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ABSTRACT: Symmetric sodium-ion batteries possess promising
features such as low cost, easy manufacturing process, and facile
recycling post-process, which are suitable for the application of
large-scale stationary energy storage. Herein, we proposed a
symmetric sodium-ion battery based on dual-electron reactions of a
NASICON-structured Na3MnTi(PO4)3 material. The Na3MnTi-
(PO4)3 electrode can deliver a stable capacity of up to 160 mAh g−1

with a Coulombic efficiency of 97% at 0.1 C by utilizing the redox
reactions of Ti3+/4+, Mn2+/3+, and Mn3+/4+. This is the first time to investigate the symmetric sodium-ion full cell using
Na3MnTi(PO4)3 as both cathode and anode in the organic electrolyte, demonstrating excellent reversibility and cycling performance
with voltage plateaus of about 1.4 and 1.9 V. The full cell exhibits a reversible capacity of 75 mAh g−1 at 0.1 C and an energy density
of 52 Wh kg−1. In addition, both ex situ X-ray diffraction (XRD) analysis and first-principles calculations are employed to investigate
the sodiation mechanism and structural evolution. The current research provides a feasible strategy for the symmetric sodium-ion
batteries to achieve high energy density.

KEYWORDS: sodium-ion batteries, symmetric full cell, Na3MnTi(PO4)3, NASICON structure, multielectron redox reaction

■ INTRODUCTION

With the consumption of oil and natural gas, the conversion of
renewable energies like wind, solar, geothermal, etc. into usable
energy forms is critical due to the clean and pollution-free
characteristics.1−4 In addition to energy conversion, storage is
another challenge. Considerable efforts have been devoted to
develop energy-storage devices, such as the lithium-ion
batteries (LIBs).5−8 Nowadays, LIBs are the most popular
technology for energy storage, which are commercialized
widely in various portable electronic devices, electric vehicles,
etc.9−14 However, LIBs have the drawback of high cost due to
scarce availability of lithium resources. Therefore, sodium-ion
batteries (SIBs) will be an emerging candidate to replace LIBs
owing to the availability of sufficient raw material, safety, and
low cost.15−19 Recently, NASICON (Na superionic con-
ductor)-structured materials are a hot research topic owing to
the stable host structure, plenty of sodium-insertion interstices,
and fast Na+-ion diffusion. NASICON-structured polyanionic
phosphates with a formula of AxMM′(PO4)3 (A = Li, Na, K,
etc.; M, M′ = transition-metal element) possess a robust three-
dimensional framework of MO6 and M′O6 octahedral corner
sharing with PO4 tetrahedra, which delivers excellent
cyclability.20−25 Furthermore, the strong inductive effect of
the phosphates endows multielectron redox reaction and
higher operating potential versus Na+/Na, compared to those
of layered oxides.26,27 Na3V2(PO4)3 is a typical NASICON-
structured polyanionic phosphate that demonstrates two

voltage plateaus at 1.6 and 3.3 V vs Na+/Na, which correspond
to the redox pairs of V2+/3+ and V3+/4+, resulting in dual-
electron transfer.28,29 So far, other kinds of phosphates have
been synthesized via cation substitution partial or ful to
develop redox reactions involving more than two electrons and
excellent sodium-storage performance, including Na2VTi-
(PO4)3, Na3V1.5Cr0.5(PO4)3, Na3MnTi(PO4)3, Na3FeV(PO4)3,
and Na2CrTi(PO4)3.

26,30−33

To date, the design of symmetric SIBs with the same
electrode materials is progressively attractive compared to that
of asymmetric batteries, owing to the less influence of
matching design between cathode and anode materials, easy
manufacturing process, facile recycling post-process, and low
manufacturing cost.34−37 In addition, symmetric SIBs based on
the same intercalation-type compound are able to reduce the
bulk expansion of electrode materials during Na+ insertion/
extraction because one electrode shrinks while the other
electrode may expand, and vice versa.38 At present, limited by
the energy density, symmetric SIBs could be applied in storage
power station, low-end electronic consumption, and low-speed
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electric vehicles. NASICON-structured Na3MnTi(PO4)3 has
been reported recently, and its electrochemical performance is
once studied in the aqueous system.36 However, the operating
voltage is limited owing to the potential window of water
splitting with merely one Na+ per formula extraction/
insertion.39 To date, symmetric sodium-ion battery in organic
electrolyte with dual-electron transfer has not been reported
yet.
In this work, the Na3MnTi(PO4)3 electrode, prepared by a

typical sol−gel method, delivers a reversible capacity of 160
mAh g−1 with a Coulombic efficiency of 97% under the voltage
window of 1.5−4.3 V vs Na+/Na at 0.1 C. This is the first time
to investigate the dual-electron reactions of the symmetric
sodium-ion full cell with Na3MnTi(PO4)3 as both cathode and
anode using the distinct of redox couples of Ti3+/4+ and
Mn3+/4+. The symmetric full cell demonstrates excellent
reversibility and cycling performance and exhibits a reversible
capacity of 75 mAh g−1 at 0.1 C with energy densities of 52 Wh
kg−1 and 60.4 mAh g−1 at 1 C. Moreover, theoretical
investigation can be used to predict the voltage plateaus
theoretically and estimate the configuration of the Na+-site
candidate under different occupation rates. Both ex situ X-ray
diffraction (XRD) analysis and first-principles calculations are
applied for studying the sodiation mechanism and structural
evolution, indicating solid solution and two-phase reactions
during Na+ extraction/insertion. The proposed strategy is
feasible for developing symmetric SIBs with high energy
density.

■ EXPERIMENTAL SECTION
Preparation of Na3MnTi(PO4)3. Carbon-coated Na3MnTi(PO4)3

was prepared by the sol−gel method. NaC2H3O2 (3 mmol),
MnC4H6O4·4H2O (1 mmol), NH4H2PO4 (3 mmol), and C6H8O7·
H2O (3 mmol) were dissolved in 30 mL of deionized water to get
Solution A. Titanium isopropoxide (C12H28O4Ti, 1 mmol; Aladdin,
99.9% purity) was dissolved in 20 mL of absolute ethanol to obtain
the transparent Solution B. Solution B was added into Solution A
dropwise. The final solution was sealed and stirred in a water bath at
80 °C for 2 h and then uncovered until the moisture is completely
evaporated to give a light-yellow precursor. The precursor was further
kept in an oven and successively ground into powder. Finally, the
precursor was sintered at 650 °C for 12 h under argon atmosphere at
a heating rate of 5 °C·min−1 to obtain the Na3MnTi(PO4)3
nanocomposite. The molar ratio of citric acid and transition metal
(Ti and Mn) equaled 3:2, and citric acid was used as both chelating
agent and carbon source.
Materials Characterization. The crystal structure of Na3MnTi-

(PO4)3 was tested by X-ray diffraction (XRD) (Bruker D8 Advance
with Cu/Kα radiation, λ = 0.15406 nm, 40 kV, 40 mA).
Thermogravimetric (TG) analysis was employed to confirm the
carbon content of materials. Raman measurements (RM) were
performed on LabRAM HR Evolution with a laser wavelength of 532
nm. The morphology and distribution of elements were characterized
by scanning electron microscopy (SEM, FEI Quanta 250 FEG).
Energy-dispersive spectrometry (EDS) of a selected area was tested to
analyze the chemical composition. Transmission electron microscopy
(TEM) and selected area electron diffraction (SAED) images were
obtained using a JEM-2100HR device. Cyclic voltammetry tests were
carried out by a Solartron Analytical 1470E workstation. Electro-
chemical impedance spectroscopy (EIS) was performed under
different charged/discharged states in the frequency of 1 mHz to
100 kHz.
Electrochemical Measurements. To study the electrochemical

performances of the as-prepared Na3MnTi(PO4)3, coin-type half-cells
were assembled with sodium foil in a glovebox filled with argon (H2O
< 0.5 ppm, O2 < 0.5 ppm). Na3MnTi(PO4)3 active materials, super P

conductive, and poly(vinylidene fluoride) binders with a weight ratio
of 7:2:1 were dissolved in N-methylpyrrolidone (NMP) to obtain
homogeneous slurries. The slurries were coated on aluminum foil and
dried in a vacuum oven at 120 °C overnight to remove the solvent.
The electrode film was then cut into a 12 mm diameter disk. The
electrode loading mass was in the range of 1.2−1.5 mg cm−2. Glass
fiber (Whatman GF/C) was used as the separator. 1 M NaClO4
dissolved in a solvent of ethylene carbonate (EC) and propylene
carbonate (PC) (1:1 v/v) with 5 vol % addition of fluoroethylene
carbonate (FEC) was used as the electrolyte. The electrochemical
performance was tested on a Land battery analyzer within the cutoff
voltage range of 1.5-4.3 V (vs Na/Na+). Especially, without
pretreatment processes, the symmetric battery with the same cathode
and anode materials was directly assembled with the pristine
Na3MnTi(PO4)3 electrode. The battery was cathode-limited, and
the capacity balance was controlled with the cathode/anode mass
ratio of 1/1.25 (The charge specific capacity of the cathode was
around 100 mA g−1, and the discharge specific capacity of the anode
was around 80 mA g−1. Herein, the ratio of 100/80 was 1.25/1). The
open-cell voltage of the symmetric full cell was approximately 0 V. 1 C
corresponds to 117 mA g−1.

■ RESULTS AND DISCUSSION
Theoretical Calculation of Na3MnTi(PO4)3 Voltage

Plateaus. The atomic structure of the supercell of NaxMnTi-
(PO4)3 is shown in Figure 1a. PO4 tetrahedron and MnO6

(and TiO6) octahedron share the oxygen atom at the corner.
All of the possible sites are fully occupied for Na ions. To
distinguish the sites of atoms, five groups are classified as
colored in Figure 1b, depending on the symmetry and thermal
stability of sodium ions. The calculation results are
qualitatively displayed in Table S1.40−43 Site-I is the most
favorable location to occupy, and site-V is the least stable

Figure 1. Theoretical calculation of voltage plateaus for Na3MnTi-
(PO4)3. (a) Scheme plot of the atomic structure for the supercell of
NaxMnTi(PO4)3. Here, the fully occupied Na sites are shown (x = 5),
while PO4 tetrahedrons are highlighted with gray−purple, and MnO6
(and TiO6) octahedrons are highlighted with red color. (b) Five
groups of Na sites are differed by colors, while the remaining sites are
suppressed. (c) Calculated sodiation voltage profile (red and black
dotted lines) in comparison to the experimental values (blue solid and
dotted lines). The blue dotted line (exp. plateau) is simplified from
the blue solid line (experimental curve). The black dotted line refers
to the ideal case in which site-II, site-III, and site-IV are fully occupied
one by one. The red dotted line is calculated using the experimental
values of occupation rate for each plateau.
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location. During the insertion/extraction process, Na ions at
site-I will be immobilized to maintain the framework stability
due to the most favorable energy, and Na ions at site-II, site-
III, site-IV, and site-V are able to be inserted/extracted for
electrochemical energy storage.44 In our experiments, the
occupation of site-V is not considered due to the least priority
in the investigation.
During the discharging process from Na1MnTi(PO4)3 to

Na4MnTi(PO4)3, three voltage plateaus are displayed at 4.0,
3.5, and 2.1 V vs Na+/Na. Starting from the configuration
Na1MnTi(PO4)3 (x = 1), the occupation will follow the
theoretical order, i.e., site-II, site-III, and then site-IV in
sequence. Three ideal plateaus can be obtained as shown by
the black dotted line (Cal.-I) in Figure 1c. When the current
group is fully occupied, Na ions will go to the next group.
However, there are still partial deviations on voltage plateaus,
and their difference between the calculation and experimental
results is shown by the blue solid line (Exp.). The main reasons
can be given as follows: (1) The calculated group of sites is not
fully occupied at voltage plateaus in practical experiments.
When Na ions start to occupy a new site with different on-site
energies, the voltage will shift to the next plateau like the
plateau c,d for site-III and the plateau e,f for site-IV. (2) In the
practical discharge process, the voltage moves from one plateau
to another gradually, i.e., the ranges of b,c and d,e. It is
contrary to the ideal calculated case in which the voltage jumps
from one plateau to another discontinuously. In the
intermediate region, Na ions would occupy sites with different
on-site energies, while the experimental values are the dynamic
average of them.
To further analyze the voltage evolution, the experimental

value of x for each plateau is selected for re-simulation. The
updated result, see the red dotted line (Cal.-II), fits better the
trend of experimental results. It is worth to point out that the
calculated voltage value strongly depends on the value of x and

the corresponding configurations. At this stage, it is relatively
easy to estimate the configurations at two ends such as Points
a, b, e, and f. Nevertheless, the calculated voltage of the c′,d′
plateau is still far less than the experimental one, which
requires a substantial detailed study to give the accurate atomic
structures of Points c and d. Theoretical studies do not only
predict the voltage plateaus but also provide valuable clues to
qualitatively understand the mechanism of charge/discharge
process in NaxMnTi(PO4)3.

Crystal Structure of Na3MnTi(PO4)3 and Character-
izations. The crystal structure analysis and characterization of
Na3MnTi(PO4)3 are demonstrated in Figure 2. Rietveld
refinement of the X-ray diffraction (XRD) pattern shows the
successful preparation of Na3MnTi(PO4)3 by a facile sol−gel
method in Figure 2a. The pattern can be indexed to the
rhombohedral structure with lattice parameters of a = 8.73352
Å and c = 21.84703 Å and a reliable result of R = 4.32%,
exhibiting little discrepancy to that of Na3V2(PO4)3.

45

Na3MnTi(PO4)3 possesses a typical rhombohedral NASI-
CON-type structure with space group R3̅c.46 The detailed
structural information including lattice parameters and site
occupancy factor is presented in Table S2 (Supporting
Information). The carbon amount of 11.59% is confirmed by
the thermogravimetric (TG) analysis (Figure 2b). A slight
increase in weight around 500 °C is attributed to the oxidation
of low-valence-state metal species during the combustion of
carbon. Raman spectroscopy (Figure 2c) is utilized to
qualitatively study the degree of graphitization in Na3MnTi-
(PO4)3. The G-band and D-band of carbon materials are
located at 1594.7 and 1348.3 cm−1, respectively. The ratio of
IG/ID = 1.14 (the intensity ratio of 2394/2090) indicates the
existence of amorphous carbon in pristine Na3MnTi-
(PO4)3.

26,46

The morphology of Na3MnTi(PO4)3 is obtained by SEM, as
shown in Figure 2d. Na3MnTi(PO4)3 has a wide range of

Figure 2. Crystal structure of Na3MnTi(PO4)3 and characterization. (a) XRD pattern and Rietveld refinement, (b) TG curve, (c) Raman
spectroscopy, (d) SEM image, (e) TEM image, (f) high-resolution (HR)TEM image, (g) SAED patterns, (h) elements mapping image, and (i)
EDS image.
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particle size from few nanometers to micrometer. The
matching of different particle sizes is beneficial to the physical
contact between particles, resulting in high density. TEM
analysis is conducted to further confirm the composition of the
amorphous carbon and Na3MnTi(PO4)3. As shown in Figure
2e, Na3MnTi(PO4)3 particles are embedded in an amorphous
carbon matrix. The high-resolution HRTEM (Figure 2f) image
manifests that the surface of well-crystallized Na3MnTi(PO4)3
is coated by a thin layer of uniform amorphous carbon with ∼3
nm thickness from the pyrolysis of critic acid. The observed
lattice fringe of 0.442 nm is consistent with the interplanar
spacing plane (104). Selected area electron diffraction (SAED)
in Figure 2g is employed to further explore the structure of
Na3MnTi(PO4)3, which exhibits (024), (104), and (300)
planes for the rhombohedral structure. These agree with the
XRD results. Element mapping in Figure 2h and energy-
dispersive spectra (EDS) in Figure 2i of selected area are tested
to analyze the chemical composition. The distribution of
homogeneous elements of Na, Mn, Ti, P, and O can be
observed as displayed. Based on the EDS results, no other
elements are detected and the atomic ratio of Na:Mn:Ti is
equal to 3.5:1.06:1. The amorphous carbon layer on the
surface of Na3MnTi(PO4)3 particles will promote the electron
transfer owing to the low electrical conductivity of NASICON-
structured phosphates.23,31,47

Sodium-Ion Storage Performance and Kinetic Prop-
erties of Na3MnTi(PO4)3. The electrochemical performance
of the as-prepared Na3MnTi(PO4)3 is evaluated by assembling

the CR2032-type half-cell with sodium counter. Cyclic
voltammogram (CV) tests are carried out to investigate the
redox activities of Na3MnTi(PO4)3. As shown in Figure 3a, the
initial three CV cycles are recorded with a scan rate of 0.1 mV
s−1 between 4.3 and 1.5 V. Three pairs of redox couples are
located at around 2.04/2.22, 3.46/3.66, and 3.99/4.10 V,
respectively, which also correspond to a three-step transition of
the Na+ extraction/insertion due to the redox reactions of
Ti3+/4+, Mn2+/3+, and Mn3+/4+. The electrochemical impedance
spectra (EIS) are tested to understand the difference in
different voltage conditions. As represented in Figure S1 and
Table S3 (Supporting Information), according to the
equivalent circuit, the charge-transfer resistances (Rct) do not
change a lot at different charged/discharged states, which can
be attributed to the physical properties of carbon-coated
NASICON structure, particularly the better conductivity. The
evolution processes are further analyzed in detail using ex situ
XRD with different charge/discharge states between 4.3 and
1.5 V, as shown in Figure S2 (Supporting Information). The
whole Na+ extraction or insertion process refers to two-phase
evolution and solid solution reactions (single-phase evolu-
tion).46,48 As depicted in Figure 3b, in the first charge process,
two plateaus are displayed, corresponding to dual-electron
reactions. This low capacity may be attributed to the high
initial open-circuit voltage of up to 2.6−2.8 V. Afterward, in
the following charge cycles, three charge voltage plateaus are
located at 2.1, 3.5, and 4.0 V vs Na+/Na, which are consistent
with three oxidation couples of Ti3+ to Ti4+, Mn2+ to Mn3+, and

Figure 3. Sodium-ion storage performance and kinetic properties of Na3MnTi(PO4)3 with Na counter. (a) Cyclic voltammogram curves between
1.5 and 4.3 V at a scan rate of 0.1 mV s−1. (b) Galvanostatic charge−discharge profiles in the initial five cycles between 1.5 and 4.3 V at 0.1 C (1 C
= 117 mA g−1). (c) Rate capability from 0.1 to 5 C. (d) Cycling performance at 5 C. (e) Cyclic voltammogram curves at different scanning rates.
(f) Relationship between the peak current (Ip) and the square root of the scan rate (v1/2).
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Mn3+ to Mn4+, respectively. Na3MnTi(PO4)3 delivers an initial
charge specific capacity of 137.2 mAh g−1, and the initial
discharge specific capacity is 170.3 mAh g−1. In the subsequent
cycles, a stable discharge specific capacity of 160 mAh g−1 can
be obtained with a Coulombic efficiency (CE) of 97%,
indicating the superior reversible stability. The results are in
good agreement with the voltage plateaus in Figure 3a. The
rate capability in Figure 3c demonstrates the reversible
capacities of 169.4, 135.4, 115.7, 104.7, 95.3, and 86.0 mAh
g−1 at 0.1, 0.2, 0.5, 1, 2, and 5 C, respectively. The
corresponding charge and discharge profiles are shown in
Figure S3 (Supporting Information), and all curves exhibit
three voltage plateaus. Both the highest-voltage plateau and
capacity decay with the rate increase, possibly resulting from
the polarization. When the rate returns to 0.1 C, the discharge
capacity of 138.5 mAh g−1 is obtained with capacity retentions
of 82% and ∼100% CE, indicating the excellent rate capability.
Long-term stability is demonstrated in Figure 3d. The
discharge capacity of 107.9 mAh g−1 is delivered at 5 C with
a capacity retention of 76.2% after 360 cycles. Figure S4
(Supporting Information) displays the corresponding charge
and discharge profiles at different cycles.
To get an insight into the kinetic behaviors, CV tests with

different scanning rates from 0.1 to 0.5 mV s−1 are conducted,
as shown in Figure 3e. The peak current increases with the
increasing scan rate, in which the linear relationship between
the peak currents (Ip) and the square root of the scanning rate

(v1/2) is plotted to estimate the diffusion coefficient (DNa
+) in

Figure 3f using the following equation49

= × +I n AD C v2.69 10p
5 3/2

Na
1/2

Na
1/2

(1)

where Ip, n, A, CNa, and v are the peak current, number of
exchanged electrons per formula during the reactions, effective
reaction area (1.13 cm2), Na+ concentration in the electrode,
and scan rate, respectively. During the anodic scan, DNa

+ values
for peak 1, peak 2, and peak 3 are 3.86 × 10−11, 3.14 × 10−11,
and 7.66 × 10−11 cm2 s−1, respectively. During the cathodic
scan, DNa

+ values for peak 4, peak 5, and peak 6 are 1.00 ×
10−11, 1.59 × 10−11, and 2.44 × 10−10 cm2 s−1, respectively.
Peak 3 and peak 6 show the largest DNa

+ values in anodic and
cathodic scans, indicating that the structural evolution of
Na2MnTi(PO4)3 ↔ Na1MnTi(PO4)3 is the most favorable
with the fastest ion diffusion compared to other two evolution
processes. The results agree well with the Na+ insertion/
extraction energy results in density functional theory (DFT)
calculation, which indicates that the site-I and site-II are the
most favorable sites for sodium ions to diffuse, relating to the
configurations Na1MnTi(PO4)3 and Na2MnTi(PO4)3 (Table
S1, Supporting Information).
Sodium-ion storage can be defined as two processes:

diffusion reactions of faradic contribution and redox process
of pseudocapacitance. The effect of the pseudocapacitance for
the battery reaction system can be explored by the following
equations30,50

Figure 4. (a) Half-cell charge/discharge voltage curves and (b) voltage capacity profiles within different potential regions (A: pristine
Na3MnTi(PO4)3; B: charge to 4.3 V, Na1MnTi(PO4)3; C: discharge to 1.5 V, Na4MnTi(PO4)3). (c) Schematic illustration of
Na3MnTi(PO4)3∥Na3MnTi(PO4)3 symmetric SIBs. (d) Schematic diagram of unit cells of cathode and anode during the charge/discharge
process. (e) Cyclic voltammogram curves of symmetric sodium-ion battery, (f) charge/discharge curves, and (g) cycling performance at 1 C for the
symmetric batteries.
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=I avb
p (2)

= +I a b vlog log logp (3)

where a and b are adjustable parameters, Ip is the peak current,
and v is the scan rate. For a pesudocapacitance-controlled
process, the b-value is close to or above 1, while for the
electrochemical diffusion-dominated process, the b-value is
around 0.5. In Figure S5 (Supporting Information), all b-values
are above 0.5, indicating the coexistent behaviors of diffusion
and pesudocapacitance within the Na3MnTi(PO4)3 electrode.
It should be noted that the pseudocapacitance reaction is
conducive to the rate capability and cycling performance.
Electrochemical Performance of the Symmetric

Sodium-Ion Battery in Organic Electrolyte. The charge/
discharge voltage plots and voltage matchup of Na3MnTi-
(PO4)3 half-cell within different voltage regions are shown in
Figure 4a,b. The Ti3+/4+ redox pair at 2.1 V and Mn2+/3+ and
Mn3+/4+ pairs at 3.5 and 4.0 V indicate that Na3MnTi(PO4)3 is
able to serve as both anode and cathode materials. For the
cathode part, it exhibits the extraction/insertion of two Na+ (A
↔ B = Na3MnTi(PO4)3 ↔ Na1MnTi(PO4)3) and delivers an
initial charge capacity of 125.6 mAh g−1 with a stable charge
capacity of about 100 mAh g−1. As for the anode part, it relates
to the reversible one Na+ insertion into Na3MnTi(PO4)3,
leading to the phase of Na4MnTi(PO4)3 (C) at 2.1 V with an
initial discharge capacity of 87.4 mAh g−1 and a stable
discharge capacity of about 80 mAh g−1.
Benefiting from the potential difference between Mn3+/4+,

Mn2+/3+, and Ti3+/4+ redox pairs, a symmetric battery based on
the dual-electron reactions is constructed with Na3MnTi-
(PO4)3∥NaClO4 (1 M)∥Na3MnTi(PO4)3. The schematic
illustration of symmetric SIBs is demonstrated in Figure 4a.
There is no pretreatment for both cathode and anode
electrodes during the fabrication of symmetric battery. Figure
4b illustrates the respective reactions and evolution of cathode
(A ↔ B) and anode (A ↔ C) during the charge/discharge
process. Herein, the reactions of cathode and anode during the
charging ↔ discharging process can be identified as follows

↔ + ++ −

Cathode: Na MnTi(PO )

Na MnTi(PO ) 2Na 2e
3 4 3

1 4 3 (4)

+ + ↔+ −Anode: Na MnTi(PO ) Na e Na MnTi(PO )3 4 3 4 4 3
(5)

Cyclic voltammogram curves (Figure 4e) exhibit two pairs of
obvious redox peaks at ∼1.4 and ∼1.9 V, confirming the dual-
electron redox reactions for the Na3MnTi(PO4)3 symmetric
battery, which are consistent with the voltage gaps in Figure
4a,b. The low-voltage plateau is derived from the voltage gap of
2.1 V (Ti3+/4+) and 3.5 V (Mn2+/3+), and the high voltage
plateau of ∼1.9 V is dominantly originated from the
contribution of 2.1 V (Ti3+/4+) and Mn3+/4+ (4.0 V), which
is relatively high compared to the reported values in various
types of symmetric batteries with the NASCION-structured
material (Table S4, Supporting Information). The first two
charge−discharge profiles and the corresponding cycling
performance at 1 C are illustrated in Figures 4f,g and S6
(Supporting Information), which deliver an initial discharge
capacity of 60.4 mAh g−1 and a capacity retention of 54.5%
after 100 cycles. The cycling stability at 1 C is not very high,
which is mainly attributed to the polarization and slightly low

Columbic efficiency. The capacity−voltage profiles of the
Na3MnTi(PO4)3 symmetric battery at 0.1 C are shown in
Figure S7 (Supporting Information). The initial charge and
discharge capacities are 116.3 and 72.9 mAh g−1, respectively.
The energy density is 52 Wh kg−1. Except the first cycle, the
subsequent neighbor cycles can be overlapped well, indicating
the excellent reversibility. Figure S8 (Supporting Information)
demonstrates the charge/discharge curves at different rates.
The discharge capacities of 76.1, 67.0, 58.9, 51.7, 44.4, and
34.5 mAh g−1 can be obtained of 0.1, 0.2, 0.5, 1, 2, and 5 C,
respectively. The promising performance is mainly attributed
to the symmetric nature, abating the volume expansion of
electrodes during the sodiation/desodiation process. Besides,
the characters of fast electron and ionic conductivity of carbon-
coated NASICON-structured materials strongly generate a
positive impact on sodium-storage performance. Furthermore,
based on the transition-metal multivalence status, NASICON-
structured symmetric batteries with a higher energy density
could be achieved by matching higher and lower transition-
metal redox couples.

■ CONCLUSIONS
A NASICON-structured Na3MnTi(PO4)3 is prepared through
a facile sol−gel method and displays a stable capacity of 160
mAh g−1 with a Coulombic efficiency of 97% at 0.1 C. The
three voltage plateaus of 2.1, 3.5, and 4.0 V vs Na+/Na
correspond to the redox pairs of Ti3+/4+, Mn2+/3+, and Mn3+/4+,
respectively. By utilizing the voltage difference between three
redox pairs, the current symmetric sodium-ion full cell with
Na3MnTi(PO4)3 as both cathode and anode achieves dual-
electron reactions and a high operating voltage, leading to a
high energy density. It exhibits a stable discharge capacity of
about 75 mAh g−1 at 0.1 C and 60.4 mAh g−1 at 1 C, indicating
the good reversibility and cycling performance. The operating
voltage of 1.9 V and an improved energy density of 52 Wh kg−1

are obtained. Moreover, the agreement between experimental
and DFT investigations does not only provide better
understanding of the sodiation mechanism but also show the
potential pathway of designing the voltage plateaus by tuning
the occupation of carriers. Our research highlights the prospect
of NASICON-structured symmetric batteries based on multi-
electron reactions to improve sodium-storage performance for
high energy density.
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