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Abstract
Research evidence indicated that a specific type of augmented reality–assisted (AR-
assisted) science learning design or support might not suit or be effective for all stu-
dents because students’ cognitive load might differ according to their experiences 
and individual characteristics. Thus, this study aimed to identify undergraduate 
students’ profiles of cognitive load in AR-assisted science learning and to exam-
ine the role of their distinct profiles in self-efficacy together with associated behav-
ior patterns in science learning. After ensuring the validity and reliability of each 
measure, a latent profile analysis confirmed that 365 Chinese undergraduates car-
ried diverse dimensions of cognitive load simultaneously. The latent profile analy-
sis findings revealed four fundamental profiles: Low Engagement, Immersive, Dab-
bling, and Organized, characterized as carrying various respective cognitive loads. 
The multivariate analysis of variance findings revealed different levels of the six 
AR science learning self-efficacy dimensions across profiles. Low Engagement stu-
dents displayed the lowest self-efficacy among all dimensions. Organized students 
recorded better conceptual understanding and higher-order cognitive skills than 
Dabbling ones. Students with the Immersive profile had the highest science learn-
ing self-efficacy. The lag sequential analysis results showed significant differences in 
behavior patterns among profiles. Among them, profiles with social interaction, test, 
and reviewing feedback behavior had a significantly higher score for self-efficacy 
than those patterns mainly based on test learning and resource visits. This finding 
provides a unified consideration of students’ diverse profiles and can inform inter-
ventions for effective design of AR-assisted science learning to match appropriate 
strategies to facilitate the science learning effect.
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Introduction

Science learning plays a crucial role in education for students’ scientific literacy 
to explore and comprehend the critical laws of scientific phenomena. Students 
may experience various learning difficulties in science learning (Yeh et al., 2019), 
such as lacking motivation and poor engagement when encountering difficul-
ties (Ho et al., 2022; Hwang et al., 2019; Lin et al., 2022a, 2022b) and lacking 
substantial scientific learning experiences in the physical laboratory (Hu-Au & 
Okita, 2021). Thus, research is increasingly considering the role of technology in 
science learning to solve these problems. With the advantages of combining vir-
tual and real objects with real-time and interactive information, augmented reality 
(AR) has been widely implemented in the field of science education and has been 
demonstrated to contribute to improved learning experience (Lai et  al., 2019; 
Thees et  al., 2020), learning performance (Chang & Hwang, 2018; Lai et  al., 
2019), science-conceptual understanding (Lin et  al., 2020), motivation (Chen, 
2019), and learning behavior (Lai et al., 2019; Sahin & Yilmaz, 2020).

Despite the merits of AR for the improvement of students’ achievements in 
learning, some instructional challenges have also emerged, including issues related 
to cognitive load (Wu et al., 2018), especially lowering students’ extraneous cog-
nitive load (Thees et al., 2020). Therefore, an equally important but less investi-
gated issue is to understand the current status of cognitive load as perceived by 
students regarding factors that relate to their AR-assisted science learning experi-
ences and behavior. In particular, students may encounter different levels of cogni-
tive load when engaging in various AR multimedia approaches in science learning 
(Lai et  al., 2019; Thees et  al., 2020). Hence, they may differ in their AR learn-
ing experiences in ways worth investigating, such as how their cognitive load can 
be manipulated to pedagogical benefit via AR, the influence on students’ motiva-
tional state, and students’ cognitive load in using AR tools. Thus, the design of 
AR-assisted science learning experiences should take students’ cognitive load into 
account, since cognitive load in AR learning is increasingly becoming a vital fac-
tor in balancing students’ expected efforts and their mental costs associated with 
the learning process in the design of learning tasks (Yang et al., 2021).

As implied by the above, previous researchers also indicate that a specific type 
of AR-assisted science learning design or support may not suit or be effective for 
all students because students’ cognitive load may differ according to their experi-
ences and individual characteristics (Thees et al., 2020). Prior studies have shown 
contradictory findings on cognitive load. For example, students processing more 
cognitive load may perform better (Lai et al., 2019; Thees et al., 2020), less favora-
bly (Sung et al., 2014; Thees et al., 2020), or with no significant difference (Hwang 
et al., 2018; Wu et al., 2018) between the experimental and control groups. In addi-
tion, multitasking is another issue related to the AR learning system, which can be 
a distraction factor that will lead students to ignore the instructions in their learn-
ing process (Garzón et  al., 2019). These issues in AR education may involve the 
interaction of multiple factors that influence cognitive processes. Therefore, this 
study aimed to investigate students’ cognitive load in AR-assisted science learning 
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experiences, which can help to inform instructors about the current status of learn-
ers’ profiles of cognitive load in AR-assisted science learning, and their relation 
to multiple science learning factors to fill the potential consistencies between AR-
assisted science learning theories and practices for teachers to consider.

Furthermore, students with high self-efficacy may have a powerful sense of compe-
tence, which may assist in cognitive processes (Lin et al., 2020), academic performance 
(Wang et al., 2018), and achievement (Chang et al., 2018). It is worth regarding students’ 
self-efficacy as a key characteristic of students with different levels of cognitive load in 
science learning (Martin et al., 2021; Plass et al., 2009). For instance, Plass et al. (2009) 
confirmed that students with different levels of cognitive load varied in self-efficacy when 
learning science with designed scaffolds. Therefore, this study included self-efficacy as a 
factor to identify the underlying subgroups in AR-assisted science learning regarding stu-
dents’ cognitive load, unlike previous studies (e.g. Thees et al., 2020), which only proved 
the effect of an AR-assisted learning system on science learning performance and cogni-
tive load. Learning behavior pattern analysis can be analyzed via behavioral sequential 
analysis to point out the students’ complex behaviors for a more effective instructional 
mechanism for an AR learning system (Hwang et  al., 2018). Researchers have high-
lighted the importance of exploring primary school students’ behavior patterns in the 
AR-based scientific inquiry to reveal intrinsic factors and key learning processes, such as 
self-efficacy and cognitive load (Ho et al., 2022; Lin et al., 2022a, 2022b). However, to 
the best of our knowledge, exploration of the relationship between students’ multi-dimen-
sional profiles of cognitive load in AR-assisted science learning, self-efficacy, and the 
associated behavior patterns is still rare in the literature. This research gap may lead to an 
insufficient understanding of how to better facilitate students’ science learning. Accord-
ingly, this study aimed to test hypotheses regarding how these multiple factors interact 
and identify Chinese undergraduate students’ profiles in terms of their critical perceptions 
of cognitive load in AR-assisted science learning. This study also compared AR science 
learning self-efficacy and associated behavior patterns among different learning profiles. 
The following research questions were therefore addressed:

1.	 By latent profile analysis, what are undergraduate students’ profiles in AR-assisted 
science learning in terms of three critical cognitive load dimensions?

2.	 By behavioral sequence analysis, what are the differences in the students’ science 
learning behavior patterns in terms of the different AR-assisted science learning 
profiles?

3.	 How do the different undergraduate students’ AR-assisted science learning pro-
files differ in terms of science learning self-efficacy?

Literature Review

Cognitive Load

Considerable information processing is required of students to ensure they 
achieve their learning outcomes with meaningful learning. However, their 
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capacity for cognitive processing is a critical barrier. Cognitive load is a multi-
dimensional cognitive construct representing load when doing a particular task 
(Paas & van Merriënboer, 1994). However, the vast amount of cognitively rel-
evant information contained in AR materials may lead to students’ overload in 
science learning activities (Ho et  al., 2022; Lin et  al.,  2022a,  2022b). Sweller 
(1988) and Paas and van Merriënboer (1994) have identified various catego-
ries of cognitive load. First, Sweller (1988) identified three types of cognitive 
load—intrinsic, extraneous, and germane—focusing on the interpretation of per-
formance and task-based measures. Intrinsic cognitive load is defined as an inter-
action between the inherent components of the material and the level of the learn-
ers’ prior knowledge or experience (Sweller, 1988). Extraneous cognitive load is 
caused by the poor design of instructional materials, which requires extra cogni-
tive handling (Kirschner et al., 2006). Germane cognitive load is defined as the 
amount of working memory capacity required for managing intrinsic load. How-
ever, these three classical types only give a partial picture of cognitive load (Xie 
& Salvendy, 2000), and do not properly capture the mental effort-based aspect of 
cognitive load (Feldon, 2007).

Second, cognitive load theory proposed by Paas and van Merriënboer (1994) 
highlighted the factors that demonstrated students’ depletion of working memory 
when they encountered learning tasks. According to their theory, cognitive load 
is supposed to be assessed according to three dimensions: mental load, mental 
effort, and performance. Mental load is forced by a task or environmental request 
regardless of subject characteristics. As a task-centered factor, it shows how stu-
dents persist with the assigned task in a certain environment. Mental effort is 
a human-centered factor, which measures the quantity of resources assigned to 
afford task requests or the needed amount of controlled processing. Mental effort 
also refers to an index that can be examined by subjective techniques, such as 
rating values and objective techniques, such as physiological parameters. Perfor-
mance is an indirect indicator of cognitive load measure, where a higher level of 
performance means a higher amount of working memory capacity required for 
managing intrinsic load (Deleeuw & Mayer, 2008; Paas et  al., 2003). Although 
the dimension performance of cognitive load increases the level of total cogni-
tive load, it simultaneously increases students’ motivation, directs attention to the 
learning materials, and improves schema acquisition. Generally, the mental effort 
and performance together represent (i) the costs of cognitive load for the attained 
performance and (ii) the relative efficiency of instructional situations. This study 
takes performance into account when constituting the essential estimators of cog-
nitive load together with mental load and mental effort, as suggested in the prior 
study (Deleeuw & Mayer, 2008; Wang et al., 2018). When conducting problem-
solving activities in science learning, it is essential to be aware of both students’ 
performance and their invested mental effort to regulate their problem-solving 
processes since problem-solving activities utilize many of students’ limited cog-
nitive capacities without being directly related to their learning (i.e. extraneous 
cognitive load), whereas the performance dimension of cognitive load may be 
restrained by their limited cognitive processing scope (van Gog et al., 2020).
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Mental load, mental effort, and performance are also conceptualized as assess-
ment factors for cognitive load. Mental load and mental effort are normally 
extracted or modified from the original cognitive load scales (e.g. mental load, 
mental effort, and performance) to measure learners’ cognitive load profiles 
(Wu et al., 2018). Although students’ mental load and mental effort have already 
received much attention in the literature (Hwang et al., 2018; Sung et al., 2014), 
their results show contradictory findings. The reason for these contradictory 
results is that the previous studies tend to explore the cognitive load with three 
separate measurable factors of mental load, mental effort, and performance in 
detail with limited information. It remains unknown if students of different cogni-
tive load levels can equally benefit from the same AR-assisted science learning 
system. To fill this gap, educators need to identify students’ learning profiles from 
a comprehensive perspective.

Cognitive Load in the AR Context

The cognitive process of learners using technology is crucial in instructional design. 
AR technology utilizes real and virtual images via integrating digital content into 
real media images. The positive contribution of AR to cognitive load has been dem-
onstrated in several studies (Ibili & Billinghurst, 2019). Prior studies have uncov-
ered the effectiveness of AR in understanding complex and abstract learning con-
cepts by lowering intrinsic and extraneous cognitive load (Ibili & Billinghurst, 2019; 
Keller et al., 2021). In the virtual learning environment, cognitive load increases if 
the difficulty of new learning content is high (Skulmowski & Xu, 2022). The AR 
approach can reduce learners’ efforts in information processing and their difficulty 
dealing with science learning content (Fadl & Youssef, 2020). AR directly affects 
memory resources related to spatial 3D representations, leading to reduced intrin-
sic load (Ibili & Billinghurst, 2019); then, students can invest lower cognitive effort 
while still successfully understanding the learning topics and comprehending scien-
tific concepts (Keller et al., 2021). There are some cognitive load-related challenges 
for AR learning, such as learners’ cognitive overload due to the large amount of cog-
nitively relevant information contained in learning materials and the complex tasks 
required in AR environments (Akçayir & Akçayir, 2017). Overuse of large learning 
materials and tasks when learning via AR simulation can cause confusion and cog-
nitive overload (Dunleavy et al., 2009). Thus, this study focused on undergraduate 
students’ mental load, mental effort, and performance in AR-based learning to iden-
tify students’ profiles of cognitive load in AR-assisted science learning.

Science Learning Self‑Efficacy

Self-efficacy can be described as an individual sense of self-ability to accomplish 
the given tasks and achieve the designated performance (Beehr, 1995). Lin (2021) 
found that high school students with high scores in self-efficacy tended to adopt 
deep learning strategies and showed high cognitive engagement in science learning. 
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Some researchers have modified an instrument to examine students’ science learning 
self-efficacy, which comprises five dimensions: conceptual understanding, higher-
order cognitive skills, practical work, everyday application, and science communica-
tion (Chang et al., 2018). They explored a more detailed understanding of students’ 
multi-dimensional learning self-efficacy. They indicated that learners with a con-
structive perception (who regarded learning as understanding knowledge deeply and 
not perceiving learning as testing, calculation, and remembering) could have great 
confidence in science communication.

Relationship Between Cognitive Load and Science Learning Self‑Efficacy

Past achievements can enhance students’ self-efficacy, contributing to higher aspira-
tions and the application of extra effort or initiative, and consequently improving 
performance (Beehr, 1995). Salomon (1984) stated that an individual’s capability 
would contribute to the mental effort level by influencing the stability of the per-
formance goal, and low self-efficacy may cause anxiety. Students with low self-
efficacy may get away from their tasks because they expect themselves to fail (Ho 
et  al.,  2022;  Lin et  al., 2022a, 2022b). When students faced a task beyond their 
working memory capacities, they automatically adjusted their performance targets 
and carried out the task with a lower mental effort level (Yang et al., 2021). Besides, 
students with a medium level of self-efficacy will invest more mental effort in their 
learning as they believe that they will not get better results if they do not work dili-
gently (Wang et al., 2018). On the other hand, Feldon et al. (2018) found that men-
tal effort contributed to self-efficacy, indicating that students may be conscious that 
mental effort was a necessary investment for self-efficacy when learning biology in 
an instructional condition. The investment of mental effort is one of the indicators of 
motivation, along with goal selection (where to invest mental effort) and persistence 
(how to sustain mental effort over time to achieve a goal) (Wigfield & Eccles, 2000). 
This implies that students may maintain high-order self-efficacy with the investment 
of mental effort. However, only a positive linear relationship between self-efficacy 
and mental effort has been exploded (Buchner et al., 2022). Students who believe 
in their self-perceived skills in science and mathematics were less affected by the 
extraneous load (Glogger-Frey et al., 2017). The above contrasting findings regard-
ing self-efficacy and mental effort may imply that the relationship between cognitive 
load and self-efficacy in science learning is still unclear and is worth investigating 
further. In addition, most previous researchers have paid attention to the correla-
tion between cognitive load and self-efficacy (Chang & Hwang, 2018; Lai et  al., 
2019). For example, Lai et al. (2019) uncovered that elementary students learning 
with an AR-based learning approach applied lower mental effort and less cognitive 
load for information processing than those who participated in the conventional sci-
ence learning (non-AR-based). However, they only regarded cognitive load as one 
possible indicator to test the effect of the AR-based learning approach on cognitive 
load in science learning with a quasi-experimental study. To the best of our knowl-
edge, the existing study failed to be aware of the complex mechanism that students’ 
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behavior sequence and science learning self-efficacy might be different in relation 
to their latent profiles of perceived cognitive load in AR-assisted science learning. 
Thus, this study may present a new direction to better understand cognitive load’s 
role in affecting the efficacy of AR-based science learning by exploring students’ 
behavior patterns.

Methods

Research Design

This study designed a framework to represent profiles of cognitive load in AR-
assisted science learning and their relation to science learning self-efficacy and 
behavior patterns. As shown in Fig. 1, cognitive load in AR-assisted science learn-
ing consists of three critical assessment dimensions (mental load, mental effort, and 
performance) to measure students’ cognitive load. Latent profile analysis was uti-
lized to analyze these students’ cognitive load scales in the AR context for catego-
rizing several distinct profiles.

Based on the above profile analysis in AR-assisted science learning, this study 
identified different students’ science learning behavior patterns according to the 
classification of each profile. The related behavior patterns were analyzed and 
described according to these different profiles. Comparisons will be done among the 
distinct profiles of cognitive load and science learning self-efficacy. Furthermore, 

Fig. 1   The framework of the relationship between cognitive load in augmented reality reality–assisted 
science learning and science learning self-efficacy. Note. Profile “N …” under CL profiles means an 
undetermined name of profiles, as the precise name will depend on the analysis results
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this study compared the distinct profiles of cognitive load with behavior patterns in 
AR-assisted science learning. In addition, an AR-assisted science learning system 
was designed in order to apply the above framework.

Participants

There were 372 undergraduates involved as candidates. However, several 
undergraduates were removed because they did not finish their learning tasks or 
were absent. Ultimately, 365 participants from the same university in southern 
China completed the questionnaires; 31.5% were male. Their average age was 22.16 
(SD = 3.47), ranging from 16 to 26  years old. All students had prior experience 
using smartphones or tablets. These participants were in their second (N = 129) and 
third (N = 236) years of study. A long-term science learning project in the mobile 
AR context supported by the Chinese subject instructional committee in 2020 was 
conducted for this study to help teachers implement science learning activities with 
a proposed AR-assisted science learning system. The students had prior experience 
using AR in education; they had already learned the basic concepts and knowledge 
about vehicle theory, vehicle gearbox, and the structure of automobile engines 
using AR. All the participants were recruited from only science-related majors (e.g. 
physics, environmental engineering, science, and astronomy).

Context

An AR-assisted science learning system was designed and applied in this study. 
It played a major role in the entire science learning process, including learning 
observation, experimental exploration, rectification, and reflection. The learning 
system consisted of authentic mobile AR-assisted science learning environments, 
a technology-embedded scientific inquiry system, and a behavior tracking system 
on students’ learning behavior, which were adopted from past studies (Lin et al., 
2020; Yeh et al., 2019). This study was conducted in the Physics and Everyday 
Life curriculum course at the university. The course was designed for them to 
learn the principles of the automobile engine. The teaching goals of the course 
were for the students to learn the engines and individual systems, the basic struc-
ture and working principle of the mechanism, such as the structure and prin-
ciple of the idle air control system, air inlet control system, and fuel injection 
system. The learning environment situated the students’ learning activities in the 
AR-assisted science learning system. The students spent 2 weeks (140 min each) 
completing three recommended AR-assisted science learning tasks implemented 
by the teacher with the purpose of reducing their cognitive load. Figure 2 demon-
strates parts of the AR-assisted science learning system which was designed for 
this study. Participants joined this AR-assisted science learning system for sci-
ence learning and demonstrated different learning pathways and data, which were 
used for this study’s analysis.

The students learned scientific knowledge and concepts with AR in the first 
activity. The students scanned the QR code on the related content to access 
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science learning materials for expanded reading, review, and consolidation, as 
demonstrated in Fig. 2. The teachers guided the students to compare the con-
textual science knowledge with their previous understanding. Students directly 
comprehended scientific knowledge with the interactive and dynamic 3D object 
representations by AR. In the activities, AR provided a context close to real-
ity for observation and exploration, thus promoting understanding and reducing 
mental load.

The second activity involved contextual inquiry to solve the students’ scien-
tific questions in the practical work via AR. The teachers provided the students 
with guidance on issue-based science questions in a task-based and context-
aware environments with the support of image-based AR. Based on these AR 
materials and environments, an experimental exploration was designed for two 
purposes. First, the students’ mental efforts were moderately raised by leading 
them to experience real problem-solving situations presented by AR. Second, 
students’ extraneous cognitive load was reduced by integrating what they had 
learned with the learning objectives by allowing them to practice in the simu-
lated experimental process. This was presented by an example in the follow-
ing section. When the mental effort was moderately increased, students would 
achieve the best learning outcomes with lower extraneous cognitive load (Lai 
et al., 2019).

The third activity was designed to enhance students’ scientific methods via AR. 
The students needed to express their conceptual understanding of scientific knowl-
edge in this activity. Teachers were trained to develop several test modules with 
timely feedback in the AR-assisted science learning system. In these science learning 

Fig. 2   Demonstration of the 
usage of the AR-assisted science 
learning system
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activities, the AR-based interactive reflective approach has the potential to improve 
the students’ learning performance and scientific thinking skills gradually. Only self-
reflection based on appropriate feedback from the teacher can lead to the effective 
knowledge construction and consolidate the formation of scientific thinking.

This study took the scientific activity involving the “four-stroke cycle of 
automobile engine” as an example to explain how the use of an AR-assisted 
science learning system could facilitate students’ learning. Specifically, the 
students were provided with AR science learning materials, the guidance, and 
science questions in task-based and context-aware environment, with appropri-
ate feedback to facilitate their self-reflection. First, the students were asked to 
watch the interactive videos and interact with the 3D object representations to 
understand the invisible structure and abstract concepts of automobile engines’ 
working process cycle (i.e. intake stroke, compression stroke, power stroke, 
and exhaust stroke). Accordingly, the students compared the presented model 
with their existing knowledge of how automobile engines work through AR-
assisted science learning experiences. Second, the students were asked to solve 
an immersive automobile engine-related issue by providing an AR-based semi-
real context and situational questions to apply their learned science knowledge 
in everyday applications. For example, the students needed to answer an every-
day situational question about how to address the driving difficulty of failing 
to accelerate when keeping their foot on the gas. To express students’ ideas of 
how to address this difficulty, the students complete a test, writing possible 
solutions and related science knowledge on a worksheet within the AR-assisted 
science learning system. The students may encounter an abstract principle that 
keeping their foot on the gas only provides more gasoline to the engine, while 
releasing the throttle first, let the air in and thus results in faster acceleration. 
The structural movement of the gas pedal is hard to see but can be visualized 
by an AR-assisted science learning system. Therefore, the students were able to 
observe, interact, and perform experiments with the AR-simulated automobile 
engine. After analyzing the data from experiments, they understood the abstract 
principle regarding how the “automobile engine” applies a four-stroke cycle 
to convert gasoline into motion. Third, the students were assisted by the in-
time feedback from the teacher and suitable guidance from the AR-assisted sci-
ence learning system to cultivate their self-reflection, including re-examining 
assumptions, identifying knowledge gaps, and transforming thinking actively 
into practice. Accordingly, the students could evaluate their science learning 
performances and behaviors to bridge their science knowledge gaps in under-
standing the stroke cycle of automobile engines.

Instruments

Cognitive Load Scale in the AR Context

The scale of cognitive load in the AR context was modified from the original cognitive 
load developed by Ho et al. (2022), Lin et al. (2022a), (2022b), Chen et al. (2022), 
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and Paas and van Merriënboer (1994). To adapt the scale to measure the students’ 
perceived cognitive load using the AR-assisted science learning system in this study, 
21 items were retained and modified into three dimensions: mental load, mental effort, 
and performance. The participants rated all items on a 5-point Likert-type scale (1—
strongly disagree, 2—disagree, 3—disagree nor agree, 4—agree, and 5—strongly 
agree). In this study, the Cronbach’s alpha values of mental load, mental effort, and 
performance are 0.92, 0.92, and 0.85, respectively, indicating that the scale is reliable. 
To validate the instrument, three expert teachers from the science and technology 
area were asked about the implementation appropriateness, content relevance, and 
writing clarity of the questionnaire. Furthermore, eight students participated in content 
validation to consider the course relevance of the questionnaire. The following items 
explain each dimension of the cognitive load scale in the AR context:

•	 Mental effort: students’ reactions to the instructions of the learning task to com-
plete the AR-assisted science learning tasks (e.g. I devoted much energy to the 
AR science learning activities)

•	 Mental load: students’ perceived difficulty of the AR-assisted science learn-
ing content, learning task, subject characteristics, and materials to understand 
new information (e.g. It is difficult for me to be attentive in learning AR science 
materials)

•	 Performance: students’ science learning performance in the science learning 
activities embedded in the AR-assisted learning system (e.g. I can achieve my 
science learning goals for a higher outcome with the help of the AR learning sys-
tem)

AR Science Learning Self‑Efficacy

The AR science learning self-efficacy scale was modified based on the original 
learning self-efficacy scale (Chang et al., 2018), which includes six subscales: con-
ceptual understanding, higher-order cognitive skills, practical work, everyday appli-
cation, science communication, and academic efficacy. Similar to the above proce-
dure of validation and modification of the cognitive load scale in the AR context, 32 
items originally designed by Chang et al. (2018) were retained for further analysis in 
this study to fit well with the context of AR science learning. Every subscale has five 
items, and all items are rated on a 5-point Likert-type scale. The Cronbach’s alpha 
values for these subscales range from 0.80 to 0.92 in this study; these values indicate 
that the AR science learning self-efficacy scale is reliable. In addition, expert valida-
tion and content validation tests were conducted to ensure the scale’s validity. The 
items for each AR science learning self-efficacy scale are as follows.

•	 Conceptual understanding: students’ confidence in using basic scientific con-
cepts, principles, or theories with the AR-assisted learning system (e.g. I can 
explain basic scientific concepts to others with the help of the AR system-
assisted science learning activities)

•	 Higher-order cognitive skills: students’ confidence in using sophisticated cog-
nitive skills, such as problem solving, critical thinking, or self-directed inquiry 
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with the interactive and dynamic 3D object representations by AR (e.g. I was 
able to observe the detailed processes and think of possible reasons behind spe-
cific scientific phenomena and principles (e.g. the automobile engine) when I 
was inquiring about scientific problems with the help of the AR-assisted science 
learning system)

•	 Practical work: students’ confidence in conducting scientific explorations (e.g. 
experiments) by using AR as an effective approach to compare the contextual 
science knowledge with their previous understanding (e.g. After the AR science 
learning activities, I am confident in analyzing and understanding the meaning of 
the scientific data)

•	 Everyday application: students’ confidence to apply scientific concepts and skills 
to their daily lives with the support of the AR-assisted learning system (e.g. I 
could understand many science concepts and phenomena in daily life with the 
help of AR-assisted science learning experiences)

•	 Science communication: students’ confidence in discussing and communicating 
scientific knowledge with peers or others with the use of AR learning resources 
(e.g. I could discuss science-related content with my classmates naturally in dif-
ferent authentic AR learning contexts)

•	 Academic efficacy: students’ confidence to achieve academic achievement and 
learning outcomes in the AR-assisted science learning process (e.g. I am able to 
use the correct science knowledge to answer the designated questions of the test 
in the AR system; I am confident that I could explain the invisible structure and 
working processes of an automobile engine to others after I learned and inter-
acted with the AR materials on automobile engines)

Data Analysis

Five steps of data analysis were adopted to identify the students’ profiles of cogni-
tive load in AR-assisted science learning and their relation to science learning self-
efficacy and behavior patterns. First, a Kolmogorov–Smirnov test was conducted to 
test the data distributions, indicating the data was not normally distributed. There-
fore, this study used the robust maximum likelihood estimator to analyze the data 
(Muthén & Muthén, 2012).

Second, confirmatory factor analysis (CFA) validated the constructs of the two 
instruments using Mplus 7.4. The three goodness-of-fit indices were used to assess 
the fitness of the model: (a) the root-mean-square error of approximation; (b) the 
comparative fit index; and (c) the standardized root-mean-square residuals. If the 
root-mean-square error of approximation ≤ 0.08, the comparative fit index ≥ 0.9, 
and the standardized root-mean-square residuals ≤ 0.08, the model fits well (Marsh 
et al., 2004).

Third, in order to identify latent profiles of the students’ AR-assisted science 
learning data, a statistical method of latent profile analysis of cognitive load data 
set (i.e. mental effort, mental load, and performance) was conducted for ana-
lyzing as continuous observed variables to identify unobservable groups among 
subjects. Several groups of students sorted by the latent profile analysis showed 
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the profiles of the students’ cognitive load in AR-assisted science learning. A 
series of latent profile analysis models were constructed using the scores of the 
cognitive load scale’s items in Mplus 7.4. The low values of the Akaike infor-
mation criterion, adjusted Bayesian information criterion, and higher entropy 
indicated that the models’ fits were good (Burnham & Anderson, 2002). The 
bootstrap likelihood ratio test and adjusted Lo-Mendell-Rubin test were also 
considered (Lo et al., 2001).

Fourth, this study compared the distinct profiles of cognitive load with behav-
ior patterns. In terms of the various learning behavior pattern profiles, this study 
conducted the coding scheme proposed by Hwang et  al. (2018), as shown in 
Table 1. The participants’ learning actions were collected and coded from dif-
ferent data sources (i.e. classroom observations, count = 21,572, 35.6%; digital 
video camera records, count = 32,237, 53.2%; and AR-assisted science learn-
ing system data, count = 6787, 11.2%). Then, the participants’ learning actions 
data could be transcribed into the behavior pattern diagram based on the cod-
ing scheme. The categorization processes were conducted by two experienced 
science education teachers who coded the learning actions based on the coding 
scheme. The raw data of all participants’ behaviors were converted into textual 
content. Long short-term memory (LSTM) and the convolutional neural network 
(CNN) algorithm architecture were applied to identify behavioral sequences 
based on the data. The LSTM-CNN algorithm framework extracted deep seman-
tic features of the text based on the advantages of learning long-term dependen-
cies and capturing local context. A similar mechanism has been described by 
Can et  al. (2018), and they discovered that the LSTM-CNN algorithm outper-
forms previous separated methods.

In the analyzing process of LSTM-CNN, similar features were classi-
fied into one category, and the final exported categories were designed to 
match the established coding scheme and obtained preliminary behavioral 
classifications. Besides, the two coders checked and corrected the possible 

Table 1   Coding scheme

C capture the information, Q quiz interaction, H human contact

Code Learning behavior

C1 Find and read the learning content
C2 Scan the figure label or QR code to access more learning material
Q1 Click on the test module and review the test
Q2 Submit a wrong answer
Q3 Answer correctly
Q4 Conjecture the answer (answer wrong 3 times in 15 s)
Q5 Read the feedback of the answer (for more than 5 s)
Q6 Complete the learning task (e.g. summit the test answer)
Q7 Change to another learning task during an unfinished task
H1 Discuss with others
H2 Leaving messages or comments for help on others’ pages
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inconsistencies in the obtained preliminary classifications to get the data 
for the LSA analysis. The coders had rich coding experience using the cod-
ing scheme employed in this study. They could fully comprehend the coding 
scheme and were capable of resolving any ambiguity that might occur in the 
coding process. When the students’ learning behavior data failed to reach an 
agreed-upon categorization, the researchers reviewed the transcripts to obtain 
the final categorization. The inter-rater reliability kappa of the two teachers’ 
analytic results was 0.82 (p < 0.001), showing acceptable inter-rater reliabil-
ity. This study performed a lag sequential analysis to examine the students’ 
learning behavior patterns from the AR-assisted science learning system. Sta-
tistical significance was analyzed by calculating Z-score (an adjusted residual 
value) statistics using a sequential pattern analysis program (GSEQ 5.1). In 
the specific behavior sequence analysis, Z-scores greater than 1.96 were used 
for filtering to obtain significant behavioral transformation data (Bakeman & 
Gottman, 1997).

Finally, this study conducted a multivariate analysis of variance to compare the 
differences between the identified unobservable subgroups of the students’ cognitive 
load and their role in AR science learning self-efficacy.

Results

Confirmatory Factor Analysis

CFA was conducted to explore the reliability and validity of the two instru-
ments. After the CFA process, 17 out of 21 items in the cognitive load scale in 
the AR context and 30 out of 32 items in AR science learning self-efficacy were 
retained. According to the suggestion indices proposed by Marsh et  al. (2004), 
the three-factor structure of cognitive load scales in the AR context fitted well 
(i.e. chi-squared = 407.87, p < 0.001, the degree of freedom = 186, the compara-
tive fit index = 0.93, the root-mean-square error of approximation = 0.06, and the 
standardized root-mean-square residuals = 0.08). The measurement model of AR 
science learning self-efficacy, comprising six factors, also had a valid construc-
tion. Moreover, the goodness of fit, chi-squared = 973.60, p < 0.001, the degree 
of freedom = 390, the comparative fit index = 0.90, the root-mean-square error 
of approximation = 0.06, and the standardized root-mean-square residuals = 0.06 
were acquired.

Latent Profile Analysis for Classifying Students’ Perceptions of Cognitive Load 
in the AR Context

As shown in Table 2, the bootstrap likelihood ratio test indicated that adding pro-
files was necessary for up to five profiles. According to the criterion of Finch 
and Bolin (2019), the number of participants in every profile should be more 
than 10%. The five-profile model should be removed because it contained less 
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than 10% of the participants. Excluding the five-profile model, Akaike informa-
tion criterion and adjusted Bayesian information criterion were the lowest for 
the four-profile model among all other models. Therefore, the four-profile model 
was better than the other three profile models in Akaike information criterion and 
Bayesian information criterion. Although the entropy of the four-profile model 
was not the highest, it was larger than 0.90, indicating that classification accuracy 
was very high. Thus, the four-profile model was preferred.

Table  3 illustrates the means (standard deviations) for the four profiles, the 
number of participants, profile names, and post hoc tests. The multivariate analy-
sis of variance indicated that the four profiles were significantly different (mental 
effort: F = 268.66, p < 0.001; mental load: F = 320.47, p < 0.001; performance: 
F = 121.04, p < 0.001). In profile 2, 100 participants attained the highest mean 
values for mental effort, second-highest mean values for performance, and low-
est mean values for mental load across the four profiles. The result implies these 
students actively devoted effort to tasks. In contrast, the participants in profile 
1 (N = 38) had the lowest mean values for mental effort and performance but 
the highest mean values for mental load. They appeared to lack competence and 
focus. Profile 4 consisted of 107 participants, while profile 3 consisted of 120 

Table 2   The fit of the compared latent profile models with increasing numbers of profiles (N = 365)

AIC Akaike information criterion, ABIC adjusted Bayesian information criterion, BLRT bootstrap likeli-
hood ratio test, ALMRT adjusted Lo–Mendell–Rubin test
*** p < .001

Num-
ber of 
profiles

X2 Df AIC ABIC Entropy BLRT ALMRT Group size

1 8651.12 42 17,386.24 17,416.79
2 7848.92 64 15,825.83 16,075.42 .90 8651.12*** 1592.14 0.58/0.42
3 7402.67 86 14,977.33 15,039.88 .95 7848.92*** 885.68 0.15/0.31/0.54
4 7144.25 108 14,504.49 14,583.04 .94 7402.67*** 512.89 0.10/0.27/0.34/0.29
5 7007.98 130 14,275.95 14,370.50 .95 7144.24*** 270.46 0.10/0.32/0.29/0.08/0.21

Table 3   Comparisons of 
different profiles

ANOVA analysis of variance, LSD, Fisher’s least significant differ-
ence tests
*** p < .001

AR cognitive load group mean (SD)

Mental effort Mental load Performance

Profile 1 (N = 38) 2.94 (0.42) 3.10 (0.55) 2.96 (0.52)
Profile 2 (N = 100) 4.79 (0.30) 1.17 (0.23) 3.48 (0.41)
Profile 3 (N = 120) 3.89 (0.36) 2.09 (0.35) 3.21 (0.31)
Profile 4 (N = 107) 4.29 (0.37) 2.07 (0.33) 3.62 (0.24)
F (ANOVA) 268.66*** 320.47*** 121.04***
Post hoc test (LSD) 1 < 3 < 4 < 2 2 < 4 = 3 < 1 1 < 3 < 2 < 4



	 X.-F. Lin et al.

1 3

participants who held approximately similar mean values for mental load. The 
mean values of mental load for profiles 4 and 3 were at the relative medium level 
among the four profiles. Similarly, the mean value of mental effort for the two 
profiles was medium as well, though participants in profile 4 scored higher than 
participants in profile 3; profile 4 also attained the highest mean values for perfor-
mance. This study further considered the results of participants’ learning behav-
iors to distinguish the characteristics of the four profiles.

Analysis of Science Learning Behavior Patterns

The names of four profiles were decided according to the definition of cognitive 
load’s subfactors as well as students’ specific behavioral characteristics. A total of 
60,595 coded behaviors were regarded in the analysis. The most and second-most 
frequent behaviors of students were finding and reading the learning content (C1, 
count = 18,427; 30.41%) and answering correctly (Q3, count = 13,423; 22.25%). It 
was also common that students scanned the figure label or QR code to assess more 
learning material (C2, count = 8433; 13.92%) or clicked on the test module and 
reviewed the test (Q1, count = 6355; 22.25%). Behaviors like “Changing to another 
learning task during an unfinished task” (Q7, count = 1046; 1.73%), “Leaving 
messages or comments for help on others’ pages” (H2, count = 1302; 2.15%), and 
“Conjecturing the answer” (Q4, count = 1581; 2.61%) rarely appeared. Other incon-
spicuous behaviors such as submitting a wrong answer (Q2, count = 2805; 4.63%), 
reading the feedback for the answer (Q5, count = 2666; 4.40%), discussing with oth-
ers (H1, count = 2418; 4.00%), and completing the learning task (Q6, count = 2139; 
3.53%) shared low frequency.

This study compared science learning behavior patterns among the four differ-
ent profiles and named them, as shown in Table 4. As mentioned above, this study 
divided students into four profiles based on the latent profile analysis of their cogni-
tive load. The behavior patterns of students in each profile were used as their char-
acteristics to help name four profiles with the students’ three key cognitive load 
measures. The behaviors in the columns were the prior behavioral transitions of the 
behavioral transitions in the rows. For instance, the C1 → Q1 sequence revealed that 
students browsed content and searched for lesson questions. According to Tables 3 
and 4, students in profile 1, with the highest mental load and lowest mental effort 
as well as performance, did not focus on emphasizing outcomes. Moreover, they 
did not complete tasks or submit their questions. They also were not interested in 
the answers to the test questions. Therefore, this study defined this profile as the 
Low Engagement profile. Compared to profile 1, students in profile 2 could focus on 
test modules. Their behavior patterns as C1 → C2, C2 → Q1, Q1 → H1, H1 → Q3, 
Q3 → Q5, and Q5 → Q6 showed they conscientiously regulated their learning pro-
cess and finished tasks; thus, profile 2 was defined as the Immersive profile, with 
the highest mental effort and behavior patterns related to being immersed in work. 
For students in profiles 3 and 4, their medium-level mental load was similar, but 
students in profile 4 had relatively higher mental effort and performance. Based on 
behavior patterns, it appeared that the key difference between the two profiles was 
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that students in profile 4 progressively finished the tasks, while those in profile 3 
kept repeatedly browsing learning materials and trying to complete the tasks with 
new answers. As C1 → C2, C2 → Q1, and Q1 → C2 show, students in profiles 3 
and 4 frequently accessed learning materials. Nevertheless, behavior patterns like 
Q2 → Q4 and Q4 → Q7 showed that students in profile 3 did not make an effort to 
understand the content. This indicates that they may find learning with AR interest-
ing and simply want to finish the task. Compared to this, profile 4 students’ behavior 
patterns like H1 → Q3, Q3 → Q5, Q5 → Q6, Q5 → C1, and Q6 → C1 shows they had 
a progressive learning process. They followed the organized teaching activities, read 
materials, completed tasks, and got feedback step by step. They are students who 
were effectively organized by teaching. Students in profile 4 also have behavior pat-
terns like Q5 → C1 and Q5 → C2, which indicates that they initiatively access learn-
ing materials to understand the tasks. In other words, they performed self-organized 
learning, which is even not obvious in the behavior patterns of profile 2 students. 
Besides, Q1 → H2 and Q1 → H1 show profile 4 students effectively took others’ 
suggestions and left messages to help them study. In conclusion, profile 4 students 
followed science learning activities and handled the balance between self-learning 
and online discussions. Hence, they created an effective, organized learning process. 
Based on the above analysis, this study thus regarded profile 4 as the Organized pro-
file and profile 3 as the Dabbling profile.

Table 4   Comparisons of science learning behavior patterns among different profiles

1 +  = Low Engagement, 2 +  = Immersive, 3 +  = Dabbling, and 4 +  = Organized

C1 C2 Q1 Q2 Q3 Q4 Q5 Q6 Q7 H1 H2

C1 2 + 
3 + 
4 + 

1 + 

C2 2 + 
3 + 
4 + 

Q1 2 + 
4 + 

1 + 
3 + 

3 +  2 + 
4 + 

4 + 

Q2 1 + 
3 + 

Q3 2 + 
4 + 

Q4 3 + 
Q5 2 + 

4 + 
Q6 2 + 

4 + 
Q7
H1 3 + 

4 + 
H2
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In the Low Engagement profile, students lacked behavioral transitions (see 
Fig. 3-a). Usually, when they logged in to the AR-assisted science learning system, 
their primary behavior path consisted of browsing the main content and searching 
for lesson questions (C1 → Q1). Subsequently, they tried to answer test questions 
(Q1 → Q2). The Q2 ↔ Q4 sequence revealed that they guessed the answer three 
times within 15 s. The average frequency per student was low (0.93 times per per-
son). Consequently, AR learning was not the main activity for this profile. They 
lacked motivation and interest, as their overall engagement was low. Thus, this pro-
file needed appropriate AR science learning support, as they may face major aca-
demic failures and risk dropping out of regular learning.

Figure 3-b indicates that the behavioral transition frequency average among the 
AR-assisted science learning system Immersive profile students is significantly 
higher compared to that among Low Engagement and Dabbling profile students. 
Furthermore, this profile primarily focused on test modules, and its behavioral 
transition mode adds sequences of Q1 → H1, H1 → Q3, Q3 → Q5, Q5 → Q6, and 
Q6 → C1. This indicated that this profile showed more complete participation in the 
test activities and would have perceived the test as a way to enhance their knowl-
edge. The Q3 → Q5 sequence revealed that the students read the feedback provided 
by the AR-assisted science learning system. The Q1 → H1 and H1 → Q3 sequences 
indicated that the students tried to seek help from partners during the test; accord-
ingly, they would answer correctly more often. The behavior analysis revealed that 
the Immersive profile students were involved in browsing learning content and AR 

Fig. 3   Behavioral transition diagrams of the four profiles
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resources and asking for help in the forum of the AR-assisted science learning sys-
tem. Considering that most of the tests are part of the scoring tasks in the course 
cases, this profile showed a high participation rate in the test activities.

The Dabbling profile students added test relative sequences to their behavioral tran-
sition patterns (see Fig. 3-b); this indicated that these students’ behavior in their initial 
test attempts was not random. Nevertheless, the majority of them preferred switching to 
another learning task over completing the test answers. As a result, they lacked strong 
performance motivation and demonstrated insufficient self-monitoring of AR learning. 
Although the Dabbling profile students’ behavioral transition frequency in AR learning 
was higher than that of the Low Engagement profile students, it was significantly less 
than that of the Immersive and Organized profile students. The results demonstrated 
that students with this profile logged in to the AR-assisted science learning system, 
usually to learn solely by using rote learning behavior (such as only writing tests for 
exams). They also lacked diversity in behavior and in-depth AR learning each time they 
logged in.

The Organized profile students’ behavioral transition in the AR-assisted science 
learning system was more complex than that of the Immersive profile students (as 
shown in Fig. 3-d). Their behavioral transition patterns added the Q5 → C1, Q5 → C2, 
and Q1 → H2 sequences, indicating that such students tend to browse the course con-
tent after test activities. This kind of learning path is more aligned with the expectations 
of cognitive and curriculum policy. Thus, this profile not only considered their test per-
formance and discussion in search of help for activities but also made more reasonable 
use of AR learning resources for facilitating their learning, compared to the other pro-
files. They followed the course requirements, used the AR learning resources, and used 
step-by-step learning. Compared to other profiles, their AR science learning process 
was more aligned with the cognitive norms that were required to progressively finish 
the designed cognitive processes and tasks.

Comparisons of Self‑Efficacy Among Different Profiles

As seen in Table 5, the multivariate analysis of variance revealed that the six dimensions 
of learning self-efficacy differ significantly among all profiles. For instance, conceptual 
understanding: F = 44.37, p < 0.001, higher-order cognitive skills: F = 60.07, p < 0.001, 
practical work: F = 65.90, p < 0.001, everyday application: F = 62.23, p < 0.001, social 
communication: F = 56.49, p < 0.001, and academic efficacy: F = 89.77, p < 0.001. 
Moreover, post hoc tests indicated that only profiles 3 and 4 were not significantly dif-
ferent in the dimensions of AR science learning self-efficacy, excluding conceptual 
understanding and higher-order cognitive skills.

The participants in different profiles had significantly different results for concep-
tual understanding and higher-order cognitive skills. However, in the context of the 
other variables of AR self-efficacy, the participants in different profiles had signifi-
cantly different results, except in the case of Dabbling and Organized profiles. Fur-
thermore, for conceptual understanding and higher-order cognitive skills, the partici-
pants in the Immersive profile attained the highest mean values, and the participants 
in the Low Engagement profile attained the lowest mean values. Regarding conceptual 
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understanding and higher-order cognitive skills, the participants in the Organized pro-
file had higher mean values than those in the Dabbling profile.

Discussion and Conclusion

The AR-assisted science learning system was designed to facilitate students’ sci-
ence learning. The main novelty of this study is the use of AR in science learning 
to improve students’ cognitive process, which affects their self-efficacy in science 
learning. It allows a stress-free and efficient AR-assisted science learning environ-
ment. Based on the latent profile analysis of the students’ three key cognitive load 
measures, four profiles for AR-assisted science learning were identified.

Low Engagement profile students showed the lowest AR science learning self-
efficacy in all six dimensions, especially science communication (the lowest value). 
Since the students in Low Engagement profile invested less mental effort in AR-
assisted science learning, they were well-exposed to learning content and assess-
ment in the AR-assisted science learning system. They perceived the highest mental 
load, the lowest performance, and the lowest impact of their AR science learning 
self-efficacy. They may exhaust their ability to learn via the AR-assisted science 
learning system, showing the lowest mental effort, and thus may find it hard to gain 
good performance. This implies that the advantage of the AR-assisted science learn-
ing system tends to be hindered in terms of enhancing their engagement and reduc-
ing their mental load (Papanastasiou et al., 2019). Research evidence has shown that 

Table 5   Comparisons of self-efficacy among different profiles

1 = Low Engagement, 2 = Immersive, 3 = Dabbling, and 4 = Organized
ANOVA analysis of variance, LSD Fisher’s least significant difference tests
*** p < .001

AR learning profiles’ group mean (SD)

Profile 1 Profile 2 Profile 3 Profile 4 F (ANOVA) Post hoc test 
(LSD)

AR learning self-efficacy
  Conceptual 

understand-
ing

3.07 (0.96) 4.38 (0.58) 3.86 (0.51) 4.02 (0.55) 44.37*** 1 < 3 < 4 < 2

  Higher-order 
cognitive 
skills

3.41 (0.88) 4.69 (0.40) 4.03 (0.51) 4.22 (0.48) 60.07*** 1 < 3 < 4 < 2

  Practical work 3.46 (0.80) 4.69 (0.41) 4.04 (0.46) 4.05 (0.43) 65.90*** 1 < 3 = 4 < 2
  Everyday 

application
3.21 (0.70) 4.46 (0.52) 3.81 (0.48) 3.90 (0.45) 62.23*** 1 < 3 = 4 < 2

  Science com-
munication

3.18 (0.80) 4.47 (0.57) 3.83 (0.49) 3.90 (0.46) 56.49*** 1 < 3 = 4 < 2

  Academic 
efficacy

3.34 (0.74) 4.73 (0.38) 3.98 (0.47) 4.07 (0.46) 89.77*** 1 < 3 = 4 < 2
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the adoption of AR science learning in facilitating students’ creative thinking and 
authentic problem-solving confidence could be helpful in promoting students’ sci-
ence learning engagement (Yeh et al., 2019). Prior studies have indicated that stu-
dents’ perceptions of deep strategies to learn physics positively predict their learn-
ing self-efficacy ( Chang et al., 2018). Thus, teachers could help Low Engagement 
profile students use a deep learning strategy to gain an in-depth understanding and 
self-efficacy in AR-assisted science learning when they could not achieve better per-
formance with lower mental effort. Although the findings of this study have shown 
significant differences among Low Engagement, Immersive profiles, and AR science 
learning self-efficacy (all six dimensions), the discussion mentioned above can war-
rant future studies on this topic to be confirmed.

Compared to Low Engagement profile students, Dabbling profile students 
achieved higher performance with a lower mental load. They may browse more on 
learning content via the AR-assisted science learning system. However, they did not 
practice the assessment activities since they use the dabbling approach to learning 
in the AR-assisted science learning system. As a result, their mental effort is higher 
than Low Engagement profile students. Their performance is much better than 
Low Engagement profile students but lower than Immersive and Organized profile 
students. As stated by the previous study (Orru & Longo, 2018), the navigational 
demands related to those activities are not strictly directed to learning when the 
efforts are exerted to achieve understanding. Thus, these Dabbling profile students 
also demonstrated an intermediate level of learning self-efficacy.

Students with the Organized profile showed the highest performance among 
other profiles, with a high level of mental effort, medium level of mental load, and 
more communicative and collaborative behaviors. The condition of students in the 
Organized profiles is consistent with Yang et  al.’s (2021) study. Their research of 
AR-assisted science learning indicated that students learning in AR environments 
incorporated with an instructional model empowering collaboration and commu-
nication had lower levels of cognitive load than students learning with traditional 
instructional model. The students with Organized profile in this study invested more 
effort into learning under the teachers’ guidance in the AR-assisted science learn-
ing to increase their mental effort. Particularly, they tended to discuss with others 
and leave comments to help others after completing tests on the AR-assisted sci-
ence learning system, which resulted in more complex learning behavior patterns 
with more communicative and collaborative behaviors than the students in other 
profiles. There are several theories that can make conjectures of explaining the 
complex learning behavior patterns exhibited by the Organized profile. This study 
noted the collaborative cognitive load theory as one possible theory to explain how 
the collaborative behaviors in technology-assisted learning are associated with stu-
dents’ cognitive load and lead to a change in students’ learning efficiency. On the 
one hand, according to the collaborative cognitive load theory, students’ cognitive 
load caused by the complex information generated in technology-assisted learning 
can be reduced by collaborations (Janssen & Kirschner, 2020). Therefore, it can 
be inferred that communication and collaborations in AR-assisted science learning 
system with others allowed students in Organized profiles to invest less cognitive 
resources than students lacking collaboration. When they discussed scientific issues 
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or provided assistance to each other, they shared the burden of information process-
ing with each other, which decreased their mental load. They also achieved higher 
performance, since collaboration urged them to put effort into AR-assisted science 
learning. On the other hand, there are transaction costs resulting from collabora-
tive processes that are extraneous to the essential processing of relevant informa-
tion (Janssen & Kirschner, 2020). When communication and collaboration require 
students to invest considerable mental effort, high transaction costs in interactions 
may overload their cognitive process. Therefore, when designing AR-assisted sci-
ence learning activities, it is necessary to consider the balance between transaction 
costs and burden-sharing advantages in order to maximize the effect of collaborative 
learning. Due to the dearth of previous studies probing into lightening the cogni-
tive load in AR-assisted science learning with communication and collaboration, we 
argue that the findings from this study can advance the current understanding in this 
line of research.

Moreover, students in Dabbling and Organized profiles did not show significant 
differences between cognitive load and AR science learning self-efficacy, except the 
conceptual understanding and higher-order cognitive skills. This result is consistent 
with Lin et al.’s (2020) verified assumptions that hands-on activity using AR boosts 
students’ understanding of scientific concepts. This may be because it involves 
investing lots of effort in AR-assisted science learning. Although the students with 
these two profiles may not focus on other self-efficacy dimensions, teachers could 
consider the cognitive process (e.g. conceptual understanding and higher-order cog-
nitive skills) to facilitate AR science learning self-efficacy. The majority of the par-
ticipants (i.e. 62.19%) in this study were categorized under the Dabbling and Organ-
ized profiles; thus, it would be more concise if educators and scholars could develop 
and regulate the AR-assisted science learning design in accordance with the charac-
teristics of these two profiles.

Practical Implications

This study provides practical implications on how to implement profile classification 
for the promotion of students’ AR-assisted science learning practices according to 
different profiles and behavior. For example, the Dabbling profile students were 
associated with a lower level of learning self-efficacy than the Organized profile 
students. Simultaneously, these Dabbling profile students with lower self-efficacy 
tended to browse the learning content rather than practice the assessment activities. 
This lower self-efficacy caused students’ anxiety and away from their tasks (Lin et al., 
2020), limiting students’ achievements. To address the surface learning problem, 
teachers are recommended to implement more immersive methods and tasks 
regarding conceptual understanding and higher-order cognitive skills for AR-assisted 
science learning rather than applying the testing, calculation, and remembering tasks.

Next, elaborative consideration is needed for targeted strategies to improve the 
students’ learning performance in diverse classifications. The design of AR-assisted 
science learning needs to stimulate students’ intrinsic motivation to ensure they can 
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participate and engage in various types of learning activities. It is vital to effec-
tively integrate these learning activities and this feedback into the scaffold design 
for Dabbling and Low Engagement students. Consistent with the existing study, 
multiple feedback and appropriate interaction can produce higher mental effort and 
better performance in science learning (Wang et al., 2018). Through the design of 
the learning path and learning scaffolding, dabbling and Low Engagement students’ 
cognitive process of AR-assisted science learning can be facilitated.

Furthermore, another practical implication is extending our knowledge of how 
to use AR resources for remoting science learning education in the COVID-19 pan-
demic. This study provides further evidence for the study of Chin and Wang (2021), 
who revealed that AR technology could provide different authentic learning activi-
ties for students to understand the difficulties (e.g. cognitive overload) in learning. 
To train teachers with effective pedagogy in using AR-assisted science learning 
resources, it is necessary to focus on reducing the barriers between students using 
emerging technology and resources, such as offering guidance on usage. The strat-
egies of AR-assisted science learning should support students with special educa-
tional needs in learning new knowledge efficiently to facilitate cognitive learning 
justice. The researchers also aimed to provide a powerful new form of tangible and 
physical interactions within immersive digital environments by considering the stu-
dents’ different cognitive load and learning behavioral paths, which may bridge the 
digital and physical worlds of learning.

Limitations and Future Research

This study has several limitations that can be considered as suggestions for future 
studies. The first is that the AR cognitive load learning profiles were focused on 
AR-based learning activities and three types of cognitive load: mental load, mental 
effort, and performance. Notably, other measures of cognitive processes, such as eye 
and hand movement tracking, may need to be considered for future study to eluci-
date understanding of the students’ visual and movement behavior, resulting in their 
cognitive load in the AR-assisted science learning environment. Future research 
needs to integrate new AR tools for different AR-assisted science learning activities, 
such as full hands-free AR tools, gesture recognition, audio, and video capturing 
analysis. These newly integrated AR tools can be used to collect more analytical 
data to explore more in-depth behavior patterns of learning. The interaction between 
learners and AR-assisted science learning activities in these four different profiles 
can be better understood.
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