Bithieno[3,4-c]pyrrole-4,6-dione-Mediated Crystallinity in Large-Bandgap Polymer Donors Directs Charge Transportation and Recombination in Efficient Nonfullerene Polymer Solar Cells

Jiaji Zhao,† Qingduan Li,† Shengjian Liu,* Zhixiong Cao, Xuechen Jiao,* Yue-Peng Cai,* and Fei Huang*

ABSTRACT: Solution-processed nonfullerene bulk-heterojunction (BHJ) polymer solar cells (PSCs), which are composed of polymer donors and organic acceptors, are proven to manifest promising performance and long-term stability. In this concise contribution, bithieno[3,4-c]pyrrole-4,6-dione (BiTPD), which is a TPD derivative but presents a large planar structure and strong electron-withdrawing ability, was used to construct a large-bandgap polymer donor PBiTPD. Results show that the polymer donor PBiTPD realized power conversion efficiency (PCE) as high as 14.2% in fullerene-free BHJ solar cells. Larger ionization potential value, more favorable face-on backbone orientation, and stronger crystallinity were concurrently obtained in PBiTPD. Correspondingly, improved and more balanced charge transportation; less nongeminate and trap-assisted recombination losses; and thus high fill factor (FF) of 67%, short-circuit current density (J_{SC}) of 25.6 mA·cm$^{-2}$, and high open-circuit voltage (V_{OC}) of 0.83 V were concurrently achieved in PBiTPD-based devices. PBiTPD does clear the way for a novel and promising class of large-bandgap polymer donor candidates.

With recently achieved power conversion efficiency (PCE) of >16% and lifetime of >10 years, solution-processed nonfullerene bulk-heterojunction (BHJ) polymer solar cells (PSCs), consisting of small-molecule acceptors and polymer donors, as well as all-polymer solar cells, are very promising alternatives to the more studied fullerene (e.g., PC$_{60}$BM, PC$_{70}$BM) acceptor-based PSCs. As an alternative to fullerene-based PSCs, nonfullerene BHJ PSCs possess some practical advantages, spanning complementary optical absorption between the donor and acceptor counterparts and straightforward design of their photoelectronic properties through the chemical structure modification. Thus, considerable efforts, including novel donor and acceptor materials design, meticulous BHJ morphology optimization, novel device architecture, in tandem with effective electrode interlayers, have been made in the development of nonfullerene PSCs.

In principle, the complementary absorption and broad absorption band of the BHJ active layer are a substantial benefit for enhancing photon absorption and exciton generation to increase short-circuit current density (J_{SC}) of BHJ solar cells. To date, most of the efficient small-molecule acceptors are 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indenone)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene (ITIC) and its analogues (IEICO, Y6, chlorinated or fluorinated ITIC, etc.) with strong optical absorption in the near-infrared (NIR) range of 600–1000 nm. When considering the complementary optical absorption between donor and acceptor...
acceptor counterparts, it is particularly important to take considerable efforts to develop large optical bandgap (LBG) \((E_{\text{opt}} > 1.7 \text{ eV}) \) polymer donors with strong photon absorption in the short wavelength range of 400–700 nm. Currently, a number of LBG polymer donors are widely used in nonfullerene BHJ PSCs and have demonstrated efficient photovoltaic performance. For example, electron-withdrawing motifs benzo-[1,2-c:4,5-c’]dithiophene-4,8-dione (BDD), \(^{1-5}\) benzotriazole (BTA), \(^{10,51}\) pyrrolo[3,4-f]benzotriazole-5,7(6H)-dione (TzBl), \(^{5-8}\) fluorinated thiophene, \(^{22}\) ester-substituted thiophene \(^{22}\) and thieno[3,2-b]thiophene, \(^{24}\) thiazole, \(^{25}\) etc. have been extensively employed in constructing numerous LBG polymer donors for efficient nonfullerene BHJ PSCs. However, as shown in Chart 1, only several classes of LBG polymer donors have been shown to achieve PCEs of \(>14\% \) in single-junction binary-blend BHJ PSCs with selected small-molecule acceptors to date.\(^{1-6}\) Thus, at this stage, broadening the class of high-performing polymer donor material systems and determining the relationship between the chemical structure design parameters and LBG polymer donor performance in fullerene-free BHJ solar cells are critically important steps to take in the improvement of device photovoltaic performance beyond current state-of-the-art efficiency.

Thieno[3,4-c]pyrrole-4,6-dione (TPD) units have been widely and successfully used to construct LBG polymer donors with \(E_{\text{opt}} > 1.7 \text{ eV} \) and yield efficient PSCs with PCEs over 10% when PCBM was used as the acceptor.\(^{26}\) Moreover, the types of alkyl side-chains that append at the imide site of TPD motifs can be facilely tuned. Generally, the alkyl side-chains in TPD-based polymers not only provide the solubility in organic solvent and thus solution processability but also furnish a meaningful strategy that tailors the self-assembly capability of polymers.\(^{26}\) However, as implied in recent studies, the TPD-based LBG polymer donors did not exhibit high photovoltaic performance like the benchmark LBG polymer donors J51, PBDB-T, PTzBl, and their analogues in nonfullerene BHJ PSCs.\(^{26}\) Large open-circuit voltages \((V_{\text{OC}}) \), small energy loss \((E_{\text{loss}}) \), but low quantum efficiencies were observed in nonfullerene solar cells when TPD-based polymers were used as donors. To some extent, this primary design rule, pairs of polymer donor and small-molecule acceptor with complementary absorption, is however not a sufficient condition for achieving efficient PSCs, mostly because morphological, energetic, and charge transport properties are also critically important to the photovoltaic performance. Recently, Jang and co-workers have reported the PCE of \(\sim 10\% \) for the fullerene-free BHJ PSCs made with a TPD-based polymer donor and an ITIC acceptor.\(^{27}\) A meticulous cross-link strategy was used to tune the BHJ morphology phase separation, and the TPD polymer donor-based BHJ solar cells exhibited promising performance with PCE of \(\sim 12\% \).\(^{28}\) A few studies indicate that...
polymers combining TPD motifs along the backbone may be a class of potential high-performing LBG polymer donor candidates for efficient nonfullerene PSCs as long as the energetic, morphological, and charge transport parameters are all taken into consideration.

TPD dimer (bithieno[3,4-c]pyrrole-4,6-dione, BiTPD) is a derivative of TPD but has a larger planar skeleton and stronger electron-withdrawing ability than that of TPD, making it a potential useful planar building block for efficient polymer donors and acceptors. In our previous reports, we showed that the BiTPD motifs in polymers can be used to simultaneously increase the ionization potential (IP) and electron affinity (EA) values, narrow the E_{opt}, and enhance charge transport properties. The similar phenomenon in BiTPD-based polymers was also observed independently by Li and coworkers. Therefore, the BiTPD may be a useful motif to develop LBG polymer donors that deliver promising photovoltaic performance in nonfullerene BHJ PSCs.

In this Letter, to understand the large-bandgap polymer donor design rules and further boost the TPD derivatives-based polymer donors’ photovoltaic performance in nonfullerene PSCs, the LBG polymer donor design strategies, material properties, and photovoltaic performance in BHJ solar cells based on two analogous polymer donors composed of benzo[1,2-b:4,5-b’]dithiophene derivative (BDT) and TPD or BiTPD motifs are reported. The effect of TPD or BiTPD motifs in the polymer main chains on the optical, electronic, carrier transport, morphology, and photovoltaic properties are also systematically examined. It was found that the two analogues, presented in Chart 2 (PTPD and PBiTPD), exhibit significantly different photovoltaic performance patterns in BHJ devices with the nonfullerene acceptor Y6 as a model system (Chart 2). Our detailed device analysis demonstrates that the PBiTPD with BiTPD motifs in the main chain largely outperform the analogue PTPD, which results from (i) larger ionization potential (IP, coinciding with the lower-lying highest occupied molecular orbital (HOMO) energy levels) of PBiTPD that contributes to larger V_{OC} in BHJ devices and (ii) more favorable face-on backbone orientation and stronger crystallinity of PBiTPD:Y6 BHJ blend that contribute to increase of charge transportation and suppression of carrier recombination in BHJ solar cells. Thus, the PBiTPD reaches PCEs as high as 14.2% in optimized BHJ devices with acceptor Y6. Importantly, the PBiTPD does enable a new kind of LBG polymer donors with tunable optical spectra, electronic properties, and crystallinity for efficient fullerene-free BHJ solar cells; to the best of our knowledge, only a few classes of polymer donors showed PCEs over 14% in single-junction binary-blend BHJ PSCs to date.

To obtain efficient BHJ solar cells, the design of solution-processable polymer donors with large optical bandgap is critically important because the state-of-the-art fused ring-based molecule acceptors possess strong optical absorption in the NIR range of 600–1000 nm. Previous studies showed that TPD-based polymer donors exhibit strong optical absorption ranging from 400 to 700 nm. According to prior single-crystal structure analyses and DFT predictions (Figures S1 and S2), the BiTPD, in which the two TPDs are coplanar and have an anti-conformation, has larger planar structure and stronger electron-withdrawing ability in comparison to TPD. The BiTPD-based polymer donor (PBiTPD), depicted in Chart 2, probably tends to backbone planarization; has larger IP; and may concurrently benefit charge transportation and improvement of V_{OC}, J_{SC}, and FF in BHJ devices. Herein, the PBiTPD and PTPD were developed to examine how the BiTPD motif in the polymer backbone affects the optical absorption, energy level, charge transport, and thus photovoltaic properties.

Scheme 1 provides the key routes for the synthesis of BiTPD derivative (M1) according to our previously reported methods and their polymerization with BDT derivative (M2), affording the titled polymer analogue PBiTPD. The key monomer M1 was prepared from the precursor 4-iodothieno[3,4-c]furan-1,3-dione (1) by a multiple-step procedure. First, the solubilizing alkyl chain 2-hexyloctyl (2HD) was appended at the imide site of intermediate (2), which was then converted to the TPD dimer (3) by copper-mediated Ullmann coupling. Near-quantitative bromination (94%) of 3 to the intermediate 4, followed by Stille cross-coupling reaction (75%), yields intermediate 5, which was then brominated using NBS to form the monomer M1 in relatively high yields (78%). The polymer PBiTPD was synthesized from monomer M1 and M2 by palladium (Pd)-mediated Stranske coupling and was further purified by an established procedure. For comparison, the analogue PTPD, with the same solubilizing alkyl chain 2-
hexyl octyl (2HD) for consistency in this study, was also developed. The PBiTPD and PTPD possess similar number-average molecular weight (MW) (22.2–24.6 kDa) and polydispersity indexes (PDI = 2.2–2.6), which can minimize the MW effect on BHJ morphology, carrier transport, and photovoltaic performance in BHJ solar cells. The two polymers possess good solubility in toluene, chlorobenzene, and chloroform that are commonly used for the solution processing of BHJ active layers. Thermogravimetric analysis (TGA, Figure S4) and differential scanning calorimetry (DSC, Figure S5) suggest that PBTTPD and PTPD exhibit good thermal stability up to ca. 400 °C (ca. 5% loss of weight at 424 and 440 °C, respectively), which is beneficial for the long-term operation of BHJ solar cells.

Figure 1a superimposes the normalized thin-film ultraviolet–visible (UV–vis) light absorption spectra of PBTTPD and PTPD, and that of the small-molecule acceptor Y6 (later used in BHJ solar cells studies), with corresponding data provided in Table 1. As presented in Figure 1a, PBTTPD’s spectral absorption falls in the visible range: 400–670 nm. The E_{opt} value of PBTTPD was calculated to be ca. 1.86 eV from its absorption onset at ca. 667 nm. In comparison, the PBTTPD possesses strong optical absorption in the range of 400–700 nm and shows a red-shifted optical absorption spectrum by ca. 30 nm, which can be attributed to the more pronounced electron-deficient character, and more effective π-electron delocalization along the backbone. The red-shift absorption spectrum indicates that the BiTPD motif indeed narrows the absorption onset at ca. 667 nm. The stronger 0–0 transition peak in PBTTPD suggests stronger aggregation feature in PBTTPD thin film. When considering the absorption spectrum of the acceptor counterpart, Y6 has spectral absorption in the NIR range of 600–950 nm, which is highly complementary to the spectral absorption (400–700 nm) of polymer donors PBTTPD and PTPD. In addition, Figure 1b further confirms that the BHJ blend films made with Y6 and PBTTPD or PTPD exhibit complementary absorption and a broad absorption band, which are essential for improving photon harvesting, exciton generation, and thus increasing the J_{SC} of the devices.

The IPs of PTPD and PBTTPD polymers were estimated through photoelectron spectroscopy in air (PESA) measurement: ca. 5.05 eV for PTPD, and ca. 5.20 eV for PBTTPD (Figure 2a and Table 1). The larger IP value of polymer PBTTPD is consistent with the more pronounced electron-deficient properties of BiTPD motifs. It should be noted that the larger IP value measured for donor polymer PBTTPD should translate into higher V_{OC} values in BHJ solar cells.

The first-level EA values, inferred from IPs and E_{opt}, were 3.19 eV for PTPD, 3.45 eV for PBTTPD, and 4.30 eV for Y6 (see Table 1 and Figure 2b), respectively. As provided in the energy level alignments (Figure 2b), the energy offsets for electron and hole transfer between donor PBTTPD and acceptor Y6, which are derived from EA and IP values, are ca. 0.98 and 0.43 eV, respectively, which are greater than 0.3 eV and thus arguably sufficient to ensure efficient exciton dissociation and promote hole/electron transfer at the donor–acceptor interface (detailed in photoluminescence quenching studies, Figure S10).

Given the optical and electronic parameter differences between polymers PTPD and PBTTPD, we turned to a systematic analysis of device photovoltaic performance patterns across those two polymer-based BHJ solar cells. Solution-processed thin-film BHJ polymer solar cells were fabricated with the conventional device structure ITO/PEDOT:PSS/Polym
donor:Y6/PFN-Br/Ag (indium tin oxide (ITO)); poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS); poly[(9,9-bis(3-(N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene-alt-2,7-(9,9-dioctylfluorene)] dibromide (PFN-Br); device area [mask]: 0.04 cm²), and tested under AM 1.5G solar illumination (100 mW cm⁻²). The BHJ active layers with the optimized donor:acceptor blend ratio of 1:1.2 (w/w) were spin-coated from chloroform (CF) solution with 0.5 vol% 1,8-diododecane (DIO). The thicknesses of the optimized BHJ

![Figure 1. Normalized UV–vis absorption spectra of (a) neat PTPD film, neat PBTTPD film, and neat Y6 film and (b) BHJ blend films fabricated from the corresponding polymer donors and Y6 acceptor (model system), polymer donor:Y6 = 1:1.2, w/w.](https://dx.doi.org/10.1021/acsenergylett.9b02842)

![Figure 2. (a) Photoelectron spectroscopy in air (PESA) curves for PTPD, PBTTPD, and Y6. PESA-inferred IPs are reported on the plots, and the traces are offset for clarity. (b) Energy level alignments (IP and EA) of electron acceptor Y6 and electron donors PTPD and PBTTPD.](https://dx.doi.org/10.1021/acsenergylett.9b02842)

Table 1. Molecular Weight and Thermal, Electronic, and Optical Properties of PTPD, PBTTPD, and Y6

<table>
<thead>
<tr>
<th>polymer</th>
<th>M_0 (kDa)</th>
<th>PDI</th>
<th>$T_{5%}$ (°C)</th>
<th>λ_{opt}/sol (nm)</th>
<th>λ_{opt}/film (nm)</th>
<th>E_{opt} (eV)</th>
<th>E_{IP} (eV)</th>
<th>EA (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTPD</td>
<td>22.2</td>
<td>2.2</td>
<td>424</td>
<td>564, 612</td>
<td>562, 613</td>
<td>5.05</td>
<td>1.86</td>
<td>3.19</td>
</tr>
<tr>
<td>PBTTPD</td>
<td>24.6</td>
<td>2.6</td>
<td>440</td>
<td>582, 610</td>
<td>586, 630</td>
<td>5.20</td>
<td>1.78</td>
<td>3.45</td>
</tr>
<tr>
<td>Y6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>825</td>
<td>5.63</td>
<td>—</td>
<td>1.33</td>
<td>4.30</td>
</tr>
</tbody>
</table>

* Determined by GPC. b Measured by TGA. c In chlorobenzene at 100 °C. e Evaluated by PESA measurement. f Optical gaps evaluated from the onset of the thin-film UV–vis absorption spectra. $E_{opt} = 1240/\lambda_{max}$ (in units of eV). g EA = $IP_{PESA} - E_{opt}$.

370

https://dx.doi.org/10.1021/acsenergylett.9b02842

ACS Energy Lett. 2020, 5, 367–375
active layer were ca. 100 nm. Figure 3a depicts the current density–voltage (J–V) curves of BHJ solar cells, with the key

Figure 3. (a) J–V curves and (b) EQE spectra for “as spun” (no DIO, curves with unfilled symbols) and optimized (DIO added, curves with solid symbols) PTPD- and PBiTPD-based BHJ polymer solar cells with the benchmark acceptor Y6; AM1.5G solar illumination (100 mW cm−2).

figure of merits provided in Table 2. Further solar cell optimizations are presented in Tables S1–S6 (Supporting Information).

Table 2. Photovoltaic Performance of BHJ Solar Cells Made with Polymers PTPD and PBiTPD as Donors and the Small Molecule Y6 as Model System Acceptor.1–6

<table>
<thead>
<tr>
<th>BHJ active layer</th>
<th>DIO</th>
<th>Voc (V)</th>
<th>Jsc (mA cm−2)</th>
<th>FF (%)</th>
<th>max PCE %</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTPD:Y6</td>
<td>no</td>
<td>0.65</td>
<td>25.6</td>
<td>37.7</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>0.66</td>
<td>25.6</td>
<td>46.0</td>
<td>5.9</td>
</tr>
<tr>
<td>PBiTPD:Y6</td>
<td>no</td>
<td>0.84</td>
<td>25.6</td>
<td>59.7</td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>0.83</td>
<td>25.6</td>
<td>67.6</td>
<td>14.2</td>
</tr>
</tbody>
</table>

“Device structure: ITO/PEDOT:PSS/Polymer_Donor/Y6/PFN-Bt/Ag. Device area [mask]: 0.04 cm2. Device statistics in the Supporting Information, Table S4. aThe DIO ratio is 0.5 vol %.

As provided in Figure 3a and Table 2, BHJ devices fabricated from polymer donors (PTPD and PBiTPD) with various backbones and the small-molecule acceptor Y6 achieve very distinct performance characteristics. “As-cast” BHJ polymer solar cells composed of PTPD and Y6 can yield only modest PCE of 5.1%, mainly limited by concurrently low Voc (0.65 V) and FF (37.7%) values. Optimized devices, which were made from a blend solution containing 0.5% DIO (v/v), showed improved FF (46.0%) but decreased Jsc (19.5 mA cm−2) and thus did not exhibit any significant promising performance with still modest PCE of less than 6%. Small-molecule additive DIO is now commonly used in the regulation of BHJ film morphologies.37 In comparison, the as-cast BHJ devices made with PBiTPD and Y6 presented remarkably enhanced PCE of 12.8%, with concurrently improved Voc (0.84 V), FFs (59.7%), and Jsc (25.6 mA cm−2) compared to PTPD-based as-cast BHJ solar cells. The significant and almost 0.2 V increase in Voc (0.65 V in PTPD devices, 0.84 V in PBiTPD devices) agrees well with the larger PESA-estimated IP value (corresponding to the downshifted HOMO energy level) of PBiTPD.54,55 Upon addition of 0.5% DIO (v/v) in the PBiTPD blend solution (cf. additive optimization study in Table S3), the FF improves significantly from 59.7% to 66.7% (~12% improvement), indicating that favorable morphologies are formed in BHJ photoactive layers. The optimized BHJ devices made with PBiTPD yielded higher FF value of 66.7%, while retaining almost the same Jsc and Voc values of 25.6 mA cm−2 and 0.83 V, respectively, resulting in PCEs of up to ~14.2%. Overall, BHJ devices made with polymer PBiTPD reach an impressive ca. 2.5-fold PCE enhancement over BHJ solar cells based on the analogous polymer PTPD. As far as we know, the PBiTPD-based BHJ solar cell with PCE of 14.2% is one of the highest-performing photovoltaic BHJ solar cells made with imide- and amide-functionalized polymers, such as thieno[3,4-c]pyrrole-4,6-dione (TPD)-based, diketopyrrolopyrrole (DPP)-based, isoindigo (IID)-based, phthalimide (Phl)-based, and bithiophene imide (BTI)-based polymers, as electron donor materials.12–14 Importantly, the PBiTPD broadens the class of high-performing donor polymer materials system, while to date, only a few classes of polymer donors showed PCEs of over 14% in single-junction binary-blend BHJ PSCs (stated in earlier sections).1–6

The varied Jsc values (Table 2) reached in PTPD- and PBiTPD-based BHJ solar cells are highlighted in the J–V curves (Figure 3a) and are further verified in the external quantum efficiency (EQE) spectra (Figure 3b). The Jsc values integrated from EQE curves agree well (~0.4 mA cm−2) with the Jsc values provided in Table 2. It can be seen from Figure 3b that all the BHJ solar cells exhibit a broad photo response from 300 to 1000 nm as result of the established complementary optical absorption (Figure 1) of narrow-bandgap small-molecule acceptor Y6 and large-bandgap polymer donors, with balanced EQE contributions from polymer donors (300–650 nm) and from the Y6 acceptor (600–1000 nm). The higher Jsc values of 25.6 mA cm−2 achieved in PBiTPD-based BHJ devices are in line with the EQE spectra. The PBiTPD-based BHJ devices showed EQE values higher by >30% in the broad range of 400–1000 nm (peaking ca. 83% at 610 nm), whereas the EQE responses of PTPD-based solar cells remain less than 70% in the same broad range of 400–1000 nm, in accordance with the modest Jsc values (19.5–20.8 mA cm−2) estimated from the J–V curves.

Given that the solvent additive DIO can induce efficiency improvement, we examined the BHJ morphology effect via atomic-force microscopy (AFM) and transmission electron microscopy (TEM).38,39 Figure S6 presents the film surface variations by AFM, suggesting that the as-cast and “optimized” (DIO processed) BHJ active layers are comparatively smooth. All the BHJ films showed root-mean-square (RMS) roughness values of less than 1.5 nm. The smoothest surface was obtained in the “optimized” PBiTPD BHJ active layer with RMS of 0.88 nm, indicating the good miscibility between PBiTPD and Y6. As shown in Figure 4, the TEM images further suggest that the donor and acceptor components in PTPD:Y6 and PBiTPD:Y6 BHJ films are finely mixed. The finely mixed BHJ films and sufficient energy offset (Figure 2b) contribute to efficient exciton dissociation, hole/electron transfer at the donor and acceptor interface, which agrees well with the near unity photoluminescence quenching efficiencies of >98% (Figure S10).

Compared to PTPD, PBiTPD preferentially promotes backbone planarization and presents strong molecular level aggregation in the thin film (stated in previous discussion), and thus, PBiTPD and its BHJ films may have strong ordering and crystallinity. Herein, 2D grazing incidence wide-angle X-ray scattering (GIWAXS) was used to compare the crystallinity and crystallite orientation of both polymers and their BHJ blend films, with corresponding GIWAXS patterns for neat
Figure 4. TEM images (bright-field) of BHJ active layers made up of (a) PTPD:Y6, as-cast BHJ film, without DIO; (b) PTPD:Y6, optimized BHJ film, with 0.5% DIO; (c) PBiTPD:Y6, as-cast BHJ films, without DIO; (d) PBiTPD:Y6, optimized BHJ film, with 0.5% DIO.

Figure 5. (a–d) 2D GIWAXS patterns for PTPD:Y6 and PBiTPD:Y6 BHJ blend films without or with DIO solvent additive, as labeled. (e) 1D profiles of PTPD:Y6 and PBiTPD:Y6 BHJ blend films. Dashed lines represent the out-of-plane direction, and solid lines show the in-plane profiles.

materials and BHJ films provided in Figures S7 and 5, respectively. As presented in Figure 5a,b, PTPD:Y6 BHJ films adopt very weak preferential orientation, as evidenced by the mostly isotropic diffraction ring of lamellar stacking (100), regardless of whether DIO is used as solvent additive during solution processing. As shown in Figure 5c, PBiTPD:Y6 BHJ film adopts a face-on orientation relative to the substrate, as indicated by the simultaneous existence of in-plane lamellar (100) diffraction and out-of-plane (010) \(\pi - \pi \) diffraction. The crystalline orientation distribution functions related to pole angles, which are provided in Figure S8, also confirm that the dominant crystalline orientation of PBiTPD:Y6 BHJ films is face-on. Interestingly, the application of DIO does not bring up noticeable differences in nanoscale crystallization as resolved by GIWAXS measurement. Upon using DIO for optimizing the BHJ morphology, the PBiTPD:Y6 BHJ film showed even stronger \(\pi - \pi \) stacking, as indicated by the sharper \(\pi - \pi \) diffraction peak (010). Moreover, higher-order lamellar diffraction of (200) can be vaguely observed. The stronger \(\pi - \pi \) stacking and crystallinity in DIO-processed PBiTPD:Y6 BHJ films are consistent with the red-shifted UV–vis absorption spectra (Figure S9). The face-on backbone orientation and stronger crystallinity in PBiTPD:Y6 blend are generally preferable for the increase of charge transportation and suppression of carrier recombination and thereby yield a higher FF (~67%) in comparison to that of the PTPD:Y6 devices (FF of only 46%).

To further shed light on the large distinction in photovoltaic performance between PBiTPD- and PTPD-based BHJ devices, charge generation, transportation, and extraction in tandem with recombination were studied. Figure 6a depicts photocurrent density \((J_{ph}) \) versus internal voltage \((V_{int}) \) for the optimized BHJ solar cells. The \(V_{int} \) corresponding to the electric field’s strength is associated with charge carrier extraction. As presented in Figure 6a, the \(J_{ph} \) of PBiTPD BHJ devices increases rapidly in the low-voltage range \((V_{int} < 0.2 \ \text{V}) \) and then gradually saturates and shows field-independent behavior at higher voltage ranges \((V_{int} > 0.2 \ \text{V}) \), suggesting that all the photogenerated charges can be effectively extracted in PBiTPD devices at \(V_{int} > 0.2 \ \text{V} \). For the analogue polymer PTPD-based BHJ devices, \(J_{ph} \) shows a distinctive slope within the same \(V_{int} \) range. \(J_{ph} \) shows a strong dependence on the voltage even at short-circuit (0.7 V), and saturates gradually in the extremely higher voltage range \((V_{int} > 2 \ \text{V}) \), indicating that charge collection remains hindered probably by charge recombination and unfavorable charge transportation in PTPD BHJ devices. In the saturation regime, PTPD- and PBiTPD-based BHJ cells presented comparable \(J_{sc} \) and \(V_{oc} \) ph values of 30 mA- \(\text{cm}^{-2} \) and 1.32 × 10−4 cm2·V−1·s−1 (vs 1.32 × 10−4 cm2·V−1·s−1 for PTPD), which represents another important parameter in explaining the photovoltaic performance, charge collection, and carrier recombination (discussed later) differences observed between PBiTPD and PTPD BHJ solar cells.

The charge recombination behaviors in optimized PTPD- and PBiTPD-based BHJ devices were investigated by examining the variations of \(V_{oc} \) and \(J_{sc} \) under various light intensities. As provided in Figure 7a, the dependence of \(J_{sc} \) against incident light intensity \((I) \) is plotted in a log–log scale and fitted to a power law (solid lines). In general, the light intensity \((I) \) dependence of the photocurrent, which is described by \(J_{sc} \propto F_{0}^{\alpha} \), can be used to estimate the extent of nongeminate charge recombination loss in BHJ devices. Here, an \(\alpha = 1 \) (or near unity) indicates that carrier extraction is effective before recombination at short circuit, where \(\alpha < 1 \) indicates nongeminate charge recombination loss is not negligible at short-circuit conditions. For PTPD BHJ cells, the \(\alpha \) value is 0.92; for PBiTPD BHJ devices, the \(\alpha \) value is 0.98, which is close to unity, indicating that carrier extraction...
The presence of trap-assisted recombination at open-circuit. As shown in Figure 7b, the dependence of V_{OC} on the applied voltage (V_{app}), in which J_L is the light current density and J_D is the dark current density; V_{nat} is $V_0 - V_{app}$, in which V_0 and V_{app} are the voltage and the applied voltage, respectively. Dark J–V curves for (b) electron-only and (c) hole-only diodes made with optimized PTPD:Y6 and PBiTPD:Y6 BHJ active layers. The experimental data (hollow symbols) are fitted using the space-charge-limited current (SCLC) model (solid lines).

Figure 7. Dependence of (a) J_{SC} and (b) V_{OC} of PTPD- and PBiTPD-based devices as a function of incident light intensity (I) (symbols) on a logarithmic scale and fitted to a power law (solid lines).

suffers from less nongeminate recombination losses in PBiTPD BHJ solar cells.

As shown in Figure 7b, the dependence of V_{OC} against incident light intensity (I) is depicted in a natural log-linear scale and described by $V_{OC} \propto n kT/qn(I)$, in which k is Boltzmann constant, T temperature in Kelvin, and q the elementary charge. The parameter n (usually $1 < n < 2$) illustrates the degree of trap-assisted recombination across the BHJ active layers or interfaces with the electrodes. Any deviations from $n = 1$ (trap-free condition) indicate the presence of trap-assisted recombination at open-circuit.

As shown in Figure 7b, $n = 1.27$ and 1.59 were estimated for PBiTPD and PTPD BHJ solar cells, respectively, suggesting less trap-assisted recombination at open-circuit condition in PBiTPD optimized BHJ devices and serious trap-assisted recombination in PTPD BHJ devices. In PBiTPD:Y6 BHJ, the face-on backbone orientation, stronger crystallinity, and thereby the higher and more balanced charge transportation, together with less nongeminate and trap-assisted recombination losses, are deemed to be the most important reasons for the higher FF in BHJ solar cells and thus the improved device PCE.

To summarize, bithieno[3,4-c]pyrrole-4,6-dione (BiTPD), which is a derivative of thiieno[3,4-c]pyrrole-4,6-dione (TPD) but has a larger planar skeleton and stronger electron-withdrawing capability, was used for constructing the large-bandgap polymer donor PBiTPD. The electron-withdrawing ability of the BiTPD motif can enlarge the ionization potential value of PBiTPD, and a correspondingly larger V_{OC} of 0.83 V (vs 0.66 V for PTPD-based devices) was obtained in PBiTPD-based BHJ devices. As confirmed by 2D GIWAXS results, the PBiTPD and PBiTPD:Y6 BHJ blend film exhibited more favorable face-on backbone orientation and stronger crystallinity. As a result, charge transportation was enhanced, whereas the charge recombination was suppressed in the BHJ device, which contributed to the higher FF of 67%. Thereby, the PBiTPD-based BHJ solar cells exhibited high PCE of 14.2%, which is an approximately 2.5-fold efficiency enhancement over BHJ devices made with the analogous polymer PTPD with efficiency of only 5.9%. PBiTPD does broaden the family of high-performing polymer donor materials, while only a few classes of polymer donors showed efficiency of over 14% in single-junction binary-blend polymer solar cells to date. In all, this concise contribution demonstrates that polymers based on bithieno[3,4-c]pyrrole-4,6-dione (BiTPD) motifs are a prospective class of large-bandgap donors for fullerene-free polymer solar cells.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsenergylett.9b02842.

Synthetic details, polymer solar cell device fabrication, and polymer solar cell characterization; charge carrier mobility measurements; GIWAXS measurement, AFM, and TEM experimental methods; and additional figures and tables (PDF).

AUTHOR INFORMATION

Corresponding Authors

Shengqian Liu — South China Normal University (SCNU), Guangzhou, P.R. China; orcid.org/0000-0001-8492-3176; Email: shengqian.liu@m.scnu.edu.cn

Xuechen Jiao — Monash University, Victoria, Australia; orcid.org/0000-0001-7387-0275; Email: Xuechen.Jiao@monash.edu

Yue-Peng Cai — South China Normal University (SCNU), Guangzhou, P.R. China; Email: caiyp@scnu.edu.cn

Fei Huang — South China University of Technology (SCUT), Guangzhou, P.R. China; orcid.org/0000-0001-9665-6642; Email: mshuang@scut.edu.cn
Author Contributions

1J.Z. and Q.L. contributed equally to this work.

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (Nos. 21805097, 21671071, and 51521002), the Guangdong Natural Science Foundation (No. 2016A030310428), Guangdong Applied Science and Technology Planning Project (Nos. 2015B01135009 and 2017B09017002), and Guangzhou Science and Technology Foundation (No. 201904010361). The authors thank Jinwei Gao (SCNU), Xin Song (King Abdullah University of Science & Technology (KAUST)), Zhihuang Xu (SCNU), and Wei Wei (SCNU) for help in thin-film thickness, PESA, theoretical calculation, and PL measurements, respectively. The authors appreciate SCNU Analysis & Testing Center for technical support. This work was performed in part on the SAXS/WAXS beamline at the Australian Synchrotron, which is part of ANSTO.

REFERENCES

