State Examination (MMSE). Table 1 lists the demo-
graphic and clinical characteristics for all the subjects. The
protocol for the present study was approved by the
Institutional Review Board of the Guangdong General
Hospital. Written informed consent was obtained from the
healthy subjects and from the legal surrogates of the patients.

Image acquisition

All MRI data were acquired on a 3 T GE MRI scanner with a
standard 8-channel phased-array receiver-only head coil at the
Guangdong General Hospital. For each subject, we acquired
R-fMRI data with a gradient-echo EPI sequence (reception
time = 2000 ms, echo time = 30 ms, flip angle =80°, matrix
size =64 × 64, field of view =256 × 256 mm2, voxel size
=3.75 × 3.75 × 4 mm3, slice thickness/gap =4 mm/1 mm, 30
axial slices covering the whole brain, and 186 volumes).
During the R-fMRI scanning, each subject was asked to close
their eyes and to simply lie quietly in the scanner as motion-
less as possible. After completion of the fMRI scan, each
subject was requested to report whether he or she fell asleep
or not. We also acquired high-resolution brain structural im-
ages for each subject using a T1-weighted 3D rapid interfer-
ence phase gradient echo flip recovery pulse sequence (TR/
TE = 8.4/3.3 ms, FA = 13°, FOV = 240 × 240 mm2, matrix
size =256 × 256, slice thickness = 1 mm, voxel size
=0.94 × 0.94 × 1 mm3, and 146 sagittal slices covering the
whole-brain). The high resolution scan was also used to check
for brain structural anomalies, including atrophies, cysts, and
tumors, as described in the Subjects section, above.

Data preprocessing

Functional images were preprocessed using SPM8 (http://www.
fil.ion.ucl.ac.uk/spm). For each subject, we first discarded the
first 10 volumes, then performed slice timing correction for the

Table 1 Demographics and clinical characteristics of the patients with
Parkinson disease (PD) and the healthy controls (HC) in this study.
Abbreviations: MMSE - Mini-Mental State Examination; UPDRS III -
Unified Parkinson’s Disease Rating Scale III

Parameter PD (n = 32) HC (n = 31) p-value

Mean age (years old) 59.30 ± 10.30 61.90 ± 10.20 0.319 a

Gender 13 M/19 F 12 M /19F 0.877 b

MMSE 27.10 ± 2.64 28.52 ± 1.85 0.023 a

Disease duration (years) 3.30 ± 2.70 N/A N/A

Hoehn and Yahr (H-Y) score 2.13 ± 0.67 N/A N/A

UPDRS III 29.34 ± 10.68 N/A N/A

aThe p-value was obtained from a two-sample two-tailed t-test
bThe p-value was estimated obtained from a two-tailed Pearson’s χ2 -test

N/A not applicable

Brain Imaging and Behavior

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


remaining 176 volumes to account for the acquisition time delay
between different slices and realigned to the first volume for
head-motion correction. The images were normalized to the
MNI space using an optimized 12-parameter affine transforma-
tion and nonlinear deformations (Ashburner and Friston 2000).
Then we performed signal linear detrending, temporal band-pass
filtering (0.01–0.08 Hz), and removal of nuisance covariates
(signals of white matter and cerebrospinal fluid of whole-brain,
head-motion profiles). Although spatial smoothing is typically
performed in fMRI studies to increase signal-noise-ratio and to
improve signal normality, we skipped this step because it may
introduce spurious local connections that are unrelated to real
connectivity (Zuo et al. 2012). In this study, the global signal
was not regressed out due to controversy over the appropriate-
ness of this procedure for preprocessing R-fMRI data (Fox et al.
2009; Murphy et al. 2009).

Recent studies (Satterthwaite et al. 2012; Van Dijk et al.
2012; Power et al. 2015) have highlighted the influence of
head-motion on topological parameters of resting-state func-
tional network. In order to minimize the effects of head-
motion in the R-fMRI analysis as much as possible, we
adopted the following strategies. First, we excluded subjects
if their head motion was greater than a translation >2 mm in
any plane or rotation >2° in any direction as measured during
realignment. Second, we estimated several summary mea-
sures (maximum, root mean square, and mean frame-wise
displacement) from the head-motion profiles (3 translations
and 3 rotations) derived from realignment. Statistical compar-
ison showed no significant between-group difference in any of
these measures (p > 0.05). Third, in addition to the conven-
tional six-parameter head-motion correction realignment, we
also applied Friston’s 24-parameter approach (Friston et al.
1996) to remove head-motion effects from the time series of
each voxel. A previous study (Yan et al. 2013) found that this
is an efficient strategy for reducing the residual effects of
head-motion on network analysis. Finally, we took the sum-
mary measures of head-motion as covariates during statistical
comparisons.

Construction of weighted brain networks

Brain functional networks are defined as a collection of nodes
linked by edges where nodes correspond to brain regions and
edges to inter-nodal connections. To define the nodes, we
adopted a method developed by Zalesky et al. (2010) to ran-
domly divide the brain into 1,024 equal volume cortical and
sub-cortical regions (brain partition see Fig. S1 and Fig. S2).
Here we included the cerebellum as it may play a role in the
pathophysiology of PD (Wu and Hallett 2013). To measure
the inter-nodal connection, we first calculated Pearson’s cor-
relation coefficients between each pair of nodes and signifi-
cance level (i.e., p value) of a given inter-regional correlation.
Then we generated a weighted 1,024 × 1,024 correlation

matrix and the corresponding p value matrix for each subject.
To de-noise spurious correlations, we retained only those cor-
relations whose corresponding p values passed a statistical
threshold of p < 0.05 (Bonferroni correction); other wise, we
set the correlation to zero (Cruse et al. 2011). By taking the
remaining Pearson’s coefficients as edge weights, we obtained
a weighted 1024 × 1024 FC matrix, which was used to con-
duct the subsequent analysis for each subject. Additionally,
we discarded negative correlations due to ambiguities in their
interpretation and their detrimental effects on test-retest reli-
ability (Achard and Bullmore 2007; Wang et al. 2011).

Modular analysis

Identification and partitioning of modules

Functional network modules are defined as sets of nodes that
are densely linkedwith each other and less so with other nodes
in the network (that is, other modules). The modularity mea-
sure, Q, quantifies the difference between the weight of intra-
modular edges in the real network and that of random net-
works (Newman 2004). To maximize Q value resulting in
the best possible modular partitions, we used the spectral op-
timization algorithm proposed by Newman (2006) and report-
ed the maximized value of Q for the brain networks (for the
mathematical definition ofQ see Table 2). Higher values ofQ
indicate greater functional specialization of a brain network.

For both the PD patients and the controls, we estimated their
most representative group-levelmodular partitions. First, we only
retained a given edgeweight if it appeared in no less than 80%of
subjects. Then we averaged each edge weight across individuals
to obtain the group-averagedweighted FCmatrix for each group.
Second, based on this group-mean FC matrix, we used nonpara-
metric sparsification method (Foti et al. 2011) to extract two
backbone networks for each group. In this calculation, we select-
ed those locally significant edges which could not be explained
by randomvariations to form the backbone networks. Finally, the
two backbone networks were used to identify the modular parti-
tion that captured underlying common connectivity patterns for
all subjects in the present study.

Modular network parameters

For each subject, we analyzed PD-related alterations of modular
network organization on two-levels: module-level and node-lev-
el. At the module-level, we determined 1) intra-modular small-
world attributes within each module, including clustering coeffi-
cient (Cp), characteristic path length (Lp), normalized clustering
coefficient (γ), and normalized characteristic path length (λ); 2)
inter-modular FC strength by summarizing all inter-nodal FCs
across pairs of modules; and 3) the centrality of modules contrib-
uting to the whole-brain network. We adopted a two-step analy-
sis. First, for the quality analysis, we followed the method
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described in Achard et al. (2006) to explore the impact of an
isolated module attack on the whole brain network. For this
calculation, we eliminated each module (including all its nodes
and related connections) in turn, re-estimated the mean charac-
teristic path length in its absence, and estimated the percent
change in characteristic path length,ΔLp/Lp ((Lp after elimination
- Lp before elimination)/Lp before elimination). For a given mod-
ule, a higher absolute value of ΔLp/Lp likely reflects a greater
impact of that modular attack on the whole-brain network topol-
ogy. Second, for the quantitative analysis, we re-compared the
between-group differences in Cp and in Lp for the residual net-
works between the PD patients and the controls when each mod-
ule was removed one-by-one. At the node level, we calculated
two indices, normalized nodal strength (Kn

i ) and normalized
participation coefficient (PCn

i ), for all nodes to reflect their roles
in dominating intra-modular and coordinating inter-modular FC,
respectively (Guimera and Amaral 2005). Kn

i quantifies func-
tional connectivity strength of node i to other nodes within mod-
ule and PCn

i measures how ‘well-distributed’ the edges of node i
are among different modules. All of the parameters mentioned
above are listed in Table 2. Of note, all of the calculations were in
reference to the group-level module partition of the healthy con-
trols (see ‘Identification and partitioning of modules’).

Statistical analysis

We compared the modularity Q obtained from the real data
with that of 100 randomly-generated networks which were
created by a topological rewiring procedure (Sporns, 2011).

We defined η = (Q – Qrand)/Qstd, where Q is the modularity of
the real brain network, and Qrand (Qstd) is the mean (standard
deviation) of modularity over all randomized networks (Chen
et al. 2011b).

A nonparametric permutation test was applied to determine
the statistical significance of the between-group difference in
each of the modular network parameters (Q,Cp, Lp, λ, γ, inter-
modular FC,Kn

i , and PC
n
i ). For a given parameter, we initially

calculated the difference in its mean values between the PD
and control groups, and then estimated the null hypothesis that
the observed between-group difference could occur by
chance. To this end, we randomly reallocated all the values
of this parameter into two groups and recomputed the differ-
ence in the mean values between the two randomized groups.
This randomization procedure was repeated 10,000 times in
order to obtain an empirical distribution of the difference. The
95th percentile distribution was used as the critical value for a
two-tailed test of the null hypothesis with 5 % probability of
type-I error (or false positive). In the calculations, we
regressed out the effects of confounding factors, including
age, gender, age-gender interaction, and summary of head
motion. The false discovery rate (FDR) method (Benjamini
and Hochberg 1995) was used to correct for multiple compar-
isons when needed.

Brain-behavior correlations

A multiple linear regression analysis was used to assess the
relationship between each of the modular parameters and

Table 2 Formulas for topological parameters of a brain network. Their descriptions and definitions can also be found in Rubinov and Sporns (2010)

Modular parameter Definition Note

Modularity

Q ¼ 1
2m∑

ij
Aij−

kik j

2m

� �
δsis j

Here m is the total number of edges for a network. ki and kj are the
degrees of nodes i and j. Aij is the number of edges between nodes i
and j. kikj/2 m is the probability that there would be an edge between i
and j. δsis j is the Kronecker delta. Q quantifies the difference between
the weight of intra-modular links of the actual network and that of random
networks in which connections are weighted at random.

Clustering coefficient

Cp ¼ 1
N ∑

i∈N

∑
j;h∈N

wijwihwjh

� �1=3

ki ki−1ð Þ

For a weighted network or a module with N nodes, wij is the edge weight
between node i and j. ki is the degree of node i. Cp is the mean of the
clustering coefficient over all nodes and indicates the extent of local
interconnectivity or cliquishness in a network or a module.

Characteristic path length

Lp ¼ N N−1ð Þ∑
N

i¼1
∑
N

j≠i
1=lij

For a weighted network or a module with N nodes, lij is the weighted
characteristic path length between nodes i and j. Lp is the mean of the
characteristic path length over all nodes and indicates the extent of
overall routing efficiency of a network or a module.

Normalized nodal strength
Kn

i ¼ KSi= Nmod‐1ð Þ KSi is the weighted connections of node i to other nodes. Nmod is the

number of modules for each subject. Kn
i quantifies the extent of a

region’s connections within the same modules.

Normalized participation
coefficient PCn

i ¼ Nmod
Nmod−1ð Þ 1−∑S∈M k is=kið Þ2

h i M is the set of modules. Kis is the number of links of node i to other nodes
in module s. ki is the total weight of node i. Nmod is the number of
modules for each subject. PCn

i quantifies the extent of a region’s
connections to other modules.
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clinical variables (MMSE, H-Y, UPDRS III, and disease
duration) in the PD patients. Age, gender, age-gender interac-
tion, and the headmotion summary parameters were treated as
confounding factors.

ROC analysis

We plotted receiver operating characteristic (ROC) curves to
determine whether the modular network parameters might
serve as biomarkers for discriminating PD patients from con-
trols. An ROC curve is a graphical plot that illustrates the
performance of a binary classifier system as the discrimination
threshold is varied. The curve is created by plotting the true
positive rate (TPR) against the false positive rate (FPR) at
various threshold settings. The true-positive rate is known as
sensitivity in signal detection or in machine learning.
Detection is calculated by evaluating the significance of the
area under the ROC curve (AUC).

The procedure for generating ROC curves was as follows
(Chen et al. 2011a; Chen et al. 2013). We took each modular
network parameter as a one-dimensional feature and selected
different thresholds to categorize each subject into either the
PD group or the control group. At a given threshold, the TPR
(i.e., sensitivity) measures the fraction of subjects that were cor-
rectly identified as PD patients, and the true negative rate (i.e.,
specificity or 1-FPR) evaluates the fraction of subjects that were
correctly identified as healthy controls. A so-called ‘cut-off point’
was determined by simultaneously optimizing sensitivity and
specificity. All the steps were processed using publically avail-
able MATLAB code (http://www.mathworks.com/
matlabcentral/fileexchange/199500-roc-curve; Giuseppe
Cardillo). The accuracy, sensitivity (or true positive rate, TPR),
and specificity (or 1-false positive rate, 1-FPR) were reported.

Results

Demographic and neuropsychological information

Table 1 shows no significant differences either in gender
(p = 0.877) or in age (p = 0.320) between the PD patients
and the controls. The MMSE scores of PD patients were sig-
nificantly lower compared to the controls (p = 0.023). No
significant differences in head motion summary measures
were found between the PD patients and the controls
(Table S1 in supplementary materials).

Modular network organization

We estimated the topological parameters of the whole-brain
functional network for each subject in this study. As expected,
both groups exhibited high Q values compared with their cor-
responding 100 random networks (ηmin = 45.9, pPD < 10−10;

ηmin = 44.6, pcontrols < 10−10). No significant between-group
difference was found either in Q (p = 0.502) or in the small-
worldness σ (p = 0.790) (for statistics of global parameters in
the whole-brain networks see Table S2).

Figure 1 shows sevenmodules in the controls (Qgroup = 0.569,
η = 221.1) that were identified from the group-averaged FC
matrix, including the medial prefrontal cortex (mPFC), salience
network (SN), fronto-parietal network (FPN), somatomotor net-
work (SMN), visual network (VN), posterior cerebellum
(pCER), and default mode network (DMN). Of note, the borders
of this network were not identical to those identified as DMN in
other studies. The areas identified here were primarily
the posterior regions of the conventional DMN, and in
addition included a few regions located in cerebellum.
For the PD patients, we identified eightmodules (Qgroup = 0.565,
η = 191.5) which were quite similar to those in the controls
(normalized mutual information =0.63). The visual network
(depicted in blue in Fig. 1) identified in the controls
corresponded to two modules in the patients (depicted
in red and blue in Fig. 1), while the mPFC network
(depicted in purple in Fig. 1) occupied a larger area in
the patients.

We also calculated intra-modular topological parameters as
shown in Fig. 2a. Compared to the controls, the PD patients
exhibited a significantly increased characteristic path length
(Lp) within four modules: the mPFC (p = 0.020), salience
(p = 0.012), fronto-parietal (p = 0.028), and somatomotor
(p = 0.028) (FDR correction, q = 0.05) (Table S3). Cp was
significantly decreased in three modules, VN, SN, and
SMN (uncorrected), in PD compared with controls
(Table S3). None of the other three parameters(γ,λ,
and σ) showed significant between-group difference
within any of the modules.

We then calculated inter-modular FC as shown in Fig. 2b
and Table S4. We found significantly decreased inter-modular
FC between the mPFC and the other three modules, SN
(p = 0.001), SMN (p = 0.002), and VN (p = 0.004), in the
patients compared to the controls (FDR correction, q = 0.05).
In addition, we found the inter-modular FC between mPFC
and FPN, betweenmPFC and pCER, and between SN andVN
also were significantly decreased in the patients compared to
the controls (uncorrected) (Table S3).

Table 3 (first four columns) shows the relative change in
characteristic path length (Lp) for both groups. The ΔLp was
the difference in Lp between the whole-brain functional net-
work and the residual networks after a module being removed.
For each group, the percentage change in (ΔLp/Lp) was esti-
mated after individually eliminating each module as described
in the Method section and by Achard et al. (2006).
Disregarding the direction of change, for the controls, the
most central modules in descending order were DMN, SN,
pCER, SMN, mPFC, FPN, and VN (ΔLp/Lp was −0.017,
−0.010, −0.009, 0.007, −0.006, −0.001, and −0.0001,
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respectively). Whereas for the PD patients, this order was
slightly different: SN, DMN, mPFC, pCER, VN, FPN, and
SMN (ΔLp/Lp was −0.014, −0.008, −0.007, −0.003, −0.003,
0.001, and 0.002, respectively).

Figure 3 shows the between-group difference in character-
istic path length in residual brain networks contrasted to the
whole-brain networks. In the whole-brain networks, we found
that compared to the controls, the PD patients showed signif-
icantly decreased clustering coefficient (p = 0.026) and in-
creased characteristic path length (p = 0.037). When any mod-
ule was removed from the whole-brain networks, in each of
the residual networks, the PD patients still showed significant-
ly decreased clustering coefficients (FDR correction, q = 0.05)
but conserved characteristic path length (FDR correction,
q = 0.05) compared to the controls (see latter six columns in
Table 3).

Figure 4 shows the PD-related alterations in the nodal roles
in terms of the intra- and inter-modular FC, as indexed by
normalized strength Kn

i and PCn
i , respectively. Figure 4a

shows that the PD patients had significantly altered Kn
i in a

total of 544 nodes compared to the controls (FDR correction,
q = 0.05). Among these nodes, 518 (accounting for 518/
544 = 95.2 % of 544 nodes) showed significantly decreased
Kn

i in the patients, which were unevenly distributed in five
modules, DMN (223/544 or 41.0 %), SN (214/544 or
39.3 %), FPN (52/544 or 13.2 %), VN (23/544 or 4.2 %),
and SMN (6/544 or 1.1 %). The remaining 26 nodes (less than
5 % of 544 nodes) showed significantly increased Kn

i in the
patients and were located in both the mPFC (6/544 or 1.1 %)
and FPN (20/544 or 3.7 %). As for PCn

i , we found 7 nodes,
located in DMN, showed uniformly significantly increased P
Cn

i in the PD patients compared to the controls (Fig. 4b).

Fig. 2 Intra-modular small-world attributes and inter-modular functional
connectivity (FC) for both the PD patients and the healthy controls. a
Within four modules, mPFC, SN, FPN, and SMN. Lp showed significant
between-group difference (* FDR correction, q = 0.05). b FC between
pairs of modules. The PD patients showed significantly decreased inter-
modular FC compared to the controls (FDR correction, q = 0.05) between
mPFC and the other three modules, SN, SMN, and VN. Dashed red lines

indicate significantly decreased inter-modular FC in the PD patients
compared to the controls. Solid green lines refer to non-significant
between-group difference in the inter-modular FCs. Line widths are
inversely proportional to the p-value of between-group differences in
the inter-modular FC. Full names of abbreviations for different modules
were given in Fig. 1

Fig. 1 Modular organization in the healthy controls (left) and the patients
with Parkinson’s disease (PD) (right). Seven group-level modules were
found in the whole-brain functional network of the controls (Q = 0.569):
the medial prefrontal cortex (mPFC, in purple), default mode network
(DMN, magenta), somatomotor network (SMN, orange), posterior

cerebellum (pCER, turquoise), salience network (SN, yellow), fronto-
parietal network (FPN, green), and visual network (VN, blue) (left in
the figure). Eight group-level modules were detected in the whole-brain
functional network of the PD patients, including an additional module the
ventral temporal cortex (VTC, red) not identified in the controls
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Brain-behavior relationships

Figure 5a shows the relationships between modular parame-
ters and clinical variables in the PD patients (each symbol ○ in
red (green) represents a PD patient (healthy control). In the
mPFC, we observed that the characteristic path length was
significantly positively correlated with MMSE score
(r = 0.423, p = 0.05). In the posterior cerebellum, the normal-
ized participation coefficient PCn

i was also significantly pos-
itively correlated with MMSE score (r = 0.425, p = 0.049).
However, no significant correlation was detected between any
of other modular parameters (Q, Cp, λ, γ, inter-modular FC,
andKn

i ) and any of the clinical variables (UPDRS III, H-Y
stage, and disease duration) in the patients.

ROC analysis

We examined the possibility of using modular topological
parameters to discriminate the PD patients from the controls
based on the ROC curves. Figure 5b plots the ROC curves for
the characteristic path length within two modules, SN and
SMN, and for the inter-modular FC between mPFC and SN
(FDR correction, q = 0.05). The intra-modular characteristic
path length within the SN and SMN showed significant

classification power in discriminating the PD patients from
the controls, with AUC = 0.667 (p = 0.007) and 0.653
(p = 0.014), sensitivity =45.2 % and 48.4 %, specificity
=87.5 % and 81.3 %, and accuracy =66.7 % and 65.1 %,
respectively. In addition, we found the inter-modular FC be-
tween the mPFC and SN showed the highest power
(AUC = 0.700, p = 0.001) for the discrimination, with a sen-
sitivity of 61.3 % and a specificity of 81.3 % (accuracy of
71.4 %) (Table S5).

Discussion

In this study, we explored the modular organization of whole-
brain functional networks in PD using graph theory. Our main
findings were: (1) the PD patients showed longer characteris-
tic path length and weaker clustering coefficient at global lev-
el; (2) modular level analyses found increased intra-modular
characteristic path length within four modules (mPFC, SN,
FPN, and SMN), and decreased inter-modular FC between
mPFC and SN as well as between mPFC and SMN; (3) addi-
tional module centrality analyses showed that an ‘attack’ on
any module produced changed between-group differences in
characteristic path length in residual brain networks contrasted

Table 3 Modular centrality for both the patients with Parkinson disease (PD) and the healthy controls (HC) in this study. gDMN indicates the residual
brain network when the DMN module was removed from the whole-brain network (WBN)

Residual brain
network

Lp ΔLp/Lp Lp ΔLp/Lp Cp Lp

PD HC PD HC p-value PD HC p-value

WBN - - - - 0.318 ± 0.048 0.365 ± 0.088 0.026 ↓** 3.048 ± 0.329 2.819 ± 0.445 0.037 ↑**

fSN 3.007 −0.014 2.816 −0.010 0.321 ± 0.049 0.369 ± 0.088 0.024 ↓** 3.026 ± 0.338 2.802 ± 0.446 0.055

gDMN
3.024 −0.008 2.796 −0.017 0.330 ± 0.045 0.375 ± 0.085 0.022 ↓** 3.007 ± 0.325 2.795 ± 0.457 0.035 ↑*

gmPFC
3.026 −0.007 2.827 −0.006 0.322 ± 0.047 0.369 ± 0.089 0.024 ↓** 3.053 ± 0.330 2.816 ± 0.453 0.045 ↑*

gpCER 3.038 −0.003 2.817 −0.009 0.318 ± 0.045 0.361 ± 0.082 0.017 ↓** 3.051 ± 0.315 2.843 ± 0.425 0.027 ↑*

fVN 3.039 −0.003 2.843 −0.0001 0.324 ± 0.047 0.366 ± 0.082 0.041 ↓** 3.039 ± 0.329 2.819 ± 0.423 0.039 ↑*

gSMN
3.051 0.001 2.864 0.007 0.325 ± 0.049 0.373 ± 0.086 0.028 ↓** 3.038 ± 0.335 2.793 ± 0.443 0.046 ↑*

gFPN 3.053 0.002 2.840 −0.001 0.324 ± 0.053 0.376 ± 0.094 0.024 ↓** 3.024 ± 0.371 2.768 ± 0.463 0.033 ↑*

Modules were ranked in order of increasing characteristic path length presented in the residual brain network of the PD patients (the first column). The Lp
value in the first and third column were based on mean of all individual’s Lp score. gDMN indicates the residual brain network when the DMN module
was removed from the whole-brain network (WBN). Cp (Lp) is the clustering coefficient (characteristic path length).ΔLp/Lp is the relative change in the
characteristic path length for the residual brain network when the WBN was attacked by eliminating a certain module and all of its connections. The
larger the absolute value of ΔLp/Lp, the more central of that module in the WBN. The p-values indicate between-group comparison (PD vs. HC) of
clustering coefficient and characteristic path length in the residual brain networks (10,000 permutations)

**FDR correction, q = 0.05

*uncorrected, p < 0.05

↓(↑) significant decrease (increase) in PD compared to HC. Abbreviations of modules can be found in Fig. 1
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with the whole-brain networks; (4) nodes with altered proper-
ties were primarily in the DMN and SN; (5) Intra-modular
characteristic path length within mPFC showed positive cor-
relation withMMSE score, and (6) FC betweenmPFC and SN
had the highest power to discriminate the PD patients from the
controls.

Modular organization

In this study, we estimated the modularity index of the brain
networks for each of the 32 PD patients and 31 controls. We
found no significant between-group difference either in mod-
ularity index (Q) or in small-worldness (σ) (Table S2). Our
findings suggest that subjects in both groups maintain a bal-
ance between local specialization and global integration in
information processing. Evidence from previous resting-state
brain network studies also supported small-worldness and
modular structure in PD patients (Göttlich et al. 2013).
However, another recent study (Baggio et al. 2014) described
significantly increased values of both small-worldness and
modularity in PD patients with mild cognitive impairment
compared to controls. This discrepancy may be due to the
heterogeneity of patients involved in the different studies.

We identified eight and seven modules in the whole-brain
functional networks in the Parkinson’s patients and healthy
controls, respectively (Fig. 1). This finding is consistent with
a recent PD-related study (Göttlich, et al. 2013) that detected
seven modules in healthy controls, including sensorimotor,
visual, fronto-parietal, and default mode networks. We also
noticed that our finding of 8 modules differed from a recent
study (Baggio et al. 2014) which identified only four modules
in PD patients, including the fronto-parietal, insulo-operculo-
striatal, fronto-parieto-parahippocampal, and occipito-
temporal modules. This inconsistency may due to different
methods used to identify the modules. Baggio et al. (2014)
formed the modular partition from the mean brain network
across all three groups of subjects, including PD patients with
and without cognitive impairment as well as healthy controls,
while we identified modules within each subject group
independently.

In this study, we also detected between-group difference in
module- and node-level topological parameters. In the PD
patients, we found longer characteristic path length within
four modules, the medial prefrontal cortex (mPFC), salience
network (SN), fronto-parietal network (FPN), and
somatomotor network (SMN) (Fig. 2a). The mPFC is sug-
gested to be involved in self- reflection, emotion, decision
making, and memory (Jenkins and Mitchell 2011; Euston
et al. 2012; Somerville et al. 2013). Previous studies detected
decreased brain activity in the dorsal mPFC (Cardoso et al.
2009) and decreased cerebral blood flow (rCBF) in the pre-
frontal cortex (Borghammer et al. 2012) in PD patients. Our
finding of longer characteristic path length indicates a de-
creased integrity of connections between brain regions within
the mPFC in the PD patients.

The SN is believed to contribute to interoceptive and affec-
tive processes for capturing biologically and cognitively rele-
vant events (Seeley et al. 2007). The anterior cingulate cortex
(ACC) and insula are key regions of SN and are coactived in
response to different forms of salience (Mesulam 1998). In
this study, we found the PD patients showed significantly
increased characteristic path length in the SN but decreased
inter-modular FC between mPFC and SN compared to the
controls (Fig. 2b). These results are consistent with several
previous PD studies. Kikuchi et al. (2001) detected hypoper-
fusion in the insula and Christopher et al. (2014) found a
decrease of cortical dopamine D2 receptor binding in the
SN. Previous studies also reported an impairment of dopamine
in the PFC and a deficit of D2 receptors in the insula in PD
patients. This suggested the PFC impairments in PD patients
may be associated with deficits of verbal fluency performance
(Polito et al. 2012) and executive function (Christopher et al.
2014).

The FPN, also called the executive-attention network, is
believed to support cognitive control and decision-making
(Vincent et al. 2008). We detected alterations in FPN in the

Fig. 3 Bar plots showing clustering coefficient (Cp) and characteristic
path length (Lp) for both the whole-brain networks (WBN) and the
residual brain functional networks for the PD patients and healthy
controls (HC). We found that the residual brain networks obtained by
removing any individual module showed uniformly significantly
decreased Cp in the PD patients, which was similar to the comparison
result of whole-brain network. However, no significant between-group
differences in Lp were found in the residual networks. (* indicates FDR
correction, q = 0.05). Here ‘~’ represents the residual brain networks after
removing the target module from the WBN. Full names of the
abbreviations for different modules can be seen in Fig. 1

Brain Imaging and Behavior



PD patients which are in line with several previous studies.
Biundo et al. (2013) and Rektorova et al. (2014) detected a
decrease of grey matter volume but an increase of cortical
thickness in the FPN in PD patients with executive deficits.
In addition, Rae et al. (2012) analyzed diffusion fractional
anisotropy (FA) and found disrupted white matter integrity
in the frontal and parietal lobes in early to mid stage PD pa-
tients. A recent R-fMRI study (Lebedev et al. 2014) suggested
that the executive performance was positively associated with
dorsal fronto-parietal processing in PD patients (Table S6).
Thus, we infer that weakened integration, as indicated by a
longer characteristic path length within the FPN, may relate to
executive function deficits in PD patients.

The SMN is involved in planning and execution of volun-
tary movements (Ferri et al. 2012). Our finding of abnormal
SMN in the PD patients is in line with several previous studies
(Boller et al. 1984; Doyon et al. 1997). For PD patients, Boller
et al. (1984) reported SMN involvement in visuospatial func-
tion, Doyon et al. (1997) found the SMN is related to
visuomotor sequence learning, andWu et al. (2011b) detected
significantly increased FC between the preSMA and primary
motor cortex. Another R-fMRI study (Pyatigorskaya et al.
2013) suggested that motor abnormalities in PD patients
may reflect integration within somatomotor circuits.

We also analyzed the effect of these ‘module lesions’ on
whole-brain networks in the PD patients (Table 3 and Fig. 3).
For the PD group, the elimination of SN induced the most
decreased ΔLp/Lp (−0.014) in the residual brain network,
which was followed those of DMN, mPFC, pCER and VN.
In contrast, the removal of the SMNwas associated with most
increasedΔLp/Lp in the residual brain network. The direction
of alterations was consistent with the changes in the healthy
controls. In terms of between-group comparison, we found
attacks on all the modules had significant effects on the Lp
of whole-brain network rather than Cp. We also considered
the roles of brain regions (nodes) in mediating intra- and
inter-modular FC by estimating their normalized nodal
strength Kn

i and normalized participation coefficient PCn
i

(Fig. 4). Higher Kn
i corresponds to stronger connections to

nodes within the same module, and higher PCn
i indicates that

the node has stronger connections to nodes in other modules.
In PD patients, we found that nodes with significantly
changed nodal strength were distributed across all modules
(Fig. 4a). DMN and SN included the largest numbers of sig-
nificantly altered nodal connections (with decreased Kn

i ),
suggesting weaker FC within these modules in PD patients
compared to the control group. Interestingly, several regions
in DMN showed significantly increasedPCn

i , implying tighter

Fig. 4 Rendering plot of brain
regions with significantly
changed nodal parameters in the
patients with Parkinson disease
(PD) compared to the healthy
controls (HC) (FDR correction,
q = 0.05). a Normalized nodal
strength,Kn

i , relating to the intra-
modular connectivity, b
Normalized participation
coefficient, PCn

i , relating to the
inter-modular connectivity
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connections between DMN and other modules in PD patients
compared to the controls (Fig. 4b). The DMN has been sug-
gested to be involved in self-referential and emotional pro-
cesses (Raichle and Snyder 2007; Damoiseaux et al. 2008).
A previous R-fMRI study (Tessitore et al. 2012) showed sig-
nificantly decreased FCwithin the DMN in PD patients which
may hinder normal cognition or executive performance (van
Eimeren et al. 2009).

Brain-behavioral relationship

We observed that characteristic path length in the mPFC was
significantly positively correlated with MMSE score in the
patients (Fig. 5a). However, we detected no significant corre-
lation between any of modular parameters and any of motor-
related clinical variables (i.e., UPDRS III and H-Y) in the PD
patients. Thus, we speculate that motor and cognitive impair-
ments in PD patients may have different underlying patho-
physiological mechanisms (Dubbelink et al. 2013).

ROC analysis

In this study, we found that inter-modular FC between the
mPFC and SN had the highest classification accuracy at

71.4 % (with 61.3 % sensitivity and 81.3 % specificity) in
distinguishing the PD patients from the controls. We also
found that characteristic path length within the SN and SMN
showed high classification power to distinguish PD patients
from controls, with an accuracy of 66.7 % and 65.1 % respec-
tively (Fig 5b). A previous study (Long et al. 2012) reported
effective differentiation of PD patients from controls by com-
bining multiple MR imaging modalities. This suggests it may
be beneficial to combine multiple parameters to achieving
better classification. Although classification accuracy in this
study was not very high, the specificity score of >80 % may
highlight a significant power of inter-modular FC for
distinguishing PD patients (Radebaugh and Khachaturian
1998). The lower sensitivity score of <80 % in current find-
ings may possibly due to using a one-dimensional parameter
for the classifier. Future studies can improve classification
accuracy by employing more sophisticated methods (e.g.,
multivariate pattern analysis) and combining multi-level and
multi-modal imaging methods.

Limitations

The current study has several limitations. First, we normalized
the functional data to the SPMEPI templatewhichmay affect the

Fig. 5 Modular parameters in the patients with Parkinson’s disease (PD).
a Relationship between modular parameters (Lp, characteristic path
length; PCn

i , normalized participation coefficient) and clinical variables
in the PD patients. Each symbol ○ in red (green) represents a PD patient
(healthy control). The r- and p-values indicate the correlation and
between-group difference level. b ROC analysis showing significant
classification power of the modular parameters (FDR correction,

q = 0.05). The red dot indicates the threshold with simultaneously
optimized sensitivity and specificity. Abbreviations: Lp, characteristic
path length; PCn

i , participation coefficient; mPFC, medial prefrontal
cortex; pCER, posterior cerebellum; SMN, somatomotor network; SN,
salience network; MMSE, Mini-Mental State Examination; FC,
functional connectivity; TPR, true positive rate; FPR, false positive rate;
sen, sensitivity; spe, specificity
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accuracy of image transformation. A better way for normaliza-
tionmay be performed using deformation fields generated during
tissue segmentation of anatomical data or using the DARTEL
(diffeomorphic anatomical registration through exponential Lie
algebra) approach (Ashburner, 2007, a fast diffeomorphic image
registration algorithm. Second, we adopted the positive Pearson’s
correlations but discarded negative correlations to build brain FC
networks, which may also bias the results. Further studies should
offer more evidence by constructing brain functional networks
based on both positive and negative correlations. Third, brain
functional modules may spatially overlap (Wu et al. 2011a) or
contain several sub-components (Chen et al. 2008), which were
not considered in this study. Further studies are needed to explore
the overlapping and hierarchical modular organization of brain
functional networks in PD. Fourth, although the PD patients in
this study were restricted to the early-to-mid clinical motor stage,
their heterogeneitymay have influenced the network topology. A
previous study (Pont-Sunyer et al. 2014) indicated that PD sub-
types identified on the basis of motor impairment were accom-
panied by non-motor deficits ranging from mood disorders (e.g.,
depression) to cognitive abnormalities (e.g., executive dysfunc-
tion). Thus, PD patients with different combinations of motor
and non-motor impairments may be characterized by different
changes in brain functional organization. It would be interesting
to delineate specific subtype-related brain network reorganization
in the future following a detailed assessment of motor, cognitive,
and affective symptoms. Finally, most of the PD patients were
taking dopaminergic medications. Although we wanted to study
drug-naïve individuals to exclude the effects of dopaminergic
medication, we cannot exclude the effect of medication on net-
work analysis.

In conclusion, we detected altered modular organization in
intrinsic brain functional networks in patients suffering from
early-to-mid stage Parkinson’s disease off medication.
Through analyzing modular parameters, we found abnormal
intra- and inter-modular topological parameters across execu-
tive, emotional, and motor-related modules in PD patients. In
addition, we showed that functional connectivity between the
medial prefrontal and salience networks had the highest power
to differentiate PD patients from healthy controls. Our finding
may provide useful information for understanding neural sys-
tem alternations at the modular level in patients with
Parkinson’s disease.
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