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ABSTRACT

Neuroimaging studies suggested that drug addiction is linked to abnormal brain functional connectivity. However, little
is known about the alteration of brain white matter (WM) connectivity in addictive drug users and nearly no study has
been performed to examine the alterations of brain WM connectivity in heroin-dependent individuals (HDIs). Diffusion
tensor imaging (DTI) offers a comprehensive technique to map the whole brain WM connectivity in vivo. In this study,
we acquired DTI datasets from 20 HDIs and 18 healthy controls and constructed their brain WM structural networks
using a deterministic fibre tracking approach. Using graph theoretical analysis, we explored the global and nodal
topological parameters of brain network for both groups and adopted a network-based statistic (NBS) approach to
assess between-group differences in inter-regional WM connections. Statistical analysis indicated the global efficiency
and network strength were significantly increased, but the characteristic path length was significantly decreased in the
HDIs compared with the controls. We also found that in the HDIs, the nodal efficiency was significantly increased in the
left prefrontal cortex, bilateral orbital frontal cortices and left anterior cingulate gyrus. Moreover, the NBS analysis
revealed that in the HDIs, the significant increased connections were located in the paralimbic, orbitofrontal, prefrontal
and temporal regions. Our results may reflect the disruption of whole brain WM structural networks in the HDIs. Our
findings suggest that mapping brain WM structural network may be helpful for better understanding the
neuromechanism of heroin addiction.
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INTRODUCTION

Drug addiction, a major health problem in modern
society, is characterized by the failure to resist one’s
impulses to obtain and to take certain types of addictive
drugs in spite of serious negative consequences (Volkow &
Li 2004; Holmes 2012). Out of all drug abuses, heroin
addiction is a major threat to the public health and social
security in China because of its devastating medical
effects, its impact on criminal behaviours and its low rates

of recovery but high rates of relapse (Tang et al. 2006).
It was because of the negative impacts of heroin
addiction that many studies try to uncover the mecha-
nisms of addiction from different fields (Koob 2002;
Levran et al. 2008; Goldstein & Volkow 2011). With the
neuroimaging technology, a growing number of studies
suggested aberrant brain functional connectivity on the
basis of resting-state functional magnetic resonance
imaging (fMRI) data (Ma et al. 2010) and task-state fMRI
data acquired in different stimulus paradigms, such as
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drug craving (Xiao et al. 2006; Li et al. 2012), decision
making (Walter et al. 2014) and inhibitory control
(Schmidt et al. 2013), in heroin-dependent individuals
(HDIs). Given that aberrant functional connectivity may
be a result of the pathology of brain white mater (WM)
connectivity, the next logical step is to understand the
underlying structural architecture of brain WM in HDIs.

Diffusion tensor imaging (DTI) is a non-invasive tech-
nique to detect human brain tissue microstructure and to
assess distribution of axonal fibre bundles in vivo (Mori &
Zhang 2006). Several previous studies (Supporting Infor-
mation Table S1) have reported the alterations of brain
WM patterns related to heroin addiction on the basis of
diffusive metrics (e.g. fractional anisotropy, FA). For
example, Liu et al. (2009) analysed DTI datasets from 16
HDIs and 16 controls and found significantly decreased
FA in HDIs in the bilateral frontal sub-gyral, right
precentral and left cingulate regions compared with con-
trols. Li et al. (2013) revealed decreased FA value in brain
WM of the bilateral frontal lobes, cingulate gyri, medial
frontal gyri and right superior frontal gyrus in HDIs.
Notably, although most of previous studies analysed the
myelin axonal distribution according to the hypothesis of
WM disruption or inter-regional ‘dysconnection’ (Volkow
et al. 2013), nearly no study has directly investigated
axonal connectivity in HDIs per se.

Growing number of studies (Hagmann et al. 2010;
Griffa et al. 2013; He & Evans 2014) have adopted a
network model to characterize human brain cortical-
cortical WM connectivity and suggested that the integ-
rity of brain connectivity can be tested at the macroscale
or at the scale of brain axonal fibre bundles in drug
patients. For example, Zalesky et al. (2012b) found that
the impaired WM fibre connectivity existed in the fornix,
splenium of corpus callosum and commissural fibres in
long-term cannabis users. As the brain WM connectivity
reflects the integration of brain WM structure, many
studies (Fornito et al. 2012; Griffa et al. 2013) have used
the topology of brain networks to infer the integrity
of brain network organization in different types of
neuropsychiatry patients. A previous study (Kim et al.
2011) acquired DTI data from 12 cannabis users, ana-
lysed their brain WM structural networks and suggested
less efficient integrated and altered regional connectivity
in their brain WM structural networks. We have also seen
that several studies (Liu et al. 2009; Yuan et al. 2010;
Jiang et al. 2013) reported aberrant brain functional con-
nectivity and disrupted topological organization in HDIs
based on the resting-state fMRI data. However, the heroin
addiction-related changes of brain WM connectivity and
topological organization of the brain WM structural net-
works are still unknown.

The aim of this study was to detect the topological
changes of brain WM structural networks related to

heroin addiction at a macroscale (i.e. at the scale of WM
fibre bundles). In the calculations, we constructed whole
brain WM structural networks for both the HDIs and
healthy controls based on the DTI data, evaluated their
network metrics using graph theory and determined
between-group differences in network topological param-
eters. In addition, we also used a network-based statistic
(NBS) approach (Zalesky et al. 2012a) to identify the dis-
rupted WM structural connections in the HDIs.

MATERIALS AND METHODS

Subjects

We recruited 20 HDIs (18 males, two females; aged
26–50 years, age = 35.0 ± 6.3 years) from the Addiction
Medicine Division of Guangdong No. 2 Provincial Peo-
ple’s Hospital. Among them, four inhaled the vapour
from heated heroin, while 16 used intravenous and
vapour from heated heroin. These HDIs were screened
using the Structured Clinical Interview for the Diagnostic
and Statistical Manual of Mental Disorders, Fourth
Edition to confirm the diagnosis of heroin dependence.
Urine tests with a positive finding for heroin users were
requested before enrolling in the treatment programme.
According to a laboratory report and an interview con-
ducted in the hospital, none of the controls or HDIs had a
history of excessive alcohol consumption. All of the HDIs
were under daily methadone maintenance treatment at
the time of the study and were hospitalized for 6–7 days
before the MRI scanning took place. None of them used
heroin during their stay in the hospital as confirmed
by the medical personnel responsible for their care
(Supporting Information Table S2). In addition, we
recruited 18 age- and gender-matched healthy subjects
as the controls (16 males, two females; aged 23–45 years,
age = 33.1 ± 7.2 years). Table 1 lists the demographic
details of all the volunteers in this study. None of the HDIs
and the controls had history of neurological illness or
head injury, or was diagnosed with schizophrenia or an
affective disorder, according to their past medical history.
All of the subjects were right-handed according to their
self-report. This study was approved by the Research
Ethics Review Board of the Southern Medical University
in Guangzhou of China. Informed written consent was
obtained from each subject prior to the MRI scanning.

Data acquisition

All MR scans were performed on a 1.5T Philip MRI
scanner (Philip, Amsterdam, the Netherlands) equipped
with an 8-channel head coil. To diminish motion arte-
facts, we immobilized each individual’s head with cush-
ions inside the coil after the alignment during the scan.
The parameters of DTI sequence, signal-to-noise ratio
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(SNR) estimation of DTI data and estimates of head
motion are provided in the Supporting Information
Appendix S1.

Data pre-processing

The effects of head motion and image distortion caused
by eddy current were corrected by applying an affine
alignment to register all other diffusion volumes to the
original b0 volume using the Functional Magnetic
Resonance Imaging of the Brain Software Library (FSL
4.1: http://www.fmrib.ox.ac.uk/fsl). Rotation corrections
were applied to the corresponding diffusion-sensitive gra-
dient directions (Leemans & Jones 2009). The corrected
DTI data were then processed using Trackvis (http://
trackvis.org/) to draw whole brain streamline counts
based on the fibre assignment by continuous tracking
algorithm, a deterministic fibre tracking approach.
Fibre tracking was stopped when FA <0.2 or the angle
between the eigenvectors of two consecutive voxels was
less than 45°.

Network construction

We first co-registered T1-weighted three-dimensional
volume to the original b0 volume resulting in the
co-registered T1 volume for each individual using
SPM8 (www.fil.ion.ucl.ac.uk/spm). The co-registered T1
volumes were then non-linearly transformed to the
ICBM-152 T1-weighted template in the standard Mon-
treal Neurological Institute (MNI) space. The inverse
transformations were used to warp the automated ana-
tomical labelling template with 90 regions (AAL-90)
from the standard MNI space to the individual native DTI
space using a nearest-neighbour interpolation approach.
The names and the abbreviations for these 90 regions are
listed in Supporting Information Table S3.

We used an abstract model of brain network to repre-
sent the brain systems at the macroscale, each node cor-
responding to a brain region and each edge to an inter-
nodal connection. Given two regions of AAL-90, they
were considered structurally connected if there were at
least three streamline counts (counts ≥ 3) located
between these two regions. In this way, we obtained a
symmetric 90 × 90 connectivity matrix to represent the
brain WM structural network for each subject. The work-
flow of the brain WM structural network construction is
illustrated in Fig. 1.

Network analysis

We characterized the global topological properties of the
brain WM structural networks using six parameters:
network strength (Sp), global efficiency (Eglob), character-
istic path length (Lp), clustering coefficient (Cp) and small-
worldness (δ). A network is said to be small-world if γ >>1
and λ ≈ 1 or δ >> 1 (Watts & Strogatz 1998). The defini-
tions and interpretations of these topological parameters
are listed inTable 2.The mean Sp is a measure of density or
the total ‘wiring cost’ of the network. The larger of the
network strength, the more expensive of the wiring cost of
this network.The average shortest path length between all
pairs of nodes in the network gives the Lp, which is a
measure of WM connectivity integration. The average
inverse shortest path length relates to the Eglob. If two
nodes were disconnected, the path between these two dis-
connected nodes is assumed to have an infinite length
and Eglob corresponds to zero (Achard & Bullmore 2007).
The mean Cp for the network reflects, on average, the
prevalence of clustered connectivity around individual
nodes.

For the nodal topology, we focused on the nodal effi-
ciency (Enod). Its definition and interpretation can be seen
in Table 2 and Rubinov & Sporns (2010).

Table 1 Demographics and clinical characteristics of in the heroin-dependent individuals (HDIs) and the healthy controls (HCs).

Characteristics HDIs (n = 20) HCs (n = 18) P value

Gender (female/male) 2/18 2/16 0.6832a

Age (years) [range in years] 35.0 ± 6.3 [27–50] 33.1 ± 7.2 [23–45] 0.4017b

Education (years) [range in years] 10.5 ± 2.5 [9–15] 10.1 ± 3.4 [6–16] 0.6950b

Head motion
Translation 1.01 ± 0.61 0.92 ± 0.58 0.41b

Rotation 0.006 ± 0.01 0.007 ± 0.01 0.75b

Nicotine (median, number of cigarette/day) 20 [0–60] 20 [0–40] 0.3231b

Heroin use (years) [range in years] 9.8 ± 5.5 [1.3–20] — —
Heroin dosage (g/day) [range in g/day] 3.7 ± 2.27 [2–8] — —
Dosage of methadone (mg/day) 31.5 ± 13.48 [20–60] — —

The duration of heroin usage means the period from the time of initial heroin use to the time of their seeking medical help.
aFisher’s exact test. bTwo-sample t-test.
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Connectivity analysis

A NBS approach (Zalesky et al. 2012a) was used to deter-
mine the specific altered WM connections related to
heroin addiction. We first used two-sample t-test at each
edge to determine significant between-group difference in
the connection. A primary component-forming thresh-
old (P < 0.01, uncorrected) was applied to derive a set of
suprathreshold edges. By this step, we can identify all the
possible connected components or subnetworks showing
altered inter-regional connectivity. The statistical signifi-
cance of the size for each observed component was
obtained using an empirical null distribution of maximal
component sizes under the null hypothesis of random
group membership (5000 permutations). The subnet-
works that were significant at a level of P < 0.05 were
reported in the current study.

Statistic analysis

Heroin addiction-related network parameters alteration

A non-parametric permutation test was used to assess the
statistical significance of between-group difference in
each of the global and nodal parameters. This rando-
mization procedure was repeated 5000 times for a given

network parameter and the corresponding distribution of
t-value was obtained. We set the critical value at 95% of
the distribution for each of the global and nodal param-
eters to test the null hypothesis. The age, gender and an
age–gender interaction were entered as covariates of no
interest before permutation tests.

Correlations between network parameters and
clinical variables

With respect to network parameters showing significant
between-group differences, we performed multiple linear
regression analysis to estimate the relationship between
each of the parameters and each of the clinical variables
in the HDIs. The age, gender and the age–gender interac-
tion were regressed out. The clinical variables include the
age onset of addiction and the duration of addiction.

Robustness analysis

Cross-validation of the main results

Using a bootstrap approach, we estimated the confidence
interval for each of the topological parameters, Sp, Lp, Kp,
Eglob, Eloc, γ, δ and λ, in the HDIs and the controls. Specifi-
cally, we randomly draw an individual from the original
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Figure 1 The workflow of constructing brain white matter (WM) structural networks for the heroin-dependent individuals (HDIs) and
healthy controls (HCs) using the diffusion tensor imaging (DTI) data
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sample, put the individual back before drawing the next
one and resample the subjects with replacement. Thus,
each resample had the same size as the original sample.
Based on the 1000 randomizations, we determined the
confidence intervals for each of these parameters.

Effect of threshold in streamline counts on
network parameters

Because false-positive or false-negative connections could
be resulted from the selection of fibre connection thresh-
old (Bassett et al. 2011; Zhang et al. 2014), we utilized
two additional thresholds of streamline counts > 0 (i.e.
including all non-zero entries in the connectivity matri-
ces) and streamline counts ≥ 5. To this end, we con-
structed symmetric connectivity matrices based on
AAL-90 template for each of the three different connect-
ing thresholds (counts > 0, counts ≥ 3 and counts ≥ 5).

Effect of parcellation schemes on network parameters

To estimate the stability of our main findings corre-
sponding to AAL-90 template, we repeated the network

analysis by selecting the AAL-1024, a high-resolution
template randomly parcellating whole brain into 1024
regions of equal volume (http://andrewzalesky.com/
software.html). We selected each region in AAL-1024
template as a node and obtained a symmetric
1024 × 1024 connectivity matrix to represent the brain
WM structural network for each subject.

Effect of the choice of significance level

The statistical results certainly depend on the choice of
significance level. Besides of the threshold P < 0.05 being
selected, we also adopted a much conservative threshold
P < 0.01 to determine between-group differences in the
network parameters. The aim was to test the robustness
of the main results.

Head motion effects

Several recent studies (Tijssen, Jansen & Backes 2009;
Kong 2014; Yendiki et al. 2014) demonstrated that the
head motion may induce spurious group differences in
DTI measures. To determine that the between-group

Table 2 The mathematical definitions and descriptions of global/nodal parameters in the current study.

Network parameters Definitions Descriptions

Global parameters Network strength

S G S i Np

i G

( ) = ( )
∈
∑

S(i) is the sum of the edge weights for the node i, N is the
number of nodes in the network. S(i) reflects importance of
the node i in the network. Sp is a measure of density or the
total ‘wiring cost’ of the network.

Characteristic path length

L
N N L

p

ij

j i

=
−( )( )

≠
∑
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lij is the shortest path length between nodes i and j. Paths are
sequences of distinct nodes and links in the network to
represent potential routes of information flow between pairs
of brain regions. The lengths of paths estimate the potential
for integration between brain regions, with shorter paths
implying stronger potential for integration.

Network efficiency
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Eglob is computed on disconnected networks. Paths between
disconnected nodes are defined to have infinite length and
correspondingly zero efficiency.

Clustering coefficient

C
N

E
D i D i

p
i

nod nodi

=
( ) ( ) −( )=

∑1
1 2

1

Dnod(i) is the degree of node i, Ei is the number of edges in the
subgraph of node i and N is the number of nodes in the
network. Cp reflects the prevalence of clustered connectivity
around individual nodes.

Small-world
parameters

Normalized clustering coefficient
γ = C Cp

real
p
rand

C p
real is the clustering coefficient of the real network and C p

rand

is the mean clustering coefficient of 100 matched random
networks.

Normalized characteristic path length
λ = L Lp

real
p

rand

Lp
real is the clustering coefficient of the real network and Lp

rand

is the mean clustering coefficient of 100 matched random
networks.

Small-worldness σ = γ/λ A network is said to be small-world if it satisfies λ ≈ 1 and γ >>
1, or δ = γ/λ >> 1. Small-world organization reflects an
optimal balance of functional integration and segregation.

Nodal parameter Nodal efficiency

E i
N

Lnod ij

j i

( ) =
≠

∑1
1

lij is the shortest path length between nodes i and j.
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difference in network topology originated from the naïve
between-group difference rather than from the head
motion nuisance noise, we estimated the intra-
acquisition head movement using an affine transforma-
tion approach (FSL). No significant difference was found
either in any of the three displacement parameters or in
any of the three rotation parameters between HDIs and
controls. Even so, we still took these six head motion
parameters as nuisance regressors into statistical analy-
sis by following Yendiki et al. (2014).

RESULTS

Demographic and behavioural measures

Table 1 lists the demographic and behavioural measures
for the HDIs. No significant between-group difference was
detected in age, years of education, cigarette smoking
and gender (P > 0.05). In the calculations, two-sample
t-test were adopted for the age, years of education and
cigarette smoking, while Fisher’s exact test was adopted
for the gender (SPSS, version 17.0, IBM, Armonk, NY,
USA).

Network analysis

Global parameters

Table 3 lists the global parameters for both the HDIs and
controls. We found that the brain WM structural net-
works for both groups satisfy the criteria of small-world
organization, γ >>1 and λ ≈ 1, and δ >>1. Compared with
the controls, the HDIs showed significantly increased
Eglob (P = 2.8e-3) and Sp, (P = 6.0e-4), but decreased Lp

(P = 1.6e-3). Whereas no significant between-group dif-
ference was detected in the Cp (P = 0.4002) and in any
of small-world metrics (P = 0.9294 for γ, P = 0.2258 for
λ and P = 0.9690 for σ).

Nodal parameter

Statistical analysis revealed uniformly significantly
increased nodal efficiency in several regions in the HDIs
compared with the controls (P < 0.05, Bonferroni’s cor-
rection). According to addiction model proposed by Baler
& Volkow (2006), we classified regions showing signifi-
cant between-group difference into three addition-related
functional systems: (1) the motivation and salience
evaluation system in the orbital cortex (ORB), including
the bilateral orbital superior frontal gyri (ORBsup.
L/R), bilateral orbital middle frontal gyri (ORBmid.L/R),
left orbital inferior frontal gyrus (ORBinf.L) and left
medial orbital of superior frontal gyrus (ORBsupmed.L);
(2) the cognitive control and restraining craving
system in the prefrontal cortex (PFC), such as the left
rectus gyrus (REC.L); and (3) the inhibition control and
conflict monitoring system in the anterior cingulate
gyrus (ACG), such as the left ACG. The mean values of
Enod and effect size (Cohen’s d) are presented in Table 4
(Fig. 2).

Disrupted connectivity in HDIs

Using the NBS analysis, we identified a single subnet-
work with significantly altered WM connections in the
HDIs compared with the controls (P < 0.05, family-wise
error corrected). This subnetwork was composed of 16
links and 17 brain regions, including the left orbital
superior frontal gyrus (ORBsup.L), left insula (INS.L),
left ACG, left middle frontal gyrus (MFG.L), left triangle
part of inferior frontal gyrus (IFGtriang.L), bilateral
rectus (REC), bilateral olfactory (OLF), bilateral supple-
mentary motor area (SMA) and the left middle temporal
gyrus (MTG.L) (Fig. 3a). Notably, all of inter-regional
connections within the NBS-derived subnetwork were
significantly increased in the HDIs compared with the

Table 3 Global parameters of brain WM
structural networks in the heroin-
dependent individuals (HDIs) and the
healthy controls (HCs).

Network
parameters

Mean ± standard deviation

P value
Cohen’s
dHDIs (n = 20) HCs (n = 18)

γ 3.607 ± 0.300 3.587 ± 0.706 0.9294 0.07
λ 1.214 ± 0.031 1.202 ± 0.030 0.2258 0.33
δ 2.972 ± 0.258 2.980 ± 0.581 0.9690 0.03
Cp 0.031 ± 0.004 0.032 ± 0.005 0.4002 0.08
Lp 0.018 ± 0.002 0.023 ± 0.006 1.6e-3* 1.12
Eglob 57.87 ± 4.998 46.27 ± 11.346 2.8e-3* 1.12
Sp 1090.6 ± 112.3 902.7 ± 183.2 6.0e-4* 1.25

The asterisk ‘*’ indicates significant between-group difference at P < 0.05 (5000 permutations).
Cohen’s d indicates the value of effect size. The small, medium and large levels of the effect size are
0.2, 0.5 and 0.8, respectively, according to Cohen’s definition (Cohen 1992).
γ = normalized clustering; λ = normalized path length; δ = γ/λ; Cp = cluster coefficient; Lp = char-
acteristic path length; Eglob = global efficiency; Sp = network strength.
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controls. The detailed mean weights and t-values of sta-
tistic between-group comparison in the connections are
listed in Supporting Information Table S4.

For each of the global parameters showing significant
between-group difference (Eglob, Sp and Lp), we calculated
its correlation with the edge weights or with the stream-
line counts of the NBS-derived subnetwork. Figure 3b
shows that the edge weight in the subnetwork was signifi-
cantly positively correlated with the Sp (r = 0.73,
P = 1.58e-7) and Eglob (r = 0.72, P = 2.91e-7), but nega-
tively correlated with the Lp (r = −0.74, P = 1.46e-7),
across all subjects.

Correlation between network parameters and
clinical variables

Neither of the inter-nodal connections of NBS-derived
subnetwork nor of the significant changed topological
parameters (global and nodal) was significantly corre-
lated with the age onset of addiction or with the duration
of addiction in the HDIs (P > 0.05).

Robustness of our findings

We first obtained the confidence interval for each of
global parameters based on the AAL-90 template using

Table 4 Brain regions with significant
difference in nodal efficiency (Enod)
between the heroin-dependent individuals
(HDIs) and the healthy controls (HCs)
(5000 permutations, P < 0.05, Bonferroni
corrected).

Regions Category

Enod (mean ± standard deviation)

P value
Cohen’s
dHDIs (n = 20) HCs (n = 18)

ORBsup.L ORB 40.86 ± 5.56 30.91 ± 8.11 2.0e-4 1.45
ORBsup.R ORB 41.57 ± 7.07 30.12 ± 9.73 <1.0e-4 1.36
ORBmid.L ORB 43.47 ± 5.98 31.83 ± 12.19 2.0e-4 1.23
ORBmid.R ORB 46.73 ± 8.16 34.26 ± 12.39 <1.0e-4 1.20
ORBinf.L ORB 59.89 ± 6.75 49.15 ± 10.68 4.0e-4 1.22
ORBsupmed.L ORB 43.04 ± 5.40 33.88 ± 7.64 <1.0e-4 1.40
REC.L PFC 36.46 ± 3.89 28.11 ± 6.45 <1.0e-4 1.59
ACG.L ACG 62.42 ± 7.89 50.47 ± 9.79 2.0e-4 1.35
CAL.L Occipital 70.36 ± 10.32 55.17 ± 15.17 4.0e-4 1.18
STG.L Temporal 69.54 ± 8.29 55.97 ± 14.76 4.0e-4 1.15

Enod was uniformly increased in the HDIs compared with the HCs.
Cohen’s d indicates the value of effect size. The small, medium and large levels of the effect size are
0.2, 0.5 and 0.8, respectively, according to Cohen’s definition (Cohen 1992).
ACG = anterior cingulate gyrus; ORB = orbital frontal cortex; PFC = prefrontal cortex.

Figure 2 Rendering plot of the brain regions showing significantly increased nodal efficiency (Enod) in the heroin-dependent individuals
compared with the healthy controls (P < 0.05, Bonferroni corrected).The images were plotted with the BrainNet Viewer (http://www.nitrc.org/
projects/bnv/) (Xia, Wang & He 2013). Abbreviations: ACG, anterior cingulate gyrus (yellow); CAL, calcarine cortex (green); ORB, orbital
frontal cortex (red); PFC, prefrontal cortex (blue); STG, superior temporal gyrus (cyan)
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the bootstrap approach. In the calculations, we built the
distribution of global parameters across 1000 random
resamples and determined the 95% confidence interval of
the original sample for the HDIs and controls (Supporting
Information Table S5). Then we estimated the effect of
inter-regional connectivity threshold (or streamline
counts) on network parameters. Statistical analysis
showed that the significant level of between-group differ-
ence in topological parameters was not dependent on
our selections of streamline counts (counts > 0 and
counts ≥ 5) as the threshold of inter-regional connectivity
(Table 5). We also tested the effect of node size on the
network topology using a high-resolution template, the
AAL-1024 template. The change tendencies of the global
parameters (Sp, Eglob and Lp) for the AAL-1024 template
were similar to those for the AAL-90 template (Table 5).
We also checked the influence of the significant levels of
between-group differences on the network parameters.
Compared with the controls, the HDIs showed signifi-

cantly increased Sp and Eglob, but decreased Lp, at the
threshold P < 0.01. Finally, the network parameters
showing significant between-group difference can still be
detected at P < 0.05 (Table 5) even though the head
motion effects were regressed out.

DISCUSSION

In this study, we explored the topological organization of
brain WM structural networks in HDIs. Even though both
the HDIs and controls conserved small-worldness, the
HDIs showed significantly increased Eglob and Sp, but sig-
nificantly decreased Lp compared with the controls. Fur-
thermore, the HDIs showed significantly increased nodal
efficiency in the bilateral orbital frontal cortices (OFC), left
PFC and left ACG compared with the controls. Moreover,
based on the NBS approach, we determined a subnetwork
in which the structural connectivity was significantly
changed in the HDIs compared with the controls. The
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Figure 3 The subnetwork derived from the network-based statistic (NBS) analysis. (a) Increased structural connections in heroin-dependent
individuals (HDIs). These connections formed a single subnetwork containing 17 nodes and 16 edges. All the 16 edges were uniformly
significantly increased (P = 0.029, family-wise error corrected) in the HDIs compared with the controls. (b) Scatter plots of the significantly
changed global parameters changing with the number of streamline counts within the NBS-derived subnetwork across all subjects. Except for
the characteristic path length Lp, the other global parameters (strength Sp and global efficiency Eglob) were significantly positively correlated to
the streamline counts within the NBS-derived subnetwork
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number of streamline counts for all WM connections
in this subnetwork was significantly increased in the
HDIs.

Although the brain WM structural networks for both
the HDIs and the controls hold small-worldness (γ >>1
and δ >>1, λ ≈ 1), we found the HDIs showed signifi-
cantly increased Eglob, but decreased Lp compared with the
controls (Table 3). Similarly, the HDIs also showed signifi-
cantly increased Sp compared with the controls. These
results were consistent with a previous study (Yuan et al.
2010) in which the topology of brain functional network
was derived from resting-state fMRI data in heroin users.
As small-world properties reflect an optimal balance
between local specialization and global integration
(Sporns 2011), our finding of the increased global inte-
gration (increased Eglob and Sp, decreased Lp) and
unchanged Cp in the HDIs indicate that the brain WM
structural networks in HDIs may keep high wiring cost or
break up the trade-off between the efficiency and cost and
may shift towards a random network (Latora & Marchiori
2001).

With respect to nodal parameters, we found that the
HDIs showed significantly increased Enod in the bilateral
OFC, left PFC and left ACG compared with the controls
(Fig. 2 and Table 4). Previous studies (Kalivas & Volkow
2005; Baler & Volkow 2006) suggested that the OFC is
mainly involved in motivation and salience evaluation,
the PFC is responsible for craving and cognitive control
and the ACG is involved in the inhibition controlling and
conflict monitoring. In heroin users, the typical cognitive
impairment includes poor cognitive processing, decision-
making deficit, uninhibited behaviour and loss of self-
control (Vassileva et al. 2007; Dissabandara et al. 2014;
Yan et al. 2014). The disrupted WM connectivity in the
PFC or in the ACG may cause impairment of cognitive
control function across multiple domains, including

attention, inhibition, decision and working memory,
which lead to the reduced cognitive control on craving
and motivation in heroin users (Ma et al. 2010;
Moreno-Lopez et al. 2012; Jasinska et al. 2014). Notably,
the NBS analysis suggested that the inter-regional con-
nections among the paralimbic, OFC, PFC and temporal
regions were significantly changed (Fig. 3a). Thus, our
findings of the aberrant nodal efficiency in the bilateral
OFC, left PFC and left ACG may provide evidence to some
extent that heroin users have a weak cognitive control
and conflict monitoring ability. When exposed to heroin-
related cues, heroin users easily ignore the negative
results of the addiction and turn to drug-taking behav-
iours (Koob & Volkow 2009).

For the changes of WM connectivity in the HDIs, their
origins might be traced back to the increased number of
streamlines interconnecting different gray matter nodes.
Within the NBS-derived subnetwork, we detected that the
number of streamline counts was significantly correlated
with the changed global network metrics (Lp, Sp and Eglob)
in the HDIs (Fig. 3b). Although we are not sure whether
an increased streamline counts in this study can be
ascribed to an increased number, density or coherence of
axonal fibres, it is clear that the axonal fibres provides
pathways for the information transferring between brain
regions. The increased axonal fibres or density may imply
that over-speed nerve pulses are transferred (Rushton
1951; Budd & Kisvárday 2012; Hofman 2014). The
over-speed information flow may prompt HDIs to make a
pat-on-the-head decision ignoring the consequences
(Forstmann et al. 2010; Cavanagh et al. 2011). In addi-
tion, we found that the HDIs showed significantly
increased FA and axial diffusivity (λ//) in several tracts
using the tract-based spatial statistic approach, including
the right anterior corona radiate, right posterior limb of
internal capsule, bilateral posterior thalamic radiation

Table 5 Robustness analysis to show the
stability of our findings in brain topology
between the heroin-dependent individuals
(HDIs) and the healthy controls (HCs).

Analysis strategy

Between-group difference in network parameters
(HDIs versus HCs)

δ λ γ Cp Sp Eglob Lp

counts > 0 in AAL-90 n.s. n.s. n.s. n.s. 5.0e-4 ↑ 1.5e-3 ↑ 1.4e-3 ↓
counts ≥ 5 in AAL-90 n.s. n.s. n.s. n.s. 4.0e-4 ↑ 1.5e-3 ↑ 1.4e-3 ↓
AAL-1024 template 4.2e-2 ↑ n.s. n.s. n.s. 9.0e-4 ↑ 6.0e-4 ↑ 5.0e-4 ↓
P < 0.01 n.s. n.s. n.s. n.s. 6.0e-4 ↑ 2.8e-3 ↑ 1.6e-3 ↓
Head motion effects n.s. n.s. n.s. n.s. 6.6e-3 ↑ 2.0e-2 ↑ 1.0e-2 ↓

We listed the results obtained from selecting different brain parcellation schemes (AAL-90 and
AAL-1024) and a conservative threshold (P < 0.01) and regressing out head motion parameters.
The threshold ‘counts > 0’ indicates that the two regions were connected if at least one streamline
existed between a pair of brain regions. The AAL-1024 template contains 1024 regions with equal
volume size.
↑ = HDIs > HCs; ↓ = HDIs < HCs; n.s. = non-significant; γ = normalized clustering; λ = normalized
path length; δ = γ/λ; Cp = cluster coefficient; Eglob = global efficiency; Lp = characteristic path
length; Sp = network strength.
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and left exterior capsule (Supporting Information
Fig. S1). Thus, we may infer that the increased WM con-
nections provide a potential explanation of heroin addic-
tion related to neuronal basis from the perspective of
neural pulse transferring.

Several potential limitations exist in this study. First,
the DTI data with non-isotropic voxel size and low SNR
(acquired from a 1.5T MRI scanner) may bias the cal-
culation result. To address the potential impacts of low
SNR, we repeated the network analysis using different
inter-regional connectivity threshold and different brain
parcellation schemes and found that the results showed
a high robustness across subjects (Table 5). This sug-
gests that our findings are reliable and stable, although
some suboptimal scanning parameters have been used.
Second, the sources of miscalibration of hardware com-
ponents may have a combined effect on fibre tracking.
Gradient calibration is an important step for acquiring
high-quality diffusion-weighed images and for obtaining
accurate brain WM tracks (Posnansky, Kupriyanova &
Shah 2011). To calibrate gradient and reduce the gra-
dient errors, such as gradient amplitude scaling errors
and background gradients, we used an affine alignment
to correct the eddy current and rotated gradient direc-
tion corresponding diffusion-sensitive directions
(Leemans & Jones 2009). Besides of the gradient correc-
tion, the signal dropout or the interaction between
motion and field inhomogeneity should also be consid-
ered in the future study. Third, the influence of metha-
done on brain WM was not considered, although a
previous study (Wang et al. 2011) suggested that the
methadone treatment may affect diffusivity of brain
tissues in HDIs. In this study, we analysed the correla-
tions between the significant changed network param-
eters and the age onset of addiction or the duration of
addiction in the HDIs. We found that the duration of
addiction in the HDIs was positively correlated with Sp

(r = 0.21, P = 0.37) and Eglob (r = 0.22, P = 0.34), but
negatively with the Lp (r = −0.21, P = 0.37). Similarly,
we also detected that the age onset of addiction was
positively correlated with Sp (r = 0.02, P = 0.93) and
Eglob (r = 0.02, P = 0.93), but negatively with Lp

(r = −0.04, P = 0.86). However, none of these correla-
tions reached the significant level (P < 0.05). To uncover
the brain WM structural network alteration in HDIs, we
should collect more detailed clinical variables and con-
sider the effect of methadone on the topology of brain
networks in the future study. Finally, as this is a cross-
sectional study, we cannot make sure whether the topo-
logical differences are a consequence of heroin exposure
or they existed before addiction and served as predispos-
ing factors to the development of addiction. Genetic and
longitudinal imaging studies are required to resolve
this issue.

CONCLUSION

In summary, we constructed brain WM structural net-
works, analysed the topological properties according to
graph theory and detected abnormal axonal fibre connec-
tivity and topological organization in the HDIs. The HDIs
showed increased global integration (increased Eglob and
Sp, decreased Lp) along with increased nodal efficiency in
the bilateral OFC, left PFC and left ACG. We also detected
increased WM connections in the OFC, PFC and ACG in
the HDIs. These results may suggest the disruption of
brain WM structural network in heroin-dependent users.
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