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MEROMORPHIC SOLUTIONS OF A COMPLEX

DIFFERENCE EQUATION OF MALMQUIST TYPE

Ran-Ran Zhang and Zhi-Bo Huang

Abstract. In this paper, we investigate the finite order transcendental
meromorphic solutions of complex difference equation of Malmquist type

n∏

i=1

f(z + ci) = R(z, f),

where c1, . . ., cn ∈ C\{0}, and R(z, f) is an irreducible rational function
in f(z) with meromorphic coefficients. We obtain some results on defi-

ciencies of the solutions. Using these results, we prove that the growth
order of the finite order solution f(z) is 1, if f(z) has Borel exceptional
values a(∈ C) and ∞. Moreover, we give the forms of f(z).

1. Introduction and results

Let f(z) be a meromorphic function in the complex plane C. We assume
that the reader is familiar with the basic notions of Nevanlinna’s theory (see
[7, 14]). We use σ(f) to denote the order of growth of f(z); and λ(f) and
λ(1/f) to denote, respectively, the exponents of convergence of zero and pole
sequences of f(z). Moreover, we use δ(a, f) to denote the Nevanlinna deficiency
of f(z).

We denote by S(r, f) any real function of growth o(T (r, f)) as r → ∞ outside
a possible exceptional set of finite logarithmic measure.

We now recall the celebrated Malmquist–Yosida theorem.

Theorem A ([12, p. 193]). Let R(z, y) be rational and irreducible in y with

meromorphic coefficients. If the differential equation

(1.1) (y′)n = R(z, y)
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admits a meromorphic solution y such that T (r, α) = S(r, y) for all coefficients

α(z) of R(z, y), then (1.1) reduces into

(y′)n =

2n
∑

i=0

αi(z)y
i,

where at least one of the coefficients αi(z) does not vanish.

Recently, a number of papers (including [2, 3, 4, 8, 9, 10, 17, 18]) are focused
on complex difference equations. In these papers, the authors mainly studied
the properties of finite order meromorphic solutions of difference equations,
and obtained many meaningful results. In particular, Heittokangas et al. [8]
discussed the following difference equation

(1.2)
n
∏

i=1

f(z + ci) = R(z, f),

where c1, . . . , cn ∈ C \ {0}, and R(z, f) is an irreducible rational function in
f(z) with meromorphic coefficients. Writing R(z, f) as the quotient of two
relatively prime polynomials in f(z), we see that the equation (1.2) takes the
form

(1.3)
n
∏

i=1

f(z + ci) =
a0(z) + a1(z)f + · · ·+ ap(z)f

p

b0(z) + b1(z)f + · · ·+ bq(z)f q
,

where the coefficients ai(z), bj(z) are meromorphic functions such that

ap(z)bq(z) 6≡ 0.

In what follows, we always assume that the polynomials a0(z)+ a1(z)f + · · ·+
ap(z)f

p and b0(z) + b1(z)f + · · ·+ bq(z)f
q are relatively prime in f(z).

The equation (1.3) can be viewed as difference analogue of the equation
(1.1). Two results are obtained in [8] about the equation (1.3).

Theorem B ([8]). Let c1, . . . , cn ∈ C\{0}. If the difference equation (1.3) with
rational coefficients ai(z), bj(z) admits a transcendental meromorphic solution

of finite order, then max{p, q} ≤ n.

Remark 1.1. It is easy to prove that if the coefficients ai(z), bj(z) in Theorem
B are meromorphic and of growth S(r, f), then the conclusion “max{p, q} ≤ n”
still holds.

Theorem C ([8]). Let c1, . . . , cn ∈ C\{0} and suppose that f is a non-rational

meromorphic solution of the equation (1.3) with meromorphic coefficients ai(z),
bj(z) of growth S(r, f) such that ap(z)bq(z) 6≡ 0. If

max(λ(f), λ(1/f)) < σ(f),

then (1.3) is of the form

n
∏

i=1

f(z + ci) = c(z)f(z)k,
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where c(z) is meromorphic, T (r, c) = S(r, f) and k ∈ Z.

In this paper, we continue to study the properties of meromorphic solutions
of the equation (1.3). First, we consider the deficiencies of the solutions and
get the following result.

Theorem 1.1. Let c1, . . . , cn ∈ C \ {0}. Suppose that f is a finite order

transcendental meromorphic solution of the equation (1.3) with meromorphic

coefficients ai(z), bj(z) of growth S(r, f) such that ap(z)bq(z) 6≡ 0.
(i) If q ≥ 1, then δ(∞, f) = 0.
(ii) If at least one of a0(z), a1(z), . . . , ap−1(z) is not identically zero, then

δ(0, f) = 0.
(iii) If a(∈ C) is not a solution of the equation (1.3), then δ(a, f) = 0.

The following corollary extends Theorem C, and its proof is different from
that in Theorem C. In fact, we can easily prove the following corollary by
Theorem 1.1.

Corollary 1.1. Let c1, . . . , cn ∈ C \ {0}. Suppose that f is a finite order

transcendental meromorphic solution of the equation (1.3) with meromorphic

coefficients ai(z), bj(z) of growth S(r, f) such that ap(z)bq(z) 6≡ 0. For a ∈ C,

if

max(λ(f − a), λ(1/f)) < σ(f),

then (1.3) is of the form

n
∏

i=1

f(z + ci) =
a0(z)

b0(z)
+

a1(z)

b0(z)
f(z) + · · ·+

an(z)

b0(z)
f(z)n.

In particular, if a = 0, then (1.3) is of the form

n
∏

i=1

f(z + ci) =
an(z)

b0(z)
f(z)n.

The following two examples show that the conditions “q ≥ 1”, “at least one
of a0(z), a1(z), . . . , ap−1(z) is not identically zero” and “a(∈ C) is not a solution
of the equation (1.3)” in Theorem 1.1 cannot be dropped.

Example 1. The function f(z) = ez is a solution of the equation

f(z + 2)f(z + 1) = e3f2,

where q = 0 and a0(z), a1(z), . . . , ap−1(z) are identically zeros. We know that
δ(∞, f) = 1, δ(0, f) = 1.

Example 2. The function f(z) = tan(π2 z) is a solution of the equation

f(z + 1)f(z − 1) = 1/f2,

where i and −i are two solutions of this equation. We know that δ(i, f) = 1,
δ(−i, f) = 1.
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The following example satisfies all conditions in Theorem 1.1.

Example 3. The function

f(z) =
1

e2πiz + z
+ z

is a solution of the equation

f(z + 1)f(z − 1) =
(4 − z2)f2 + (2z3 − 6z)f − z4 + 3z2 − 1

−f2 + 2zf − z2 + 1
.

We know that δ(∞, f) = 0, δ(0, f) = 0 and δ(a, f) = 0 for all a ∈ C \ {0}.

We now consider the forms of meromorphic solutions of the equation (1.3)
and get the following result which deepens Theorem C when the solutions are
of finite order. From this result, we see that the growth order of these solutions
is 1.

Theorem 1.2. Let c1, . . . , cn ∈ C\{0} such that c1+c2+· · ·+cn 6= 0. Let ai(z),
bj(z) be meromorphic functions of order less than 1 such that ap(z)bq(z) 6≡ 0.
Suppose that f(z) is a finite order transcendental meromorphic solution of the

equation (1.3) such that

max(λ(f − a), λ(1/f)) < σ(f),

where a ∈ C. Then f(z) is of the form

f(z) = H(z)ecz + a,

where c is a nonzero constant, H(z) is a meromorphic function with σ(H) < 1.
In particular, if ap(z) and bq(z) are nonzero constants, then f(z) is of the

form

f(z) = decz + a,

where d and c are nonzero constants.

The following two examples show that the condition “c1+ c2+ · · ·+ cn 6= 0”
in Theorem 1.2 cannot be dropped.

Example 4. The function f(z) = zez
2

is a solution of the equation

f(z + 1)f(z − 1) =
(e2z2 − e2)f2

z2
.

Obviously, f(z) = zez
2

cannot takes the form f(z) = H(z)ecz, where c is a
nonzero constant, H(z) is a meromorphic function with σ(H) < 1.

Example 5. The function f(z) = ez
2

is a solution of the equation

f(z + 1)f(z − 1) = e2f2.

Obviously, f(z) = ez
2

cannot takes the form f(z) = decz, where d and c are
nonzero constants.
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At last, we discuss the coefficients of the equation (1.3). The following result
tells us that solutions having Borel exceptional values a(∈ C) and ∞ appear in
special situations only.

Theorem 1.3. Let c1, . . . , cn ∈ C\{0} such that c1+c2+· · ·+cn 6= 0. Let ai(z),
bj(z) be meromorphic functions of order less than 1 such that ap(z)bq(z) 6≡ 0.
If the equation (1.3) admits a finite order transcendental meromorphic solution

such that

max(λ(f − a), λ(1/f)) < σ(f),

then there exists an ε-set E such that

ap(z)

bq(z)
→ ec(cn+···+c1) as z → ∞ in C \ E.

Remark 1.2. An ε-set is a countable union of open discs not containing the
origin and subtending angles at the origin whose sum is finite. If E is an ε-set,
then the set of r ≥ 1 for which the circle S(0, r) meets E has finite logarithmic
measure.

2. Proof of Theorem 1.1 and Corollary 1.1

We need the following lemmas.

Lemma 2.1 ([11]). Let T : [0,+∞) → [0,+∞) be a non-decreasing continuous

function, let δ ∈ (0, 1), and let s ∈ (0,∞). If T is of finite order, i.e.,

lim
r→∞

logT (r)

log r
< ∞,

then

T (r + s) = T (r) + o(T (r)/rδ),

where r runs to infinity outside a set of finite logarithmic measure.

By Corollaries 2.2 and 3.4 in [6] and the above Lemma 2.1, we get the
following two lemmas.

Lemma 2.2. Let f(z) be a non-constant meromorphic function of finite order,

and let η1, η2 be two arbitrary complex numbers. Then we have

m

(

r,
f(z + η1)

f(z + η2)

)

= S(r, f).

Lemma 2.3. Let f(z) be a non-constant finite order meromorphic solution of

P (z, f) = 0,

where P (z, f) is a difference polynomial in f(z). If P (z, a) 6≡ 0 for a meromor-

phic function a(z) satisfying T (r, a) = S(r, f), then

m

(

r,
1

f − a

)

= S(r, f).

Applying Lemma 2.1 to [13, Theorem 2.3], we get the following lemma.
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Lemma 2.4. Let f(z) be a transcendental finite order meromorphic solution

of

U(z, f)Q(z, f) = P (z, f),

where U(z, f), P (z, f), Q(z, f) are difference polynomials in f(z) with mero-

morphic coefficients of growth S(r, f), degf U = n and degf P ≤ n. Moreover,

we assume that U(z, f) contains just one term of maximal total degree. Then

m
(

r,Q(z, f)
)

= S(r, f).

Lemma 2.5 ([16]). Let f(z) be a meromorphic function of finite order such

that N(r, f) = S(r, f). Suppose that H(z, f) is a difference polynomial in f(z)
with meromorphic coefficients of growth S(r, f), and H(z, f) contains just one

term of maximal total degree. Then

T (r,H) = (degf H)T (r, f) + S(r, f).

Proof of Theorem 1.1. By Theorem B and Remark 1.1, we get

(2.1) max{p, q} ≤ n.

(i) We deduce from the equation (1.3) that

(b0(z) + b1(z)f + · · ·+ bq(z)f
q)f(z + cn) · · · f(z + c2)f(z + c1)

= a0(z) + a1(z)f + · · ·+ ap(z)f
p.

Set

U(z, f) = (b0(z) + b1(z)f + · · ·+ bq(z)f
q)f(z + cn) · · · f(z + c2),

P (z, f) = a0(z) + a1(z)f + · · ·+ ap(z)f
p.

We have

(2.2) U(z, f)f(z + c1) = P (z, f).

Since bq(z) 6≡ 0 and q ≥ 1, we get degf U ≥ n. By ap(z) 6≡ 0 and (2.1), we get
degf P = p ≤ n. It is obviously that U(z, f) contains just one term of maximal
total degree. So by (2.2) and Lemma 2.4, we get

m(r, f(z + c1)) = S(r, f).

Together with Lemma 2.2, we obtain

m(r, f) ≤ m

(

r,
f(z)

f(z + c1)

)

+m(r, f(z + c1)) = S(r, f),

and so
δ(∞, f) = 0.

(ii) Set y(z) = 1/f(z). Then we conclude from the equation (1.3) that

1

y(z + cn) · · · y(z + c1)
=

(ap(z) + ap−1(z)y + · · ·+ a0(z)y
p)yq

(bq(z) + bq−1(z)y + · · ·+ b0(z)yq)yp
.

Therefore,

(ap(z) + ap−1(z)y + · · ·+ a0(z)y
p)yqy(z + cn) · · · y(z + c2)y(z + c1)
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= (bq(z) + bq−1(z)y + · · ·+ b0(z)y
q)yp.

Set

U(z, y) = (ap(z) + ap−1(z)y + · · ·+ a0(z)y
p)yqy(z + cn) · · · y(z + c2),

P (z, y) = (bq(z) + bq−1(z)y + · · ·+ b0(z)y
q)yp.

We have

(2.3) U(z, y)y(z + c1) = P (z, y).

Since at least one of a0(z), a1(z), . . . , ap−1(z) is not identically zero, we have
degy U ≥ n+ q. By (2.1), we get degy P ≤ p+ q ≤ n+ q. It is obviously that
U(z, y) contains just one term of maximal total degree. Thus, we deduce from
(2.3) and Lemma 2.4 that

m(r, y(z + c1)) = S(r, y).

Together with Lemma 2.2, we obtain

m(r, y) = S(r, y).

Noting that y(z) = 1/f(z), we get

m(r, 1/f) = S(r, f),

and so
δ(0, f) = 0.

(iii) Set

Q(z, f) = f(z + cn) · · · f(z + c1)(b0(z) + b1(z)f + · · ·+ bq(z)f
q)

− (a0(z) + a1(z)f + · · ·+ ap(z)f
p).

Since a(∈ C) is not a solution of the equation (1.3), we get

Q(z, a) 6≡ 0.

Thus, we deduce from Lemma 2.3 that

m

(

r,
1

f − a

)

= S(r, f),

and
δ(a, f) = 0.

Theorem 1.1 is proved. �

Proof of Corollary 1.1. Since f(z) satisfies max(λ(f−a), λ(1/f)) < σ(f) < ∞,
by Hadamard’s factorization theory, we see that f(z) takes the form

f(z) = H(z)eh(z) + a,

where h(z) is a polynomial and H(z) is a meromorphic function such that
σ(H) < σ(f). So σ(f) = deg h ≥ 1, and f(z) is of regular growth, i.e.,

(2.4) lim
r→∞

logT (r, f)

log r
= σ(f).
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Fix constants α, β such that

(2.5) max(λ(f − a), λ(1/f)) < α < β < σ(f).

By (2.4) and (2.5), when r is sufficiently large, we have

(2.6) T (r, f) > rβ , N

(

r,
1

f − a

)

< rα, N(r, f) < rα.

Therefore,

(2.7) δ(a, f) = 1 and δ(∞, f) = 1.

Thus, we deduce from (2.7) and Theorem 1.1(i) that q = 0, and so the equation
(1.3) reduces into

(2.8)

n
∏

i=1

f(z + ci) =
a0(z)

b0(z)
+

a1(z)

b0(z)
f(z) + · · ·+

ap(z)

b0(z)
f(z)p,

where ap(z)b0(z) 6≡ 0. By (2.6), we see that N(r, f) = S(r, f). Therefore, we
deduce from Lemma 2.5 that

T

(

r,

n
∏

i=1

f(z + ci)

)

= nT (r, f) + S(r, f)

and

T

(

r,
a0(z)

b0(z)
+

a1(z)

b0(z)
f(z) + · · ·+

ap(z)

b0(z)
f(z)p

)

= pT (r, f) + S(r, f).

The above two equalities show that p = n, and (2.8) becomes

(2.9)

n
∏

i=1

f(z + ci) =
a0(z)

b0(z)
+

a1(z)

b0(z)
f(z) + · · ·+

an(z)

b0(z)
f(z)n.

In particular, if a = 0, we get δ(0, f) = 1 from (2.7). So by (2.9) and
Theorem 1.1(ii), we get

n
∏

i=1

f(z + ci) =
an(z)

b0(z)
f(z)n.

Corollary 1.1 is proved. �

3. Proof of Theorem 1.2

We need the following lemmas for the proof of Theorem 1.2.

Lemma 3.1 ([4]). Let η1, η2 be two complex numbers such that η1 6= η2 and

let f(z) be a finite order meromorphic function. Let σ be the order of f(z).
Then for each ε > 0, we have

m

(

r,
f(z + η1)

f(z + η2)

)

= O(rσ−1+ε).
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Lemma 3.2 ([1]). Let g(z) be a function transcendental and meromorphic in

the plane of order less than 1. Let h > 0. Then there exists an ε-set E such

that
g′(z + c)

g(z + c)
→ 0 and

g(z + c)

g(z)
→ 1 as z → ∞ in C \ E,

uniformly in c for |c| ≤ h. Further, E may be chosen so that for large z not in

E, the function g(z) has no zeros or poles in |ζ − z| ≤ h.

Lemma 3.3 ([1]). Let f(z) be a function transcendental and meromorphic in

the plane of order less than 1. Let h > 0. Then there exists an ε-set E such

that

f(z + c)− f(z) = cf ′(z)(1 + o(1)) as z → ∞ in C \ E,

uniformly in c for |c| ≤ h.

Remark 3.1. It is easy to prove that if f(z) is a rational function, the conclu-
sions in Lemmas 3.2 and 3.3 still hold.

Lemma 3.4. Let c1, . . . , cn ∈ C \ {0}. Suppose that f(6= 0) is a meromorphic

solution of the equation

(3.1) f(z + cn)f(z + cn−1) · · · f(z + c1) = f(z)n.

If σ(f) < 1, then f is a constant.

Proof of Lemma 3.4. By Lemma 3.3 and Remark 3.1, there exists an ε-set E1

such that, for all i = 1, 2, . . . , n,

(3.2) f(z + ci) = cif
′(z)(1 + o(1)) + f(z)

as z → ∞ in C \ E1. Substituting (3.2) into (3.1), we get
(

cnf
′(z)(1 + o(1)) + f(z)

)(

cn−1f
′(z)(1 + o(1)) + f(z)

)

· · ·
(

c1f
′(z)(1 + o(1)) + f(z)

)

= f(z)n

as z → ∞ in C \ E1. Therefore, when z → ∞ in C \ E1, we have

(3.3)
K0(f

′(z))n(1 + o(1)) +K1(f
′(z))n−1f(z)(1 + o(1))+

· · ·+Kn−1f
′(z)f(z)n−1(1 + o(1)) = 0,

where K0 = cncn−1 · · · c1 6= 0, and K1,K2, . . . ,Kn−1 are constants.
Now we prove that f ′(z) ≡ 0. Thus, we divide our discussion into two cases.
Case (1). Kn−1 = Kn−2 = · · · = K1 = 0. Then by (3.3), when z → ∞ in

C \ E1, we get

K0(f
′(z))n(1 + o(1)) = 0.

Since K0 6= 0, we obtain f ′(z) ≡ 0, when z is sufficiently large and z ∈ C \E1.
So f ′(z) ≡ 0 in C.
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Case (2). Kn−1,Kn−2, . . . ,K1 are not all zeros. In this case, we can assume
that Kj 6= 0 (1 ≤ j ≤ n − 1) and Kj+1,Kj+2, . . . ,Kn−1 are all zeros. Thus,
the equation (3.3) reduces into

(3.4)
K0(f

′(z))n(1 + o(1)) +K1(f
′(z))n−1f(z)(1 + o(1))+

· · ·+Kj(f
′(z))n−jf(z)j(1 + o(1)) = 0

as z → ∞ in C \ E1.
If f ′(z) 6≡ 0, we conclude from (3.4) that

(3.5) K0

(

f ′(z)

f(z)

)j

(1+o(1))+K1

(

f ′(z)

f(z)

)j−1

(1+o(1))+· · ·+Kj(1+o(1)) = 0

as z → ∞ in C \ E1. Since σ(f) < 1, we deduce from Lemma 3.2 and Remark
3.1 that there exists an ε-set E2 such that

(3.6)
f ′(z)

f(z)
→ 0

as z → ∞ in C \E2. Thus, when z → ∞ in C \ (E1 ∪E2), we obtain from (3.5)
and (3.6) that

Kj(1 + o(1)) → 0.

This contradicts Kj 6= 0. So we proved that f ′(z) ≡ 0. Therefore, f(z) is a
constant. Lemma 3.4 is proved. �

Lemma 3.5 ([4]). Let f(z) be a meromorphic function with σ(f) < ∞, and

let η 6= 0 be a fixed nonzero complex number. Then for each ε > 0, we have

T
(

r, f(z + η)
)

= T (r, f) +O(rσ(f)−1+ε) +O(log r).

Lemma 3.6 ([5, pp. 69–70 or 15, p. 82]). Suppose that f1(z), f2(z), . . . , fn(z)
are meromorphic functions and that g1(z), g2(z), . . . , gn(z) are entire functions

satisfying the following conditions.

(1)
n
∑

j=1

fj(z)e
gj(z) ≡ 0;

(2) gj(z)− gk(z) are not constants for 1 ≤ j < k ≤ n;
(3) for 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, fj) = o{T (r, egh−gk)} n.e. as r → ∞.

Then fj(z) ≡ 0 (j = 1, 2, . . . , n).

Proof of Theorem 1.2. Since f(z) is a transcendental meromorphic function
such that max(λ(f − a), λ(1/f)) < σ(f) < ∞, we see that f(z) takes the form

(3.7) f(z) = H(z)eh(z) + a,

where h(z) is a polynomial and H(z) is a meromorphic function such that
σ(H) < σ(f). So σ(f) = deg h ≥ 1, and f(z) is of regular growth. Noting that
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σ(ai) < 1 and σ(bj) < 1, we see that ai(z) and bj(z) are of growth S(r, f).
Therefore, by Corollary 1.1, the equation (1.3) reduces into

(3.8) f(z + cn) · · · f(z + c1) =
a0(z)

b0(z)
+

a1(z)

b0(z)
f(z) + · · ·+

an(z)

b0(z)
f(z)n,

where

(3.9) an(z) = ap(z) 6≡ 0, b0(z) = bq(z) 6≡ 0.

Now we prove that σ(f) = 1. Suppose that, on the contrary, σ(f) = k > 1.
By σ(f) = deg h, we get σ(f) = k = σ(eh) ≥ 2.

Substituting (3.7) into (3.8), we get

(

H(z + cn)e
h(z+cn)−h(z)eh(z) + a

)

· · ·
(

H(z + c1)e
h(z+c1)−h(z)eh(z) + a

)

(3.10)

=
a0(z)

b0(z)
+

a1(z)

b0(z)
(H(z)eh(z) + a) + · · ·+

an(z)

b0(z)
(H(z)eh(z) + a)n.

Since σ(ai) < 1, σ(b0) < 1 and σ(H) < σ(f) = σ(eh) ≥ 2, we have, for
i = 0, 1, . . . , n,

(3.11) T (r, ai) = S(r, eh), T (r, b0) = S(r, eh), T (r,H) = S(r, eh).

Let

(3.12) h(z) = lkz
k + lk−1z

k−1 + · · ·+ l1z + l0,

where lk 6= 0. We have

h(z + cj)− h(z) = klkcjz
k−1 + o(zk−1).

Thus, for j = 1, 2, . . . , n,

(3.13) T (r, eh(z+cj)−h(z)) = S(r, eh(z)).

By (3.11), (3.13) and Lemma 3.5, we have, for j = 1, 2, . . . , n,

(3.14) T
(

r,H(z + cj)e
h(z+cj)−h(z)

)

= S(r, eh(z)).

Therefore, we deduce from (3.10) that

(3.15) An(z)e
nh(z) +An−1(z)e

(n−1)h(z) + · · ·+A0(z) = 0,

where

An(z) = H(z + cn)e
h(z+cn)−h(z) · · ·H(z + c1)e

h(z+c1)−h(z) −
an(z)

b0(z)
H(z)n,

and An(z), An−1(z), . . . , A0(z) are of growth S(r, eh) by (3.11) and (3.14).
Thus, we deduce from (3.15) and Lemma 3.6 that An(z) ≡ An−1 ≡ A0 ≡ 0.
By An(z) ≡ 0, we get

(3.16) eh(z+cn)+···+h(z+c1)−nh(z) =
an(z)

b0(z)

H(z)

H(z + cn)
· · ·

H(z)

H(z + c1)
.
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We conclude from (3.12) that

h(z + cn) + · · ·+ h(z + c1)− nh(z) = klk(cn + cn−1 + · · ·+ c1)z
k−1 + o(zk−1).

Since lk 6= 0, k 6= 0 and cn + cn−1 + · · ·+ c1 6= 0, we have

(3.17) σ
(

eh(z+cn)+···+h(z+c1)−nh(z)
)

= k − 1.

Since σ(H) < σ(f) = k and max{σ(an), σ(b0)} = σ1 < 1, there exists a
constant ε0 such that σ(H) < k − 2ε0 and σ1 < 1− ε0. Thus, we deduce from
Lemma 3.1 and k ≥ 2 that

m

(

r,
an(z)

b0(z)

H(z)

H(z + cn)
· · ·

H(z)

H(z + c1)

)

≤ m

(

r,
an(z)

b0(z)

)

+m

(

r,
H(z)

H(z + cn)

)

+ · · ·+m

(

r,
H(z)

H(z + c1)

)

= O(r1−ε0 ) + O(rσ(H)−1+ε0 )

≤ O(r1−ε0 ) + O(rk−1−ε0 )

= O(rk−1−ε0 ).

By (3.16), we see that an(z)
b0(z)

H(z)
H(z+cn)

· · · H(z)
H(z+c1)

is entire. Thus,

T

(

r,
an(z)

b0(z)

H(z)

H(z + cn)
· · ·

H(z)

H(z + c1)

)

≤ O(rk−1−ε0 ),

and

(3.18) σ

(

an(z)

b0(z)

H(z)

H(z + cn)
· · ·

H(z)

H(z + c1)

)

≤ k − 1− ε0.

Therefore, we deduce a contradiction from (3.16)–(3.18). This shows that
σ(f) = 1 and (3.7) can be written as

(3.19) f(z) = H(z)ecz + a,

where c is a nonzero constant, H(z) is a meromorphic function with σ(H) < 1.
In particular, if ap(z) and bq(z) are nonzero constants, we obtain from (3.9)

that an(z) and b0(z) are nonzero constants. Substituting (3.19) into (3.8) and
using the similar method as in (3.10)–(3.16), we get

(3.20) ec(cn+···+c1) =
an(z)

b0(z)

H(z)

H(z + cn)
· · ·

H(z)

H(z + c1)
.

Since σ(H) < 1, by Lemma 3.2 and Remark 3.1, there exists an ε-set E such
that, for i = 1, 2, . . . , n,

(3.21)
H(z)

H(z + ci)
→ 1
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as z → ∞ in C \ E. Since ec(cn+···+c1) and an(z)
b0(z)

are constants, we conclude

from (3.20) and (3.21) that

ec(cn+···+c1) =
an(z)

b0(z)
.

Thus (3.20) becomes

H(z + cn) · · ·H(z + c1) = H(z)n.

By Lemma 3.4, we see that H(z) is a constant. Thus, we obtain from (3.19)
that

f(z) = decz + a,

where d and c are nonzero constants. Theorem 1.2 is proved. �

4. Proof of Theorem 1.3

Suppose that f(z) is a finite order transcendental meromorphic solution of
the equation (1.3) such that max(λ(f − a), λ(1/f)) < σ(f). By Theorem 1.2,
we get

(4.1) f(z) = H(z)ecz + a,

where c is a nonzero constant, H(z) is a meromorphic function with σ(H) < 1.
As in Theorem 1.2, we also get (3.8) and (3.9). Substituting (4.1) into (3.8)
and using the similar method as in (3.10)–(3.16), we get

(4.2) ec(cn+···+c1) =
an(z)

b0(z)

H(z)

H(z + cn)
· · ·

H(z)

H(z + c1)
.

Since σ(H) < 1, by Lemma 3.2 and Remark 3.1, there exists an ε-set E such
that, for i = 1, 2, . . . , n,

(4.3)
H(z)

H(z + ci)
→ 1 as z → ∞ in C \ E.

By (4.2) and (4.3), we get

an(z)

b0(z)
→ ec(cn+···+c1) as z → ∞ in C \ E.

So by (3.9), Theorem 1.3 is proved.
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