
OPEN

ORIGINAL ARTICLE

Topologically convergent and divergent functional
connectivity patterns in unmedicated unipolar depression and
bipolar disorder
Y Wang1,2,5, J Wang3,5, Y Jia4, S Zhong4, M Zhong3, Y Sun1, M Niu3, L Zhao1, L Zhao3, J Pan4, L Huang1 and R Huang3

Bipolar disorder (BD), particularly BD II, is frequently misdiagnosed as unipolar depression (UD), leading to inappropriate treatment
and poor clinical outcomes. Although depressive symptoms may be expressed similarly in UD and BD, the similarities and
differences in the architecture of brain functional networks between the two disorders are still unknown. In this study, we
hypothesized that UD and BD II patients would show convergent and divergent patterns of disrupted topological organization of
the functional connectome, especially in the default mode network (DMN) and the limbic network. Brain resting-state functional
magnetic resonance imaging (fMRI) data were acquired from 32 UD-unmedicated patients, 31 unmedicated BD II patients (current
episode depressed) and 43 healthy subjects. Using graph theory, we systematically studied the topological organization of their
whole-brain functional networks at the following three levels: whole brain, modularity and node. First, both the UD and BD II
patients showed increased characteristic path length and decreased global efficiency compared with the controls. Second, both the
UD and BD II patients showed disrupted intramodular connectivity within the DMN and limbic system network. Third, decreased
nodal characteristics (nodal strength and nodal efficiency) were found predominantly in brain regions in the DMN, limbic network
and cerebellum of both the UD and BD II patients, whereas differences between the UD and BD II patients in the nodal
characteristics were also observed in the precuneus and temporal pole. Convergent deficits in the topological organization of the
whole brain, DMN and limbic networks may reflect overlapping pathophysiological processes in unipolar and bipolar depression.
Our discovery of divergent regional connectivity that supports emotion processing could help to identify biomarkers that will aid in
differentiating these disorders.
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INTRODUCTION
Affective disorders, such as unipolar depression (UD, or major
depressive disorder) and bipolar disorder (BD), are highly
prevalent and debilitating conditions associated with high suicide
rates and a heavy social burden.1 Although BD consists of
recurring episodes of mania/hypomania and depression, the
depressive episodes are the most common mood manifestation
of the illness.2 Unfortunately, when BD manifests as the depressed
state, it is often misdiagnosed as UD, leading to inappropriate
treatment, poor clinical outcomes and greater health-care costs.3

It is, therefore, crucial to identify objective and reliable neurobio-
logical markers to help differentiate these disorders, especially in
individuals presenting during depressive episodes.

Accumulating evidence suggests widespread brain structural
and functional alterations in both UD and BD (mostly BD I), such as
the prefrontal cortex, limbic system, ventral striatum, insula and
thalamus.4–8 However, direct comparisons of neuroimaging
measures between UD and BD depression are sparse and the
results are inconclusive. Structural neuroimaging studies suggest
more widespread abnormalities in white matter connectivity and

white matter hyperintensities in BD than in UD.3,6,9–11 Task-based
functional magnetic resonance imaging (fMRI) studies reported
patterns of functional abnormalities in the emotion processing,
reward and emotion regulation neural circuits in UD that were
distinct from those in BD.3,4,6,12,13 These abnormalities may help
distinguish BD from UD depression. Recently, resting-state fMRI (R-
fMRI) has become widely used, as well. By using resting-state
functional connectivity (FC) analysis, several studies found FC
alterations in the default mode network (DMN) and affective
network in different types of affective disorders.5,8,14,15 Moreover,
Marchand et al.16 found that the right posterior cingulate cortical
FC not only differentiates unipolar from bipolar depression but
may also mediate differences in neural processes associated with
symptom expression (for example, depression severity and current
suicidal ideation) between unipolar and bipolar individuals.
However, Anand et al.17 and Wang et al.18 failed to observe a
significant difference in the resting-state FC between these two
disorders, a finding that might imply an overlap in the
neuropathology of depression. However, some of the extant
studies included BD- and UD-depressed groups that were not well
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matched clinically (such as in the duration of illness or the number
of episodes, as well as in the levels of depressive symptomatol-
ogy), some included individuals taking a diverse array of
medications and some included both BD I and BD II individuals.6

Notably, there are two established subtypes of BD: type I and type
II. The subtype BD II is distinguished from BD I mainly by the
absence of full-blown manic episodes. Most neuroimaging studies
have involved bipolar I patients, but comparatively few studies
have focused on bipolar II disorder.8 However, a growing body of
evidence suggests that there may be neurobiological differences
between BD I and BD II.19–21 Therefore, paying attention to the
pathophysiology and the neurobiological mechanisms underlying
BD II is important.

Graph theory provides a powerful mathematical framework for
describing the topological organization of brain networks
consisting of nodes (that is, brain regions) and edges (that is,
physical or functional connections between brain regions).22 Using
graph theoretical methods, researchers revealed that the intrinsic
activity of a healthy human brain tends to demonstrate efficient,
‘small-world’ networks that have an optimal balance between
local specialization and global integration for information
processing.23 Optimal small-world networks have a high level of
local clustering (that is, nodes are often connected to their
neighbors), combined with short path lengths (that is, it takes few
steps from any node to any other node in the network) and a low
network cost (that is, the mean physical distance between
connected nodes is considerably less than is the case in a random
network).23 Several studies have found disrupted small-world
networks, modular architecture and abnormal regional character-
istics in various brain diseases, such as Alzheimer’s disease,24

attention-deficit/hyperactivity disorder25 and schizophrenia.26

Until now, only a few studies have examined the topology of
the whole-brain functional network in UD using R-fMRI and graph
theory, and those studies that did were inconsistent in the
network topological properties that they reported.27–31 With
respect to BD, only one study showed a disrupted functional
topological architecture of the resting-state brain network in BD
with hypomanic/manic and depressed episodes (both BD I and II
included).32

To our best knowledge, no study has directly compared the
topological organization of large-scale whole-brain functional
networks between UD and BD II patients. In this study, we
acquired R-fMRI data from currently unmedicated UD- and BD II-
depressed patients as well as from healthy controls. Then, we
analyzed the topological organization of the whole-brain intrinsic
functional networks and determined between-group differences
in topological parameters. We hypothesized that UD and BD II
patients would show convergent and divergent patterns of
disrupted topological organization of the functional connectome,
especially in the DMN and the limbic network, both of which
support emotion and cognitive functioning. Furthermore, we used
a receiver operator characteristic (ROC) analysis to investigate
whether these topological organizations showed abnormalities
which can discriminate between unipolar and bipolar depression.

MATERIALS AND METHODS
Participants
A total of 32 currently depressed patients with bipolar II disorder and 31
currently depressed patients with UD were recruited from the Psychiatry
Department of the First Affiliated Hospital of Jinan University, Guangzhou,
China. The patients were 18–54 years old. The diagnoses of UD and BD
type II were made according to the Structured Clinical Interview for DSM-IV
by two experienced psychiatrists. The clinical state for each patient was
assessed using the 24-item Hamilton Depression Rating Scale (HAMD) and
the Young Mania Rating Scale during the 7-day period prior to the R-fMRI
scan. The inclusion criterion for the patients with UD was a total HAMD-24
score 421, whereas for the depressed patients with BD II was a total

Young Mania Rating Scale score o7 and total HAMD-24 score 421. The
exclusion criteria were patients with other Axis-I psychiatric disorders
(except for UD, BD and anxiety disorders), a history of organic brain
disorders, neurological disorders, mental retardation, cardiovascular
diseases, alcohol/substance abuse or dependence, pregnancy or any
physical illness. None of the patients had ever received electroconvulsive
therapy prior to participating in the study. In addition, all the patients with
UD had no family history of BD. At the time of scanning, all the patients
were either medication-naive or had been unmedicated for at least
5 months.

We also recruited 43 healthy subjects as the controls via local
advertisements. They were carefully screened using a diagnostic interview,
the Structured Clinical Interview for DSM-IV-Nonpatient Edition, to rule out
the presence of current or past psychiatric illness. Further exclusion criteria
for the healthy controls were any history of psychiatric illness in first-
degree relatives and current or past significant medical or neurological
illness.

All the subjects were right-handed according to their self-report. In
addition, all the included subjects were determined to have no brain
abnormalities on conventional MRI by two experienced radiologists. The
study was approved by the Ethics Committee of the First Affiliated Hospital
of Jinan University, China. Each subject signed a written informed consent
form after a full written and verbal explanation of the study.

Data acquisition
All MRI data were obtained on a GE Discovery MR750 3.0 T System with an
eight-channel, phased-array head coil. The R-fMRI data were acquired
using a single-shot gradient-echo EPI sequence with the following
parameters: repetition time= 2000 ms, echo time= 25 ms, flip angle = 90°,
field of view= 240 mm×240 mm, data matrix = 64 × 64, thickness/
gap= 3.0/1.0 mm, 35 axial slices covering the whole brain and 210
volumes acquired in 7 min. During the scanning, each subject was asked to
keep their eyes closed, to relax the mind, but not to fall asleep and not to
think of anything in particular. In addition, two routine scans using axial T1-
weighted fluid attenuation inversion recovery and fast spin-echo T2-
weighted MR sequences were also applied to obtain brain images to
confirm the absence of any brain structural abnormalities.

Data preprocessing
The R-fMRI data were preprocessed using SPM8 (http://www.fil.ion.ucl.ac.
uk/spm/) and DPARSF33 (http://restfmri.net/forum/DPARSF). Preprocessing
comprised the removal of the first 10 volumes, slice timing correction for
the remaining 200 volumes, realignment to the first volume for head
motion correction, spatial normalization to the Montreal Neurological
Institute space with 3 × 3× 3 mm3 voxels, signal linear detrending and
temporal band-pass filtering (0.01–0.08 Hz). All the subjects in this study
satisfied our criteria for head motion, displacement o1.5 mm in any plane
and rotation o1.5° in any direction.

Constructing brain functional networks
Using the GRETNA toolbox34 (http://www.nitrc.org/projects/gretna/), we
constructed the brain functional network for each subject according to the
automated anatomical labeling (AAL) template.35 First, we randomly
parcellated the regions of the AAL template into 1024 ROIs with equal
volume size (referred to as the AAL-1024 template) by using the algorithm
developed by Zalesky et al.,36 each ROI being defined as a node of the
network. For a given ROI in each subject, we obtained its time series by
averaging the time courses of all the voxels within the ROI and performed
a linear regression to remove the effects of the following nuisance
covariates: the Friston-24 parameters of head motion (six head motion
parameters, six head motion parameters one time point before and the
twelve corresponding squared items)37 and the signals of the whole brain,
white matter and cerebrospinal fluid. Second, for each node, we first used
the residual of its time series to calculate Pearson’s correlation coefficients
with the other 1023 ROIs and then repeated this process for all the ROIs.
Thus, we obtained a 1024 by 1024 symmetric correlation matrix for each
subject and the corresponding P-value for each matrix element for each
subject. Each P-value was the probability of getting a correlation as large as
the observed value by random chance when the true correlation is zero.
Third, we employed a thresholding procedure on the correlation matrix for
each subject using two previous studies.24,38 Specifically, internodal
correlations surviving a threshold of Po0.05 (Bonferroni correction) were
retained or, otherwise, were set to 0. Of note, during the calculations,
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negative correlations were excluded, given their ambiguous interpretation
and detrimental effects on test–retest reliability.39–42 Finally, by taking the
remaining Pearson’s coefficients as the edge weights, we obtained a
weighted 1024 by 1024 FC matrix for each subject, which was used in the
subsequent analyses. We also displayed the mean FC and one subject’s FC
pattern from each group as examples to help to clarify the FC matrix
(Supplementary Figure S2).

Network analysis
Global parameters. Graph theory was used to analyze the topological
properties of the human brain functional networks. We used four
parameters, the clustering coefficient (Cw), characteristic path length (Lw),
global efficiency (Eglob) and local efficiency (Eloc),

43 to characterize the
global topological properties of the brain networks. The Cw and Eloc
indicate the functional segregation in the brain in that Cw shows the extent
of the local interconnectivity or cliquishness in a network and Eloc
measures the ability to transfer local information. Lw and Eglob indicate the
functional integration in the brain in that Lw measures the harmonic length
between pairs and quantifies the ability of information to propagate in
parallel and Eglob measures the ability to transfer global information. Their
definitions and descriptions are provided in Supplementary Table S1. In
addition, we utilized three parameters: the normalized clustering
coefficient (γ), normalized weighted characteristic path length (λ) and
small worldness (δ) to measure the small-world property. Typically, a small-
world network satisfies the following criteria: γ441 and λ≈1, or σ= γ/λ4
1.44

Modular parameters. We calculated the modularity of the brain network
using an optimized algorithm,45 based on the average FC matrix of the
healthy controls. Modularity is defined as the extent to which a network
can be decomposed into subnetworks that are more connected within
modules than between modules. The definition of the modularity index Q
is also given in Supplementary Table S1.

On the basis of the detected modules, we calculated the values of the
intra- and intermodular FC for each subject. The strength of the
intramodular FC was defined as the mean of all the internodal FCs within
the selected module, whereas the strength of intermodular FC was defined
as the mean of the FCs between any two nodes in the two selected
modules. For each module, we also used the intramodular FC to estimate
the values of the four global parameters (Cw, Lw, Eloc and Eglob) to
characterize the model’s topological properties.

Nodal parameters. We also used two parameters, nodal strength (Swi ) and
nodal efficiency (Ewi ) to characterize the nodal properties of the brain
networks. Swi quantifies the extent to which a node is relevant to the graph,
and Ei

w is the ability to transfer information from one node to others. Their
definitions and descriptions are also provided in Supplementary Table S1.

Statistical analysis
Group effect analysis. A non-parametric permutation test, which inher-
ently accounts for multiple comparisons,46,47 was used to detect
differences between the UD, BD II and control groups in each of the
demographic information, clinical variables, global parameters (Cw, Lw, Eloc,
Eglob, γ, λ and δ), intra- and intermodular FCs and nodal parameters (Swi and
Ewi ). In the calculations, we took age, gender and age–gender interaction as

nuisance covariates and regressed them out. The adjective ‘permutation’
applied to parametric tests (t-tests, analysis of variance) indicates that we
permuted the group to determine the P-value of the corresponding t or F
statistic rather than using the traditional, Gaussian-based P-values. A
detailed description of the permutation test is presented in the
Supplementary Materials. The false discovery rate (FDR) method48 was
used to correct for multiple comparisons when needed.

Once a significant group effect was observed for a parameter, we
estimated its effect size (η2) according to Cohen’s definition,49 according to
which the levels of small, medium and large effect size correspond to 0.01,
0.06 and 0.14, respectively. In addition, we performed post hoc tests to
determine the between-group differences for each of the network
parameters (10 000 permutations).

On the basis of the individual brain functional networks, we also
performed a network-based statistic analysis36 to identify any subnet-
works, or clusters of connections, in which each edge showed significant
differences between the UD patients and the control group or between
the BD patients and the control group. This approach can control the
family-wise error rate when mass-univariate testing is performed at every
connection in the subnetwork.36 The description of the network-based
statistic approach is presented in the Supplementary Materials.

Correlations between the network parameters and clinical variables. For the
network parameters that showed a significant group effect, we performed
a partial correlation analysis to describe their relationships with the clinical
variables in each patient group (Po0.05, FDR-corrected). These clinical
variables included the HAMD scores, number of episodes, onset age of
illness and duration of illness.

Robustness
Robustness is a key issue in network analysis.50,51 To determine whether
the observed group differences in the topological parameters reflect true
differences rather than artifacts, we repeated the network analyses using
each of the following approaches. First, we used both the positive and
negative correlations to construct the brain network. Second, we
constructed the binary network. Third, we constructed the network based
on a sparsity range. Finally, we considered the effect of the global signal.
Specifically, we constructed the network based on the positive correlations
and then constructed it based on both the positive and negative
correlations without regressing out the global signal.

Network classification
For those network parameters showing a significant group effect, we
plotted the ROC curve to determine which of these parameters could
clearly distinguish the UD patients from the controls, the BD II patients
from the controls and the BD II from the UD patients. The ROC curve is a
fundamental plot in signal detection theory52,53 and is widely used in
medical science and neuroimaging studies. A ROC curve, a scatter plot
showing the relationship between the false-positive rates and the true-
positive rates, describes the relationship between the underlying distribu-
tion of the places where signals were absent and the places where signals
were present. This analysis was performed using a public MATLAB code
(http://www.mathworks.com/matlabcentral/fileexchange/199500-roc-
curve; by Giuseppe Cardillo).

Table 1. Demographics and clinical characteristics of the patients with UD, patients with BD and HCs

Parameters UD (n=31) BD II (n= 32) HC (n= 43) P-value

Age (years) 30.41± 9.85 28.22± 10.13 30.19± 11.11 0.23a

Gender 10 M/21 F 13 M/19 F 17 M / 26 F 0.39b

Number of episodes 1.93± 2.19 2.16± 1.19 N/A 0.35c

Age of illness onset (years) 26.41± 10.72 24.58± 10.42 N/A 0.26c

Duration of illness (months) 40.68± 50.41 39.14± 56.62 N/A 0.46c

HAMD-24 26.76± 5.58 26.23± 6.24 N/A 0.37c

YRMS 2.31± 3.69 1.58± 1.50 N/A 0.16c

Mean FD (mm) 0.09± 0.06 0.09± 0.04 0.08± 0.03 0.42a

Abbreviations: ANOVA, analysis of variance; BD, bipolar disorder; FD, framewise displacement; HAMD, Hamilton Depression Scale; HC, healthy control; N/A, not
applicable; UD, unipolar depression; YRMS, Young Mania Rating Scale. aThe P-value was obtained from a permutation ANOVA analysis. bThe P-value was
obtained from Pearson’s χ2-test. cThe P-value was calculated from a permutation two-sample t-test.
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RESULTS
Demographic information
Table 1 lists the demographic and clinical characteristics of the
three groups. No significant differences were detected between
the three groups in age, gender, education levels or the mean
framewise displacement parameter. In addition, there was no
significant difference in depression severity, illness duration or
onset age of illness between the two depressed groups.

Global parameters
Figure 1 shows the global parameters (Cw, Lw, Eloc, Eglob, γ, λ and δ)
for the UD, BD and control groups. Statistical analyses revealed
significant differences in Lw and Eglob between the three groups
(Po0.05). Post hoc comparisons revealed that both the UD and BD
II groups had a significantly increased Lw and a significantly
decreased Eglob, compared with the controls (Po0.05). However,
no differences were found between the UD and BD II groups in
these parameters (see Supplementary Table S2 for more
information).

Modularity
In the controls, we identified seven modules (Q =0.6803): the
sensorimotor network, cerebellum, visual network, limbic network,
frontoparietal network, DMN and salience network, which are
shown in Supplementary Figure S3. The limbic network primarily
includes the bilateral hippocampus, parahippocampus, thalamus,
anterior cingulate gyrus, temporal pole, caudate and amygdala.
The DMN primarily involves the bilateral medial frontal gyrus,
superior frontal gyrus, precuneus, posterior cingulate gyrus,
angular gyrus, middle temporal gyrus and inferior temporal gyrus.
The sensorimotor network includes the bilateral precentral gyrus
and postcentral gyrus. The visual network includes the bilateral
occipital gyrus. The frontoparietal network involves the bilateral
inferior parietal gyrus, middle frontal gyrus, inferior frontal gyrus,
superior frontal gyrus and middle temporal gyrus. The salience
network involves the bilateral insular and cingulate gyrus. These
were consistent with previous studies.54,55

We calculated four global parameters (Cw, Lw, Eloc and Eglob) for
each module as well as the intra- and intermodular FCs for each
subject. The statistical analysis for these seven modules, except for
the DMN and the limbic network, showed no significant group

effect for any of these four parameters. Figure 2a shows that for
the DMN, the four global parameters were all significantly
different between the three groups (Po0.05, FDR-corrected;
Supplementary Table S2). Post hoc comparisons revealed that both
the UD and BD II groups had a significantly decreased Cw, Eloc and
Eglob, but significantly increased Lw, compared with the controls.
Figure 2b shows that, for the limbic network, the four global
parameters were significantly different between the three groups
(Po0.05, FDR-corrected; Supplementary Table S2). Post hoc
comparisons found that both the UD and BD II groups had a
significantly decreased Cw, Eloc and Eglob, but a significantly
increased Lw, compared with the controls. However, no differences
in these parameters were found between the UD and BD II groups.

Figure 2c shows that, of the seven modules, the intramodular
FCs in the DMN and in the limbic network were significantly
different between the three groups (Po0.05, FDR-corrected;
Supplementary Table S3). Post hoc comparisons revealed that the
UD and BD II groups had significantly decreased intramodular FCs
in both the DMN and the limbic network compared with the
controls. However, no differences in the intramodular FC in the
DMN and the limbic network were found between the UD and BD
II groups. For the other modules, we found no significant group
effect in the intramodular FC.

The seven modules gave 28 intermodular FCs (C2
7 ¼ 21

intermodular FCs). However, no significant group effect survived
after FDR correction (Po0.05, FDR-corrected).

Nodal parameters
Figure 3 shows the brain regions with a significant group effect in
the nodal parameters (Swi and Ewi ) between the three groups
(Po0.05, FDR-corrected). We found a significant group effect in
Swi in two regions (Figure 3a), which are located in the right
superior temporal pole and left posterior lobe of the cerebellum.
Post hoc comparisons revealed that, in the right superior temporal
pole, the UD group had a significantly decreased Swi compared
with the BD II group and with the control group. In the left
cerebellum posterior lobe, both the UD and BD II groups had a
significantly decreased Swi compared with the controls. In addition,
we detected a significant group effect in Ewi in six regions
(Figure 3b), which are located in the bilateral medial superior
frontal gyri, bilateral precuneus, right middle temporal pole and
left middle cingulum. Post hoc comparisons revealed that in the

Figure 1. Box plots showing statistical comparisons in the global parameters between the patients with UD, patients with BDs and HCs.
Significant group effects were observed in Lw (P= 0.0335) and Eglob (P= 0.028). δ, small worldness; γ, normalized clustering coefficient; λ,
normalized shortest path length; BD, bipolar disorder; Cw, weighted clustering coefficient; Eglob, weighted global efficiency; Eloc, weighted local
efficiency; HC, healthy control; Lw, weighted characteristic path length; UD, unipolar depression.
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right precuneus both the UD and BD II groups had a significantly
decreased Ewi compared with the controls and the UD group had a
significantly increased Ewi compared with the BD II group. In the
bilateral medial superior frontal gyri and left middle cingulum,
both the UD and BD II groups had a significantly decreased Ewi
compared with the control group. In addition, in the right middle
temporal pole and left precuneus, the UD group showed a
significantly increased Ewi compared with the BD II and control
groups. Furthermore, we noticed that most of these regions (1/2
for the Swi and 6/6 for the Ewi ) are included in the DMN and the
limbic network (see Supplementary Table S4 for more
information).

Relationship between network parameters and clinical variables
For the correlations between network parameters and clinical
variables, no significant correlation results survived after FDR
correction (Po0.05, FDR-corrected). We have also displayed the
correlation results without correction in Supplementary Figure S5.

Robustness
Table 2 lists the statistical results between the UD, BD II and
control groups using four other data-processing strategies. These
calculations indicated that most of our findings reported above
were relatively reliable across the various strategies. Specifically,
significant differences were always found in the the Lw and Eglob
between the UD, BD II and control groups.

Classification
For the network parameters showing significant group effects, we
plotted their ROC curves to examine their ability to distinguish the
UD patients from the controls, the BD II patients from the controls
and the BD II patients from the UD patients. We found that the Swi
in the right superior temporal pole provided the highest
classification power for discriminating the UD patients from the
controls (AUC= 0.76, P=7.4e− 6, 95% confidence interval (CI)
area = 0.64–0.87, sensitivity = 61.29%, specificity = 81.40%, effi-
ciency = 72.97%; Supplementary Table S5) and the Ewi in the right
precuneus provided the highest classification power for discrimi-
nating the BD II patients from the controls (AUC= 0.75, P= 6.4e− 6,

Figure 2. Box plots showing statistical comparisons in the global parameters and intramodular FC between the patients with UD, patients with
BDs and HCs (permutation ANOVA, Po0.05, corrected) in the modules of the DMN and the limbic network. (a) For the DMN, we observed
significant group effects in Cw (P= 0.0147), Lw (P= 0.0037), Eloc (P= 0.0045) and Eglob (P= 0.0026). (b) For the limbic network, we observed
significant group effects in Cw (P= 0.0068), Lw (P= 0.0008), Eloc (P= 0.0011) and Eglob (P= 0.0019). (c) For the intramodular FC, we observed
significant group effects in the DMN (P= 0.0020) and the limbic network (P= 0.0064). δ, small worldness; γ, normalized clustering coefficient; λ,
normalized shortest path length; ANOVA, analysis of variance; BD, bipolar disorder; Cw, weighted clustering coefficient; DMN, default mode
network; Eglob, weighted global efficiency; Eloc, weighted local efficiency; FC, functional connectivity; HC, healthy control; Lw, weighted
characteristic path length; UD, unipolar depression.
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95% CI area = 0.64–0.87, sensitivity = 78.13%, specificity = 62.79%,
efficiency = 69.33%; Supplementary Table S6). In addition, we
found that the Ewi in the left precuneus provided the highest
discrimination ability for distinguishing the BD II patients from the
UD patients (AUC= 0.65, P=1.7e − 2, 95% CI area = 0.51–0.78,
sensitivity = 37.50%, specificity = 93.55%, efficiency = 65.08%;
Supplementary Table S7).

DISCUSSION
By studying these unmedicated UD patients and unmedicated BD
II-depressed patients, we detected abnormal topological para-
meters of the brain functional networks without the potentially
confounding influence of psychotropic medications such as
lithium or antidepressants. The main findings are as follows: (1)
at the global level, both the UD and the BD II patients showed a
significantly increased Lw and a decreased Eglob; (2) at the module
level, both the UD and BD II patients had disrupted intramodular
connectivity within the DMN and limbic network; (3) at the nodal
level, both the UD and BD II patients showed impaired nodal

Figure 3. Rendered plots of the brain regions showing significant group effects in nodal parameters (Po0.05, FDR-corrected). (a) Nodal
strength; (b) nodal efficiency. Box plots showing statistical comparisons in the nodal parameters between the patients with UD, patients with
BD and HC. The size of a node is inversely proportional to the P-value of the group effect for the given nodal parameter. BD, bipolar disorder;
DMN, default mode network; FDR, false discovery rate; HC, healthy control; UD, unipolar depression.
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parameters predominantly in regions of the DMN, limbic network
and cerebellum; (4) the UD and BD II groups showed differences in
the nodal parameters in the precuneus and temporal pole. To our
knowledge, this study is the first to report topologically
convergent and divergent patterns of the whole-brain functional
networks between UD and BD II patients. These findings may
contribute to our understanding of the neuropathological
mechanisms in these two disorders.

Similar global-parameter changes in UD and BD
In this study, the whole-brain functional networks in the UD, BD II
and control groups showed small-world properties that were
consistent with previous findings in healthy adults.22,56 We also
found several global topological properties of the whole-brain
networks, including increased characteristic path length Lw and
decreased global efficiency Eglob (Figure 1), that showed the same
change in direction in the UD and BD II groups compared with the
controls. These findings, which were consistent with previous
neuroimaging studies of brain functional and structural networks
in UD patients28,57,58 and BD patients,32,59,60 may reflect the
disrupted global integration of the whole-brain functional net-
works in the two disorders. We also noticed inconsistency
between this study and several previous studies in the changes
in the global properties in the UD patients. For example, Zhang
et al.31 found decreased characteristic path length Lw and
increased global efficiency Eglob in first-episode drug-naive UD
patients by measuring the partial correlation coefficients of the
R-fMRI signals between 90 cortical and subcortical regions; this is
the opposite of what we found. In addition, several R-fMRI studies
found no differences in global topological properties between UD
patients and healthy controls.61–63 These inconsistencies may
have been caused by any of several factors, including sample
heterogeneity (age, depressive episode, medication and disease

duration), modality used (for example, EEG/MEG; structural,
diffusion and functional MRI), selection of the network matrix
(binary or weighted) or the definitions of node and edge weight.

Similar modular-parameter changes in UD and BD
In this study, both the UD and BD II groups had decreased
clustering coefficients Cw, local efficiencies Eloc, global efficiencies
Eglob and increased characteristic path lengths Lw within two
modules: the DMN and the limbic network (Figures 2a and b). This
may indicate disrupted effective segregation and integration of
information processing within these networks. In addition, the UD
and BD II groups had decreased intramodular FCs in the DMN and
limbic network (Figure 2c). These findings suggest that UD and BD
patients share similar disruptions of their intrinsic modular
structures. In fact, previous studies have suggested that the
DMN is involved in a diverse array of functions, such as episodic
memory, self-relevant mental processing, monitoring the external
environment, remembering the past and planning the future.64,65

Several studies have also found DMN abnormality in UD5,31,64,66

and BD8,67 patients. Aberrant DMN function could lead to
dysfunctional self-referential and affective processing in the form
of an excessively negative self-focus.68,69 The limbic system is the
central part of the ‘emotional brain’ circuitry and is dedicated to
processing and regulating emotion or participating in emotional
expression.70,71 Previous studies have reported brain structural
and functional abnormalities in the limbic system supporting
emotion dysregulation in UD and BD patients,4,72 and several
studies found dysfunctional limbic circuits in depression with
clinical remission, regardless of the specific treatment
modality.72,73 Taken together, our findings of disruptions in the
DMN and the limbic network in UD and BD II may contribute to
core deficits in cognitive and affective functioning that are
believed to underlie clinical symptoms.

Similar and distinct nodal parameter changes in UD and BD
In addition to the global and modular levels, we found that both
the UD and BD II groups showed decreased nodal strength and
nodal efficiency predominantly in the DMN and the limbic
network, including the bilateral precuneus, left middle cingulum,
bilateral superior frontal gyri and right temporal pole (Figure 3 and
Supplementary Table S4), which suggests impaired regional
connectivity in these regions. These results are consistent with
several previous studies related to UD and BD, which reported that
these regions exhibited abnormalities in FC and local
activation,5,6,8,74 glucose metabolism75 and gray matter
morphology.6 In addition, we found decreased nodal strength in
the left posterior lobe of the cerebellum in both the UD and BD II
groups compared with the controls (Figure 3a). In fact, other
studies have shown cerebellum abnormalities, including reduced
gray matter volume,76–78 decreased spontaneous activity18,78,79

and decreased FC,18 in both UD and BD patients. A recent R-fMRI
study also found increased cerebellar–DMN connectivity in
depressed patients compared with healthy controls.80 Therefore,
our finding of impaired connectivity in the posterior lobe of the
cerebellum provides additional evidence for the involvement of
cerebellar dysfunction in the pathophysiology of UD and BD.

We also found significant differences in nodal parameters
(nodal strength and nodal efficiency) between the UD and BD II
patients in the bilateral precuneus and right temporal pole
(Figure 3), suggesting pathophysiological differences between UD
and BD. Specifically, BD patients may display more significant
abnormalities than UD patients in these regions. A further ROC
analysis showed that abnormal nodal strength in the right
superior temporal pole was specific to the UD group
(Supplementary Table S5), whereas abnormal nodal efficiency in
the right precuneus was specific to the BD II group
(Supplementary Table S6). Nevertheless, a larger sample size is

Table 2. Robustness of the statistical comparisons of the global
parameters for the brain functional networks obtained with different
strategies between the UD, BDs and control groups

Different processing strategies Cw Lw Eloc Eglob δ

Global regressing
Main processing strategy – S – S 41
Sparsity – S – S 41
No global regressing – S – – 41
Both positive and negative – S – S 41
Binary – S – S 41

No global regressing
Positive – S – – 41
Both positive and negative S S – S 41

Abbreviations: δ, small worldness; BD, bipolar disorder; Cw, weighted
clustering coefficient; Eglob, weighted global efficiency; Eloc, weighted local
efficiency; FC, functional connectivity; Lw, weighted characteristic path
length; R-fMRI, resting-state functional magnetic resonance imaging; UD,
unipolar depression. Notes: The ‘S’ indicates a significant group effect. ‘–’

indicates no significant group effect. ‘Sparsity’ stands for estimating global
parameters in the threshold range of 0.10–0.35 at an interval of 0.01 by
using a measure of sparsity (the ratio between the total number of edges
and the maximum possible number of edges in a network). We applied
these thresholds to each of the FC matrices. ‘No global regressing’ refers to
a network analysis based on a connectivity matrix that was constructed
from the R-fMRI data without regressing out the global signal. ‘Both
positive and negative’ refers to a network analysis based on a connectivity
matrix that included both positive and negative internodal correlations.
‘Positive’ refers to a network analysis based on a connectivity matrix that
only included positive internodal correlations. In addition, ‘Binary’ refers to
a connectivity matrix that was converted into a binary matrix at a selected
threshold when constructing the network.
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warranted in future studies to replicate our results and to extend
the generalizability of our results. We also found that nodal
efficiency in the precuneus had high classification power in
discriminating the BD group from the UD group (Supplementary
Table S7). These results are partially consistent with previous
studies. A R-fMRI study found that the increase in the intrinsic
connectivity of the amygdala with the temporal poles was
inversely correlated with depression severity in UD.81 Task-based
fMRI studies found increased amygdala activity in response to
angry82 and sad12,83 faces, but decreased amygdala activity in
response to positive12,83 faces in UD compared with participants
with BD. These changes in the amygdala may represent a
potential neural basis for the increased negative and reduced
positive emotional attentional bias in UD. In addition, a structural
MRI study found a gray matter volume difference between UD and
BD in the amygdala.77 Thus, these findings suggest that
abnormalities in the temporal pole and amygdala supporting
emotion processing may be specific to UD, although the
underlying mechanisms remain to be clarified.77,84 In addition,
Marchand et al.16 suggested that the FC of the right posterior
cingulate cortex can be used to differentiate bipolar type II and
UD. Recently, a voxel-based meta-analysis of DTI studies revealed
a greater decrease in fractional anisotropy in the left posterior
cingulum in BD compared with UD.85 A number of studies support
the importance of the posterior cingulum and precuneus/poster-
ior cingulate cortex in neurocognitive functions such as memory,
attention and planning.86 Therefore, these studies, combined with
our findings of reduced nodal efficiency in the precuneus in BD,
suggest that cognitive deficits may be more representative of
BD,85,87 although a degree of cognitive decline has been
described in both UD and BD.88 Finally, our results of differences
in nodal parameters in the precuneus and temporal pole may aid
in distinguishing the two types of depression.

Limitations
This study has several limitations. First, we cannot predict whether
some patients with depression diagnosed as UD will later switch
to BD, although the patients with UD in this study had no family
history of BD. In addition, we tracked the UD patients after we
acquired the data and found that no UD patient had switched to
BD by the time of the submission of this manuscript. Second, this
study did not consider the effect of brain structural changes on
the network topologies in the UD or BD patients, which may bias
the findings of the present study. Several previous studies
suggested that brain structural changes may have an impact on
the results of FC and network analysis.28 Third, we only examined
patients with BD II, thereby avoiding the potential confounds of
the bipolarity subtype differences in brain functional networks but
also limiting the generalizability of our findings to BD I. Fourth,
although the participants were unmedicated for at least 5 months
prior to the scan, each group may have had variable levels of past
exposure. Thus, it is difficult to estimate the potential contribution
of lifetime exposure to medication in relation to the results. Fifth,
because clinical symptomatology could change over a period of
7 days, collecting the measurements of clinical variables such as
the HAMD and Young Mania Rating Scale scores over a 7-day
period is another limitation. Sixth, because of selection bias,89 the
ROC results should be interpreted as descriptive and exploratory,
requiring confirmation in an independent data set. Further studies
utilizing optimized analytical strategies and multiple imaging
modalities are needed to detect more sensitive and robust
biomarkers for UD and BD. Finally, like all R-fMRI studies, our
results are based on the FC analysis, which is only an exploratory
technique and requires confirmation with task-based or
experimental work.

In conclusion, our study revealed convergent deficits in the
topological organization in the whole brain and in the DMN and

the limbic network in UD and BD II. These deficits may reflect
overlapping pathophysiological processes in unipolar and bipolar
depression. In addition, divergent regional connectivity support-
ing emotion processing could potentially provide biomarkers that
would aid in differentiating between these disorders.
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