Approximation Properties of Reproducing Kernels

M. Eberts (Meister), S. Fischer, N. Schmid, P. Thomann, & I. Steinwart

Institute of Stochastics and Applications
University of Stuttgart

Guangzhou
May 20th, 2017
Overview

- Approximation theoretic questions related to kernel-based learning
- More flexible kernels: spatial decompositions
- More flexible kernels: deeper compositions
Informal Description of Supervised Learning

- X space of input samples
 - Y space of labels, usually $Y \subset \mathbb{R}$.
- Already observed samples

\[D = ((x_1, y_1), \ldots, (x_n, y_n)) \in (X \times Y)^n \]
Informal Description of Supervised Learning

- X space of input samples
 Y space of labels, usually $Y \subset \mathbb{R}$.
- Already observed samples

$$D = ((x_1, y_1), \ldots, (x_n, y_n)) \in (X \times Y)^n$$

- **Goal:**
 With the help of D find a function $f_D : X \rightarrow \mathbb{R}$ such that $f_D(x)$ is a good prediction of the label y for new, unseen x.

- **Learning method:**
 Assigns to every training set D a predictor $f_D : X \rightarrow \mathbb{R}$.
Problem:
The labels y are \mathbb{R}-valued.

Goal:
Estimate label y for new data x as accurate as possible.

Example:
Assumptions

- We have bounded labels $Y = [-1, 1]$.
- P is an unknown probability measure on $X \times [-1, 1]$.
- $D = ((x_1, y_1), \ldots, (x_n, y_n)) \in (X \times Y)^n$ is sampled from P^n.
- Future samples (x, y) will also be sampled from P.
- (For this talk) we mostly use the least squares loss

$$L(y, t) := (y - t)^2$$

to assess quality of a prediction t for y.
The risk of a predictor $f : X \rightarrow \mathbb{R}$ is the average loss

$$\mathcal{R}_{L,P}(f) := \int_{X \times Y} L(y, f(x)) \, dP(x, y).$$

The Bayes risk is the smallest possible risk

$$\mathcal{R}^*_{L,P} := \inf \left\{ \mathcal{R}_{L,P}(f) \mid f : X \rightarrow \mathbb{R} \text{ (measurable)} \right\}.$$

The Bayes predictor for the least squares loss is $f_{L,P}^*(x) := \mathbb{E}(Y|x)$, i.e.

$$\mathcal{R}_{L,P}(f_{L,P}^*) = \mathcal{R}^*_{L,P}.$$

The excess risk satisfies

$$\mathcal{R}_{L,P}(f) - \mathcal{R}^*_{L,P} = \| f - f_{L,P}^* \|^2_{L_2(P_X)}.$$
Kernel-based learning methods

- Let H be a reproducing kernel Hilbert space, here with bounded kernel.
- Let $L : Y \times \mathbb{R} \to [0, \infty)$ be a convex loss.
Kernel-based learning methods

- Let H be a reproducing kernel Hilbert space, here with bounded kernel
- Let $L : Y \times \mathbb{R} \rightarrow [0, \infty)$ be a convex loss
- Kernel-based learning methods (e.g. SVMs) solve the problem

$$f_{D,\lambda} = \arg \min_{f \in H} \lambda \|f\|_H^2 + \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) ,$$ \hspace{1cm} (1)

where $\lambda > 0$ is a free regularization parameter. Solution is of the form

$$f_{D,\lambda} = \sum_{i=1}^{n} \alpha_i k(x_i, \cdot) .$$

Historical Notes
- G. Wahba (1971 –): Least squares loss
- V. Vapnik et al. (1992 –): Hinge loss
- Other losses in the last decade or so.
A Typical Oracle Inequality

- Consider the approximation (regularization) error
 \[A(\lambda) := \inf_{f \in H} \lambda \| f \|_H^2 + R_{L,P}(f) - R^*_L,P \]
- Assume an (dyadic) entropy number behavior
 \[e_i(I : H \to L_2(P_X)) \leq i^{-1/(2p)} \]

Then with probability \(P^n \) not smaller than \(1 - e^{-\tau} \) we have

\[R_{L,P}(f_{D,\lambda}) - R^*_L,P \leq K \left(A(\lambda) + \frac{1}{\lambda^p n} + \frac{\tau A(\lambda)}{\lambda n} \right) \]

Remarks:

- If rate \(A(\lambda) \to 0 \) for \(\lambda \to 0 \) known, we obtain learning rates.
- Entropy behaviour is equivalent to a similar eigenvalue behaviour of
 \[T_k : L_2(P_X) \to L_2(P_X) \]
 \[T_k f := \int_X k(x, \cdot) f(x) dP_X(x) \]
For Banach spaces $F \hookrightarrow E$ and $x \in E$, the K-functional is

$$K(x, t) := \inf_{y \in F} \|x - y\|_E + t\|y\|_F, \quad t > 0.$$

For $0 < \beta < 1$, $1 \leq r \leq \infty$, the interpolation space $[E, F]_{\beta, r}$ consists of those $x \in E$ with finite $\|x\|_{\beta, r}$, where

$$\|x\|_{\beta, r} := \begin{cases} \left(\int_0^\infty (t^{-\beta} K(x, t))^r t^{-1} dt\right)^{1/r} & \text{if } 1 \leq r < \infty \\ \sup_{t > 0} t^{-\beta} K(x, t) & \text{if } r = \infty. \end{cases}$$

We are interested in the spaces $[L_2(P_X), [H]_\sim]_{\beta, r}$.
Interpolation Spaces vs. Approximation Properties

Smale & Zhou, 2003
\[A(\lambda) \preceq \lambda^\beta \] if and only if \(f_{L,P}^* \in [L_2(P_X), [H]_\sim]_{\beta,\infty} \).

Operator techniques (Caponnetto and De Vito, 2007, . . .)
Rates for \(\mathcal{R}_{L,P}(f_{D,\lambda}) \rightarrow \mathcal{R}_{L,P}^* \) are obtained if
\[f_{L,P}^* \in \text{im } T_{\beta/2}^k \]

Smale & Zhou, 2003
If \(X \) is compact, supp \(P_X = X \) and \(k \) continuous, then
\[[L_2(P_X), [H]_\sim]_{\beta+\varepsilon,\infty} \subset \text{im } T_{\beta/2}^k \subset [L_2(P_X), [H]_\sim]_{\beta,\infty} \]
Both approximation assumptions are almost the same, since
\[[L_2(P_X), [H]_\sim]_{\beta+\varepsilon,\infty} \leftrightarrow [L_2(P_X), [H]_\sim]_{\beta,1} \leftrightarrow [L_2(P_X), [H]_\sim]_{\beta,\infty} \]
Let k be a reproducing kernel with compact $I_{k,\nu} : H \to L_2(\nu)$.

Then $T_{k,\nu} = I_{k,\nu} \circ I_{k,\nu}^*$ is selfadjoint, positive, and compact.

Let $(\mu_i)_{i \in I}$ be the family of non-zero eigenvalues of $T_{k,\nu}$ and $([\tilde{e}_i])$ be a corresponding ONS of eigenfunctions in $L_2(\nu)$.

Then $e_i := \mu_i^{-1} I_{k,\nu} [\tilde{e}_i] \in H$ satisfies $[e_i] = [\tilde{e}_i] \in H$ and we have:
Spectral Theorem, Revisited

- Let k be a reproducing kernel with compact $I_{k,\nu} : H \to L_2(\nu)$.
- Then $T_{k,\nu} = I_{k,\nu} \circ I_{k,\nu}^*$ is selfadjoint, positive, and compact.
- Let $(\mu_i)_{i \in I}$ be the family of non-zero eigenvalues of $T_{k,\nu}$ and $([\tilde{e}_i])_\sim$ be a corresponding ONS of eigenfunctions in $L_2(\nu)$.

Then $e_i := \mu_i^{-1} I_{k,\nu}^* [\tilde{e}_i]_\sim \in H$ satisfies $[e_i]_\sim = [\tilde{e}_i]_\sim$ and we have:
- $([e_i]_\sim)$ is an ONS in $L_2(\nu)$.
- $(\sqrt{\mu_i} e_i)$ is an ONS in H.

\[
(ker I_{k,\nu})^\perp = \text{im} I_{k,\nu}^* = \text{span}\{\sqrt{\mu_i} e_i : i \in I\}
\]
\[
(ker T_{k,\nu})^\perp = (ker I_{k,\nu}^*)^\perp = \text{im} I_{k,\nu} = \text{span}\{[e_i]_\sim : i \in I\}
\]

Consequence.
$L_2(\nu)$ and H “share a subspace” described by (e_i).
The Situation so far

Isometric Copy of H in $L_2(\nu)$

$$[H]_\sim = \left\{ \sum_{i \in I} a_i \mu_i^{1/2} [e_i]_\sim : (a_i) \in \ell_2(I) \right\}$$

Closure of H in $L_2(\nu)$

$$\overline{[H]_\sim}^{L_2(\nu)} = \left\{ \sum_{i \in I} a_i [e_i]_\sim : (a_i) \in \ell_2(I) \right\}$$

Question
What is in between?
For $\beta \in [0, 1]$ we can consider the following subspace of $L_2(\nu)$:

$$[H]_{\sim}^\beta := \left\{ \sum_{i \in I} a_i \mu_i^{\beta/2} [e_i]_{\sim} : (a_i) \in \ell_2(I) \right\}$$

$$= \left\{ \sum_{i \in I} b_i [e_i]_{\sim} : (b_i) \in \ell_2(\mu^{-\beta}) \right\},$$

where $\ell_2(\mu^{-\beta})$ is a weighted sequence space with norm:

$$\|(b_i)\|_{\ell_2(\mu^{-\beta})}^2 := \sum_{i \in I} b_i^2 \mu_i^{-\beta}$$
For $\beta \in [0, 1]$ we can consider the following subspace of $L_2(\nu)$:

$$[H]_\sim^\beta := \left\{ \sum_{i \in I} a_i \mu_i^{\beta/2} \langle e_i \rangle_\sim : (a_i) \in \ell_2(I) \right\}$$

$$= \left\{ \sum_{i \in I} b_i \langle e_i \rangle_\sim : (b_i) \in \ell_2(\mu^{-\beta}) \right\},$$

where $\ell_2(\mu^{-\beta})$ is a weighted sequence space with norm:

$$\| (b_i) \|^2_{\ell_2(\mu^{-\beta})} := \sum_{i \in I} b_i^2 \mu_i^{-\beta}$$

By construction, $(\mu_i^{\beta/2} \langle e_i \rangle_\sim)_{i \in I}$ is an ONB of $[H]_\sim^\beta$ and

$$[H]_\sim^0 = [H]_\sim L(\nu)$$

$$[H]_\sim^1 = [H]_\sim$$

$$[H]_\sim^\beta = \text{im} \ T_{k,\nu}^{\beta/2}$$
If \(I_{k,\nu} : H \to L_2(\nu) \) is compact, then, for \(\beta \in (0, 1) \), we have

\[
\text{im } T^{\beta/2}_{k,\nu} = [H]^{\beta} \cong [L_2(\nu), [H]^{\sim}]_{\beta,2}.
\]
If $I_{k,\nu} : H \to L_2(\nu)$ is compact, then, for $\beta \in (0, 1)$, we have

$$\text{im } T_{k,\nu}^{\beta/2} = [H]_\sim^\beta \cong [L_2(\nu), [H]_\sim]_{\beta,2}.$$

Idea of the Proof.

- Interpolating $L_2(\nu)$ and $[H]_\sim$ is the same as interpolating $\ell_2(I)$ and $\ell_2(\mu^{-1})$.
- We have $[\ell_2(I), \ell_2(\mu^{-1})]_{\beta,2} \cong \ell_2(\mu^{-\beta})$.
Rates for Fixed Kernel

- Assume $\mu_i \leq i^{-1/p}$
- Assume $f^*_{L,P} \in [L_2(P_X), H]_{\beta,\infty}$ for some $\beta \in (0, 1]$.
- Assume $[L_2(P_X), H]_{s,1} \hookrightarrow L_\infty(P_X)$ for $s = \min\{1, p/(1 - \beta)\}$. This is equivalent to

$$\|f\|_\infty \leq c \|f\|^s_H \|f\|^{1-s}_{L_2(P_X)}, \quad f \in H$$

Then kernel method can learn with the optimal rate $n^{-\frac{\beta}{\beta+p}}$.

Special Case: Sobolev Setting (e.g. Kohler)

- X ball in \mathbb{R}^d and $H := W^m(X)$ Sobolev space with $m > d/2$.
 \hookrightarrow Least squares with splines.
- P_X uniform distribution and $f^*_{L,P} \in B^s_{2,2}(X)$ for some $s \in (d/2, m]$.

The kernel method can learn with the optimal rate $n^{-\frac{2s}{2s+d}}$.
Improved Convergence

Fischer & S., 2017

- Assume $\mu_i \leq i^{-1/p}$
- Assume $f^*_{L,P} \in [L_2(P_X), H]_{\beta,2}$ for some $\beta \in (0, 1]$.
- Assume $[L_2(P_X), H]_{\alpha,2} \hookrightarrow L_\infty(P_X)$ for some $\alpha \in (0, 1)$.

Then, for a suitable sequence (λ_n) the decision functions f_{D,λ_n} converges to $f^*_{L,P}$ in the norm of $[L_2(P_X), H]_{\gamma,2}$ for $\gamma \in [0, \beta]$ with rate n^{-r}, where

$$r = \frac{\beta - \gamma}{\max\{\alpha, \beta\} + p}$$

Example.
Let $H = W^m_m(X)$ and $f^*_{L,P} \in B^s_{2,2}(X)$ for some $s \in (d/2, m]$. For $t \in (0, s)$, the rate in $B^t_{2,2}(X)$ is n^{-r}, where

$$r = \frac{2s - 2t}{2s + d}$$

Consider Gaussian RKHS $H_\gamma(X)$ with kernel

$$k_\gamma(x, x') := \exp(-\gamma^{-2}\|x - x'\|_2^2), \quad x, x' \in X.$$

Then $A_\gamma(\lambda) \leq \lambda^\beta$ for some $\beta \in (0, 1]$ implies $f^*_{L,P} \in C^\infty(X)$.

Solution

Consider width γ as a free parameter.

Theory presented so far does not work anymore.
Rates for Gaussian Kernels

Eberts & S., 2011/3

- X ball in \mathbb{R}^d and H_γ is RKHS of Gaussian kernel k_γ.
- P_X has bounded Lebesgue density.
- Pick λ and γ by a training/validation approach.

Then, for $s \geq 1$, every $f^{*}_{L, P} \in W^{s}_2(X)$ is learned with the rate $n^{\frac{2s}{2s+d} + \varepsilon}$ without knowing s.

The extra factor n^ε can be replaced by a logarithmic factor.

Key idea of the proof

Bound approximation error by convoluting $f^{*}_{L, P}$ with weighted sum of kernels $k_{\gamma_1}, \ldots, k_{\gamma_m}$.
Spatial Decompositions
Optimization Problem

\[f_{D, \lambda} = \arg \min_{f \in H} \lambda \| f \|^2_H + \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) \]

Example: Dual Problem for Hinge Loss

\[\alpha^* \in \arg \max_{\alpha \in [0, \frac{1}{2\lambda n}]} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j k(x_i, x_j) \]

Re-substitution

\[f_{D, \lambda} = \sum_{i=1}^{n} y_i \alpha^*_i k(\cdot, x_i) \]
Problems for Large Data

Computational Requirements

- The size of the optimization problem grows linearly in n.
- The kernel matrix $(k(x_i, x_j))$ grows quadratically in n.
- Computing the decision functions grows linearly in n.
- Solving the optimization problem costs between $O(n^2)$ and $O(n^3)$

Consequences

For 64GB machines, kernel matrices for $n > 100,000$ cannot be stored. Training for such sample sizes, even if only a fixed parameter pair (λ, σ) is considered, may take up to hours.
Using kernel methods without tricks is impossible for data sizes ranging in the millions.
Problems for Large Data

Computational Requirements
- The size of the optimization problem grows linearly in n.
- The kernel matrix $(k(x_i, x_j))$ grows quadratically in n.
- Computing the decision functions grows linearly in n.
- Solving the optimization problem costs between $O(n^2)$ and $O(n^3)$

Consequences
- For 64GB machines, kernel matrices for $n > 100,000$ cannot be stored.
- Training for such sample sizes, even if only a fixed parameter pair (λ, σ) is considered, may take up to hours.
- Using kernel methods without tricks is impossible for data sizes ranging in the millions.

Spatial splits: now
Construction

- Split bounded $X \subset \mathbb{R}^d$ into cells A_1, \ldots, A_m of diameter $\leq r$.
- On each cell A_j train a kernel method with Gaussian kernel and the data in A_j, i.e.

$$D_j := \{(x_i, y_i) \in D : x_i \in A_j\}.$$

- The hyper-parameters λ and σ are found by training/validation on each cell separately.
- To predict y for some test sample x, only take the decision function that is constructed on the cell A_j with $x \in A_j$.
Main Result

Rates for Localized kernel methods (Meister & S., 2016)

- Pick some $\beta > 0$ and $r_n \sim n^{-1/\beta}$.
- Assume that $f^*_{L,P} \in W^s_2(X)$ for some $s < \frac{\beta-d}{2}$.

Then the localized kernel method learns with rate $n^{-\frac{2s}{2s+d}+\varepsilon}$.

Remarks

- Good adaptivity requires large β.
- Large β leads to large cells.
- Trade-off between statistics and computational complexity.
- Similar results for quantile regression.
Rates for Localized kernel methods (Meister & S., 2016)

- Pick some $\beta > 0$ and $r_n \sim n^{-1/\beta}$.
- Assume that $f^*_{L,P} \in W^s_2(X)$ for some $s < \frac{\beta - d}{2}$.

Then the localized kernel method learns with rate $n^{-2s/d + \varepsilon}$.

Remarks

- Good adaptivity requires large β.
- Large β leads to large cells.
 - Trade-off between statistics and computational complexity.
- Similar results for quantile regression.
The split kernel method can be viewed as an ordinary kernel method using the RKHS:

\[H = \bigoplus_{j=1}^{m} \sqrt{\lambda_j} H_{A_j,\sigma_j} \]

Investigate how properties of the local RKHS influence properties of the global \(H \) in view of \(P \).

Again we are facing a kernel more complex than usual.
Controlling the Size of the Cells

- **Data:** covertype in binary classification from LIBSVM site, $d = 54$
- **Method:** Hinge loss and number of samples in cells are controlled
Deeper Compositions
At each non-input node, we perform the operation

\[x \mapsto \sigma(\langle w, x \rangle + b) \]

- Do we need the network structure on the right to classify?
- Can we replace the feature modification on the left by something else?
A simple Network with One Hidden Layer

- Input space $X = [0, 1]$
- One hidden layer with m ReLU-units each performing

 $$x \mapsto \Phi_j(x) := \left| w_j x + b_j \right|_+, \quad j = 1, \ldots, m.$$

- Output layer creates a function

 $$x \mapsto \langle v, \Phi(x) \rangle_{\ell_2^d} = \sum_{j=1}^{m} v_j \left| w_j x + b_j \right|_+$$

 Thus it realizes an element in the RKHS with FM $\Phi := (\Phi_1, \ldots, \Phi_m)$.

For fixed $w_i, b_i \in \mathbb{R}^m$ this RKHS is a set of piecewise linear functions with kinks at $-\frac{b_i}{w_i}, \ldots, -\frac{b_m}{w_m}$. The NN represents all piecewise linear functions with at most $m-1$ kinks and most with m kinks.
A simple Network with One Hidden Layer

- Input space $X = [0, 1]$
- One hidden layer with m ReLU-units each performing
 \[x \mapsto \Phi_j(x) := \max(w_j x + b_j), \quad j = 1, \ldots, m. \]
- Output layer creates a function
 \[x \mapsto \langle v, \Phi(x) \rangle_{\ell^d_2} = \sum_{j=1}^m v_j \max(w_j x + b_j). \]

Thus it realizes an element in the RKHS with FM $\Phi := (\Phi_1, \ldots, \Phi_m)$.

- For fixed $w, b \in \mathbb{R}^m$ this RKHS is a set of piecewise linear functions with kinks at
 \[-\frac{b_1}{w_1}, \ldots, -\frac{b_m}{w_m} \]

- The NN represents all piecewise linear functions with at most $m - 1$ kinks and most with m kinks.

\[\Rightarrow \text{nonlinear structure, parametric method for each fixed design} \]
Observation
Each layer performs a non-linear transformation

$$\mathbb{R}^{m_i} \rightarrow \mathbb{R}^{m_{i+1}}$$

$$x \mapsto \Phi_{w_i,b_i}(x)$$

Entire feature map is $$\Phi := \Phi_{w_L,b_L} \circ \cdots \circ \Phi_{w_1,b_1}$$

Idea for Rest of the Talk
Replace finite-dimensional spaces by infinite dimensional Hilbert spaces

$$H_i \rightarrow H_{i+1}$$

$$x \mapsto \Phi_{w_i}(x)$$

Use the kernel of the resulting feature map $$\Phi := \Phi_{w_L} \circ \cdots \circ \Phi_{w_1}$$
“Historical Remarks”

Bach, Lanckriet, and Jordan 2004
$L = 2$, linear kernel in second layer \Rightarrow Multiple kernel learning

Cho and Saul, 2009
General setup and some examples

Zhuang, Tsang, and Hoi, 2011
$L = 2$, sum of kernels in composition step, pseudo-dimension bound

Strobl and Visweswaran, 2013
Sums of kernels in each composition step, VC-bounds

Tang, 2013
$\Phi_{L-1} \circ \cdots \circ \Phi_1$ is a neural net with M output nodes, Φ_L is linear “SVM”.

Wilson, Hu, Salakhutdinov, and Xing, 2016
$\Phi_{L-1} \circ \cdots \circ \Phi_1$ is a neural net with M output nodes, Φ_L is non-linear.
Observations

Let H be a Hilbert space and $\Phi : X \to H$.

- We obtain a new kernel on X by
 $$k_{\gamma,H,X}(x, x') := \exp\left(-\gamma^{-2} \|\Phi(x) - \Phi(x')\|_H^2\right), \quad x, x' \in X,$$

- If $k(x, x') := \langle \Phi(x), \Phi(x') \rangle$ with $k(x, x) \equiv c$, then
 $$k_{\gamma,H}(x, x') = \exp\left(-2\gamma^{-2}(c - k(x, x'))\right)$$

- If $\Phi_{\gamma,H} : H \to H_{\gamma,H}$ is a feature map of $k_{\gamma,H}$ on H, then
 $$\Phi_{\gamma,H} \circ \Phi$$
 is a feature map of $k_{\gamma,H,X}$.

Idea

- So far we have

\[k_{\gamma, x, H}(x, x') = \exp(-2\gamma^{-2}(c - k(x, x'))) \] \hspace{1cm} (2)

- For \(I \subset \{1, \ldots, d\} \) we write \(x_I := (x_i)_{i \in I} \).

- For \(I_1, \ldots, I_m \subset \{1, \ldots, d\} \), let \(k_1, \ldots, k_m \) be kernels on \(\mathbb{R}^{|I_1|}, \ldots, \mathbb{R}^{|I_1|} \).

- Assume that \(k_i(x, x) \equiv 1 \).

For \(I := I_1 \cup \cdots \cup I_m \) consider the kernel

\[k(x, x') := \sum_{i=1}^{m} \omega_i^2 k_i(x_{I_i}, x'_{I_i}), \quad x, x' \in X_I. \]

in (2). This kernel is denoted by \(k_w \). This can be iterated!
Definition

Let H be the RKHS of the kernel

$$k(x, x') := \sum_{i=1}^{m} w_i^2 k_i(x_{l_i}, x'_{l_i}), \quad x, x' \in X_l.$$

Then the resulting hierarchical Gaussian kernel $k_{\gamma, X_l, H}$, that is

$$k_{\gamma, X, H}(x, x') = \exp(-2\gamma^{-2}(c - k(x, x')))$$

is said to be:

- of depth 1, if all kernels k_1, \ldots, k_m are linear kernels.
- of depth $L > 1$, if all k_1, \ldots, k_m are hierarchical Gaussian kernels of depth $L - 1$.
Example 1
Hierarchical Gaussian kernels of depth $L = 1$ are of the form

$$k_w(x, x') := \exp\left(- \sum_{i \in I} w_i^2 (x_i - x'_i)^2 \right), \quad x, x' \in X,$$

ARD kernel

Example 2
Hierarchical Gaussian kernels of depth $L = 2$ are of the form

$$k_{W^{(1)}, w, \gamma}(x, x') = \exp\left(-2\gamma^{-2} \sum_{i=1}^{m} w_i^2 \left(1 - k_w(x_{I_i}, x'_{I_i})\right)\right)$$

$$= \exp\left(-2\gamma^{-2} \sum_{i=1}^{m} w_i^2 \left(1 - \exp\left(- \sum_{j \in I_i} w_{j,i}^2 (x_j - x'_j)^2 \right)\right)\right).$$
Example of a hierarchical Gaussian kernels of depth $L = 3$.
Definition
A continuous kernel on a compact metric space X is universal, if its RKHS is dense in $C(X)$.

Theorem (Christmann & S., 2010)
A kernel of the form

$$k_{\gamma,H,X}(x,x') := \exp(-\gamma^{-2}\|\Phi(x) - \Phi(x')\|_H^2), \quad x, x' \in X,$$

is universal, if Φ is continuous and injective.
Theorem (S. & Thomann, 2016)
A hierarchical Gaussian kernel of depth $L \geq 1$ is universal, if it does not ignore coordinates.

Corollary (S. & Thomann, 2016)
Every SVM using a fixed hierarchical Gaussian kernel of depth $L \geq 1$ that does not ignore coordinates is universally consistent.

Remarks
- Learning rates for weights changing with sample size n?
- For which distributions do hierarchical Gaussian kernels help?
- Learning the kernel can be, in principle, decoupled from learning a classifier/regressor.
A few words on the proof . . .

- Induction over L
- At the highest level we have

$$ k_{\gamma,X,H}(x,x') = \prod_{i=1}^{l} k_{\gamma/w_i,X,H_i}(x_i,x'_i), \quad x, x' \in X_I. $$

- If k_I and k_J are universal kernels on X_I and X_J, then $k_I \otimes k_J$ defined by

$$ k_I \otimes k_J(x,x') := k_I(x_I,x'_I) \cdot k_J(x_J,x'_J), \quad x, x' \in X_{I \cup J} $$

is a universal kernel on $X_{I \cup J}$. Use Stone-Weierstraß.

- Universal kernels have injective feature maps.
 $\leadsto k_{\gamma/w_i,X,H_i}$ are universal by induction assumption
LS Error for Automated Learning Procedures

<table>
<thead>
<tr>
<th>Data Set</th>
<th>SVM</th>
<th>HKL</th>
<th>Ours</th>
<th>RF</th>
<th>DNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANK</td>
<td>.2978 ± .0024</td>
<td>.2939 ± .0028</td>
<td>.2596 ± .0039</td>
<td>.2687 ± .0027</td>
<td>.2931 ± .0025</td>
</tr>
<tr>
<td>CADATA</td>
<td>.0538 ± .0016</td>
<td>.0625 ± .0014</td>
<td>.0525 ± .0019</td>
<td>.0509 ± .0015</td>
<td>.0550 ± .0015</td>
</tr>
<tr>
<td>COD</td>
<td>.1574 ± .0023</td>
<td>.1734 ± .0013</td>
<td>.1309 ± .0050</td>
<td>.1725 ± .0020</td>
<td>.1154 ± .0013</td>
</tr>
<tr>
<td>COVTYPE</td>
<td>.5205 ± .0043</td>
<td>.6100 ± .0042</td>
<td>.3995 ± .0148</td>
<td>.4878 ± .0041</td>
<td>.5027 ± .0063</td>
</tr>
<tr>
<td>CPU SMALL</td>
<td>.0036 ± .0002</td>
<td>.0046 ± .0004</td>
<td>.0034 ± .0002</td>
<td>.0032 ± .0002</td>
<td>.0038 ± .0001</td>
</tr>
<tr>
<td>CYCLE</td>
<td>.0105 ± .0003</td>
<td>.0122 ± .0003</td>
<td>.0098 ± .0005</td>
<td>.0084 ± .0003</td>
<td>.0121 ± .0003</td>
</tr>
<tr>
<td>HIGGS</td>
<td>.9021 ± .0017</td>
<td>.8178 ± .0074</td>
<td>.8023 ± .0175</td>
<td>.7770 ± .0024</td>
<td>.9162 ± .0024</td>
</tr>
<tr>
<td>LETTER</td>
<td>.0451 ± .0015</td>
<td>.1151 ± .0018</td>
<td>.0339 ± .0014</td>
<td>.0577 ± .0015</td>
<td>.0448 ± .0018</td>
</tr>
<tr>
<td>MAGIC</td>
<td>.4007 ± .0083</td>
<td>.4282 ± .0082</td>
<td>.3900 ± .0093</td>
<td>.3772 ± .0079</td>
<td>.3783 ± .0085</td>
</tr>
<tr>
<td>PENDIGITS</td>
<td>.0079 ± .0007</td>
<td>.0243 ± .0012</td>
<td>.0070 ± .0007</td>
<td>.0127 ± .0012</td>
<td>.0079 ± .0010</td>
</tr>
<tr>
<td>SAT IMAGE</td>
<td>.0488 ± .0029</td>
<td>.1078 ± .0059</td>
<td>.0467 ± .0030</td>
<td>.0525 ± .0026</td>
<td>.0525 ± .0033</td>
</tr>
<tr>
<td>SEISMIC</td>
<td>.3113 ± .0013</td>
<td>.3189 ± .0022</td>
<td>.2981 ± .0016</td>
<td>.2955 ± .0012</td>
<td>.2975 ± .0014</td>
</tr>
<tr>
<td>SHUTTLE</td>
<td>.0046 ± .0003</td>
<td>.0129 ± .0007</td>
<td>.0042 ± .0004</td>
<td>.0008 ± .0002</td>
<td>.0059 ± .0004</td>
</tr>
<tr>
<td>THYROID</td>
<td>.1750 ± .0081</td>
<td>.1637 ± .0083</td>
<td>.1538 ± .0080</td>
<td>.0251 ± .0031</td>
<td>.1522 ± .0080</td>
</tr>
<tr>
<td>UPDRS</td>
<td>.0537 ± .0052</td>
<td>.1774 ± .0090</td>
<td>.0059 ± .0021</td>
<td>.0305 ± .0016</td>
<td>.0531 ± .0042</td>
</tr>
</tbody>
</table>
Detailed Comparison of 3 Best Methods

- **Relative error compared to SVM**: The graphs show the relative error compared to SVM across different data set numbers. The error is represented on a logarithmic scale, ranging from 0.25 to 1.75.
- **Improvements in % compared to 2nd best method**: This graph illustrates the improvements in percentage compared to the second-best method, ranging from 0 to 8.
- **Worsening in % compared to best error**: This graph shows the percentage worsening compared to the best error, ranging from 0 to 12.

Methods included are SVM, Ours, RF, and DNN.
Resources

Paper

Software
