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Abstract. In this paper, by using the q-difference analogue of lemma
on the logarithmic derivative lemma to re-establish some estimates of
Nevanlinna characteristics of f(qz), we deal with the value distribution
and uniqueness of certain types of q-difference polynomials.

1. Introduction

In this paper, we assume that the reader is familiar with the standard sym-
bols and fundamental results of Nevanlinna theory, such as the proximity func-
tion m(r, f), counting function N(r, f), characteristic function T (r, f) for a
meromorphic function f(z) in the complex plane (see e.g. [7, 14]). We also use
N (2(r,

1
f
) to denote the counting function of zeros of f(z) such that the multiple

zeros are counted once and the simple zeros are not counted in {z : |z| ≤ r}. We
now recall that a meromorphic function a(z) is said to be a small function of
f(z) if T (r, a) = S(r, f), where S(r, f) is used to denote any quantity satisfying
S(r, f) = o({T (r, f)} as r → ∞, possibly outside of a set of finite logarithmic
measure, furthermore, possibly outside of a set of logarithmic density 0, i.e.,
outside of a set E such that limr→∞

∫

[1,r]∩E
dt
t
/ log r = 0. The family of all

small functions related to f(z) is denoted by F (f).
Recently, a number of fundamental results on difference operators and dif-

ference polynomials have been derived. For examples, the difference analogue
of lemma on the logarithmic derivative [2, 5], the difference counterpart of
Clunie and Mohon’ko lemma [5, 9], Nevanlinna characteristics of f(z + c) for
c ∈ C\{0} in the complex plane [2] and Nevanlinna theory to difference opera-
tors, especially the difference analogue of the second main theorem [6]. Using
these results, the value distribution and uniqueness of difference operators and
difference polynomials of meromorphic functions have been dealt with in the
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past five years (see e.g. [3, 4, 8, 10, 11]). However, there are only few papers
concerning with the value distribution and uniqueness of q-difference operators
and q-difference polynomials (see [12, 16]).

The purpose of this paper is to study the value distribution and uniqueness
of q-differences of meromorphic function of zero order. The main tool is to
use the q-difference analogue of lemma on the logarithmic derivative [1] to re-
establish some estimates on the Nevanlinna characteristics of f(qz), which are
somewhat different from Nevanlinna characteristics of f(qz) obtained by Zhang
and Korhonen in [16].

This paper is organized as follows. In Section 2, we present some results on
value distribution of q-difference polynomials of meromorphic functions of zero
order. In Section 3, we investigate uniqueness of q-difference polynomials of
meromorphic functions of zero order.

2. Value distribution of q-difference polynomials

Laine and Yang [10] investigated the value distribution of difference products
of entire functions and obtained the following result.

Theorem 2.A ([10, Theorem 2]). Let f(z) be a transcendental entire function

of finite order, and c be a nonzero complex constant. Then for n ≥ 2, f(z)nf(z+
c) assumes every nonzero value a ∈ C infinitely often.

Subsequently, a parallel result for the q-difference case has been proved in
[16].

Theorem 2.B ([16, Theorem 4.1]). Let f(z) be a transcendental meromorphic

(resp. entire) function of zero order and q be nonzero complex constant. Then

for n ≥ 6 (resp. n ≥ 2), f(z)nf(qz) assumes every nonzero value a ∈ C

infinitely often.

In addition, we also recall the following related result.

Theorem 2.C ([16, Theorem 4.3]). Let f(z) be a transcendental meromorphic

(resp. entire) function of zero order and q be nonzero complex constant. Then

for n ≥ 6 (resp. n ≥ 2), f(z)n(f(z) − 1)f(qz) assumes every nonzero value

a ∈ C infinitely often.

In this section, we will establish an improvement of Theorem 2.B and The-
orem 2.C, which is stated as follows.

Theorem 2.1. Let f(z) be a transcendental meromorphic (resp. entire) func-
tion of zero order and q be nonzero complex constant, and let P (z) = anz

n +
an−1z

n−1+· · ·+a1z+a0 be a nonconstant polynomial with constant coefficients

a0, a1, . . . , an−1, an(6= 0), and m be the number of the distinct zeros of P (z).
Then for n > 2m+ 3 (resp. n > m), P (f(z))f(qz)− a(z) has infinitely many

zeros, where a(z) ∈ F (f)\{0}.

The restriction in Theorem 2.1 to a(z) ∈ F (f)\{0} is essential.
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Example 2.1. Let q ∈ C such that 0 < |q| < 1. The q-Gamma function Γq(x)
is defined by

Γq(x) :=
(q; q)∞
(qx; q)∞

(1 − q)1−x,

where (a; q)∞ = Π∞

k=0(1− aqk). By defining

γq(z) := (1− q)x−1Γq(x), z = qx,

and γq(0) := (q; q)∞, we see that γq(z) is meromorphic of zero order with no
zero. By taking P (z) = z and f(z) = γq(z). If a(z) ≡ 0, then P (f(z))f(qz)−
a(z) = γq(z) · γq(qz) has no zero.

Example 2.2. The zero order growth restriction in Theorem 2.1 can not be
extended to finite order. This can be seen by taking P (z) = zn + 1, f(z) = ez

and q = −n. Then P (f(z))f(qz)− 1 has no zero.

In order to prove Theorem 2.1, we need some preliminaries as follows.

Lemma 2.1 ([1, Lemma 5.2]). If T : R+ → R+ is a piecewise continuous

increasing function such that

lim
r→∞

logT (r)

log r
= 0,

then the set

E := {r : T (C1r) ≥ C2T (r)}

has logarithmic density 0 for all C1 > 1 and C2 > 1.

Lemma 2.2. Let f(z) be a nonconstant meromorphic function of zero order,

and q ∈ C\{0}. Then

N

(

r,
1

f(qz)

)

≤ N

(

r,
1

f(z)

)

+ S(r, f),

N(r, f(qz)) ≤ N(r, f(z)) + S(r, f),

N

(

r,
1

f(qz)

)

≤ N

(

r,
1

f(z)

)

+ S(r, f),

N(r, f(qz)) ≤ N(r, f(z)) + S(r, f),

on a set of logarithmic density 1.

Proof. We will use the similar method used in [16]. Here, we only prove the
case |q| > 1. By a simple geometric observation, we obtain

N

(

r,
1

f(qz)

)

≤ N

(

|q|r,
1

f(z)

)

.

Since the order of f(z) is zero, we conclude from Lemma 2.1 that,

N

(

|q|r,
1

f(z)

)

≤ N

(

r,
1

f(z)

)

+ S(r, f),



1160 ZHI-BO HUANG

on a set of logarithmic density 1. Therefore,

N

(

r,
1

f(qz)

)

≤ N

(

r,
1

f(z)

)

+ S(r, f),

on a set of logarithmic density 1.
Similarly, we can prove the remainders. Here, we omit their proofs. �

Now, we recall the q-difference analogue of lemma on the logarithmic deriv-
ative as follows.

Lemma 2.3 ([1, Theorem 1.2]). Let f(z) be a nonconstant zero order mero-

morphic function, and q ∈ C\{0}. Then

m

(

r,
f(qz)

f(z)

)

= o(T (r, f))

on a set of logarithmic density 1.

Lemma 2.4. Let f(z) be a nonconstant meromorphic function of zero order,

and q ∈ C\{0}. Then

T (r, f(qz)) ≤ T (r, f(z)) + S(r, f)

on a set of logarithmic density 1.

Proof. By Lemma 2.2 and Lemma 2.3, we obtain

T (r, f(qz)) = m(r, f(qz)) +N(r, f(qz))

≤ m

(

r,
f(qz)

f(z)

)

+m(r, f(z)) +N(r, f(z)) + S(r, f)

= T (r, f(z)) + S(r, f)

on a set of logarithmic density 1. �

Remark 2.1. In [16], the authors showed that the conclusion in Lemma 2.4
holds on a set of lower logarithmic density 1.

Lemma 2.5. Let f(z) be an entire function of zero order and q be nonzero

constant, and let P (z) = anz
n + an−1z

n−1 + · · · + a1z + a0 be a nonconstant

polynomial with constant coefficients a0, a1, . . . , an−1, an(6= 0). Then

T (r, P (f(z))f(qz)) = T (r, P (f(z))f(z)) + S(r, f)

on a set of logarithmic density 1.

Proof. Since f(z) is entire of zero order, we obtain, by Lemma 2.3,

T (r, P (f(z))f(qz)) = m(r, P (f(z))f(qz))

≤ m(P (f(z))f(z)) +m

(

r,
f(qz)

f(z)

)

+ S(r, f)

= T (r, P (f(z))f(z)) + S(r, f)
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on a set of logarithmic density 1. Similarly, we also have

T (r, P (f(z))f(z)) ≤ T (r, P (f(z))f(qz)) + S(r, f)

on a set of logarithmic density 1. Therefore,

T (r, P (f(z))f(qz)) = T (r, P (f(z))f(z)) + S(r, f)

on a set of logarithmic density 1. �

Now, we give a proof of Theorem 2.1 completely.

Proof of Theorem 2.1. Suppose that P (f(z))f(qz)−a(z) has finitely many ze-
ros only. If f(z) is meromorphic of zero order, then we may apply the Valiron-
Mohon’ko lemma, Nevanlinna main theorems, Lemma 2.4 and Lemma 2.2 to
obtain

nT (r, f) + S(r, f) = T (r, P (f(z))

≤ T (r, P (f(z))f(qz)) + T

(

r,
1

f(qz)

)

+ S(r, f)

≤ T (r, f(z)) +N(r, P (f(z))f(qz)) +N

(

r,
1

P (f(z))f(qz)

)

+N

(

r,
1

P (f(z))f(qz)− a(z)

)

+ S(r, f)

≤ T (r, f(z)) +N(r, P (f)) +N(r, f(qz))

+N

(

r,
1

P (f(z))

)

+N

(

r,
1

f(qz)

)

+ S(r, f)

≤ T (r, f(z)) +mN(r, f(z)) +N(r, f(z))

+mN

(

r,
1

f(z)

)

+N

(

r,
1

f(z)

)

+ S(r, f)

≤ (2m+ 3)T (r, f) + S(r, f),

on a set of logarithmic density 1, contradicting n > 2m+ 3.
If, on the other hand, f(z) is entire of order zero, then

T (r, P (f(z))f(qz)) ≤ N

(

r,
1

P (f(z))f(qz)

)

+N

(

r,
1

P (f(z))f(qz)− a(z)

)

+ S(r, f)

= N

(

r,
1

P (f(z))f(qz)

)

+ S(r, f)

≤ (m+ 1)T (r, f(z)) + S(r, f)

on a set of logarithmic density 1. Taking using of the Valiron-Mohon’ko lemma
and Lemma 2.5, we conclude that

(n+ 1)T (r, f(z)) = T (r, P (f(z))f(z)) + S(r, f)
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= T (r, P (f(z))f(qz)) + S(r, f)

≤ (m+ 1)T (r, f(z)) + S(r, f)

on a set of logarithmic density 1, contradicting n > m. The proof of Theorem
2.1 is completed. �

3. Shared common values of q-difference polynomials

Suppose that f(z) and g(z) are meromorphic functions, and a ∈ Ĉ = C ∪
{∞}. We say f(z) and g(z) share a CM(counting multiplicities) if f(z) − a
and g(z) − a have the same zeros with the same multiplicities. If f(z) − a
and g(z) − a have the same zeros, we say f(z) and g(z) share a IM(ignoring
multiplicities).

Corresponding to the results on uniqueness in [15, 16], Zhang and Korhonen
further obtained.

Theorem 3.A ([16, Theorem 5.1]). Let f(z) and g(z) be two transcendental

meromorphic (resp. entire) functions of zero order. Suppose that q is a nonzero

complex constant and n is an integer satisfying n ≥ 8 (resp. n ≥ 4). If

f(z)nf(qz) and g(z)ng(qz) share 1,∞ CM , then f(z) ≡ tg(z) for tn+1 = 1.

Theorem 3.B ([16, Theorem 5.2]). Let f(z) and g(z) be two transcendental

entire functions of zero order. Suppose that q is a nonzero complex constant

and n ≥ 6 is an integer. If f(z)n(f(z)−1)f(qz) and g(z)n(g(z)−1)g(qz) share
1 CM , then f(z) ≡ g(z).

In this section, we firstly deduce more details about Theorem 3.A. Then,
by combining all results above and the uniqueness of difference products on
transcendental entire functions of finite order in [12], we further investigate the
uniqueness of q-difference polynomials of meromorphic functions of zero order.

Theorem 3.1. Let f(z) and g(z) be two nonconstant meromorphic (resp.
entire) functions of zero order. Suppose that q is a nonzero complex constant

and n is an integer satisfying n ≥ 14 (resp. n ≥ 6). If f(z)nf(qz) and

g(z)ng(qz) share 1 CM , then f(z) ≡ tg(z) or f(z)g(z) = t, where tn+1 = 1.

Remark 3.1. Under the assumption of Theorem 3.1, if f(z)nf(qz) and
g(z)ng(qz) share a ∈ C\{0} CM , we also have f(z) ≡ tg(z) or f(z)g(z) = t,
where tn+1 = 1. In its proof, we only set

F0(z) =
f(z)nf(qz)

a
and G0(z) =

g(z)ng(qz)

a
.

Then F0(z) and G0(z) share 1 CM . But the conclusion is not true if a = 0.
For example, let f(z) = z and g(z) = 1

2z. Then for all q 6= 0, f(z)6f(qz) = qz7

and g(z)6g(qz) = q

27 z
7 share 0 CM . However, f(z) = 2g(z), 27 6= 1 and

f(z)g(z) = 1
2z

2.
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Theorem 3.2. Let f(z) and g(z) be two nonconstant meromorphic (resp.
entire) functions of zero order. Suppose that q is a nonzero complex constant

and n is an integer satisfying n ≥ 26 (resp. n ≥ 12). If f(z)nf(qz) and

g(z)ng(qz) share 1 IM , then f(z) ≡ tg(z) or f(z)g(z) = t, where tn+1 = 1.

Theorem 3.3. Let f(z) and g(z) be two nonconstant meromorphic (resp.
entire) functions of zero order and q be nonzero complex constant, and let

P (z) = anz
n + an−1z

n−1 + · · · + a1z + a0 be a nonconstant polynomial with

constant coefficients a0, a1, . . . , an−1, an(6= 0), and m be the number of the dis-

tinct zeros of P (z). If n > 3m+ 4 (resp. n > 2m+ 1) and P (f(z))f(qz) and
P (g(z))g(qz) share 1,∞ CM , then one of the following two results holds:

(1) f(z) ≡ tg(z) for a constant t such that td = 1, where d = LCM{λj : j =
0, 1, . . . , n} denotes the lowest common multiple of λj(j = 0, 1, . . . , n), and

λj =

{

j + 1, aj 6= 0,
n+ 1, aj = 0.

(2) f(z) and g(z) satisfy algebraic equation R(f(z), g(z)) = 0, where

R(w1, w2) = P (w1)w1(qz)− P (w2)w2(qz).

In order to prove these theorems, we need some lemmas.

Lemma 3.1 ([15, Lemma 3]). Let F (z) and G(z) be two nonconstant mero-

morphic functions. If F (z) and G(z) share 1 CM , one of the following three

cases holds:

(1) T (r, F (z)) ≤ N(r, F (z)) +N (2(r, F (z)) +N(r,G(z))

+N (2(r,G(z)) +N

(

r,
1

F (z)

)

+N (2

(

r,
1

F (z)

)

+N

(

r,
1

G(z)

)

+N (2

(

r,
1

G(z)

)

+ S(r, F ) + S(r,G),(3.1)

and similarly for T (r,G(z));
(2) F (z) ≡ G(z);
(3) F (z)G(z) ≡ 1,

where N (2(r,
1

F (z) ) = N(r, 1
F (z) )−N(1(r,

1
F (z) ) and N(1(r,

1
F (z) ) is the counting

function of the simple zeros of F (z) in {z : |z| ≤ r}.

Remark 3.2. Set

N2

(

r,
1

F (z)

)

= N

(

r,
1

F (z)

)

+N(2

(

r,
1

F (z)

)

.

Then we can find that N2(r,
1

F (z) ) denotes the counting function of zeros of

F (z) such that the simple zeros are counted once and the multiple zeros are
counted twice, and the inequality (3.1) turns into

T (r, F (z)) ≤ N2 (r, F (z)) +N2

(

r,
1

F (z)

)

+N2 (r,G(z))
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+N2

(

r,
1

G(z)

)

+ S(r, F ) + S(r,G).(3.2)

Lemma 3.2 ([13, Lemma 2.3]). Let F (z) and G(z) be two nonconstant mero-

morphic functions sharing the value 1 IM . Let

H(z) =

(

F
′′

(z)

F ′(z)
− 2

F
′

(z)

F (z)− 1

)

−

(

G
′′

(z)

G′(z)
− 2

G
′

(z)

G(z)− 1

)

.

If H(z) 6≡ 0, then

T (r, F (z)) + T (r,G(z))

≤ 2

[

N2(r, F (z)) +N2(r,G(z)) +N2

(

r,
1

F (z)

)

+N2

(

r,
1

G(z)

)]

+ 3

[

N(r, F (z)) +N(r,G(z)) +N

(

r,
1

F (z)

)

+N

(

r,
1

G(z)

)]

+ S(r, F ) + S(r,G).

In the follows, Theorems 3.1-3.3 will be proved.

Proof of Theorem 3.1. Let F (z) = f(z)nf(qz) and G(z) = g(z)ng(qz). Thus,
F (z) and G(z) share 1 CM . Suppose first that F (z) 6= G(z) and F (z)G(z) 6= 1.

If f(z) and g(z) are meromorphic of zero order, then we deduce from the
first main theorem and Lemma 2.4 that

nT (r, f(z)) + S(r, f) = T (r, P (f(z)))

≤ T (r, P (f(z))f(qz)) + T

(

r,
1

f(qz)

)

+ S(r, f)

≤ T (r, P (f(z))f(qz)) + T (r, f(z)) + S(r, f).

Therefore

(3.3) (n− 1)T (r, f(z)) ≤ T (r, P (f(z))f(qz)) + S(r, f) = T (r, F (z)) + S(r, f).

Similarly,

(3.4) (n− 1)T (r, g(z)) ≤ T (r,G(z)) + S(r, g).

By using Lemma 2.4 again, we also have

(3.5)
T (r, F (z)) ≤ (n+ 1)T (r, f(z)) + S(r, f) and

T (r,G(z)) ≤ (n+ 1)T (r, g(z)) + S(r, g).

Now, we conclude from Nevanlinna main theorems, Lemma 2.4 and (3.5) that

T (r, F (z)) ≤ N(r, F (z)) +N

(

r,
1

F (z)

)

+N

(

r,
1

F − 1

)

+ S(r, F )

≤ N (r, f(z)) +N (r, f(qz)) +N

(

r,
1

f(z)

)
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+N

(

r,
1

f(qz)

)

+N

(

1

G− 1

)

+ S(r, f)

≤ 4T (r, f(z)) + T (r,G(z)) + S(r, f)

≤ 4T (r, f(z)) + (n+ 1)T (r, g(z)) + S(r, f) + S(r, g).

Thus, the above inequality and (3.3) yield

(3.6) (n− 5)T (r, f(z)) ≤ (n+ 1)T (r, g(z)) + S(r, f) + S(r, g).

Similarly,

(3.7) (n− 5)T (r, g(z)) ≤ (n+ 1)T (r, f(z)) + S(r, f) + S(r, g).

It follows from Remark 3.2 and Lemma 2.4 that
(3.8)

N2

(

r,
1

F (z)

)

≤ 2N

(

r,
1

f(z)

)

+N

(

r,
1

f(qz)

)

+S(r, f) ≤ 3T (r, f(z))+S(r, f).

Similarly, we also have

N2(r, F (z)) ≤ 3T (r, f(z)) + S(r, f),(3.9)

N2

(

r,
1

G(z)

)

≤ 3T (r, g(z)) + S(r, g),(3.10)

N2 (r,G(z)) ≤ 3T (r, g(z)) + S(r, g).(3.11)

Therefore, (3.2), (3.5), (3.8)−(3.11) yield

T (r, F (z)) + T (r,G(z)) ≤ 2N2 (r, F (z)) + 2N2

(

r,
1

F (z)

)

+ 2N2 (r,G(z))

+ 2N2

(

r,
1

G(z)

)

+ S(r, F ) + S(r,G)

≤ 12[T (r, f(z)) + T (r, g(z))] + S(r, f) + S(r, g).(3.12)

Thus, we deduce from (3.3), (3.4) and (3.12) that

(n− 13)[T (r, f(z)) + T (r, g(z))] ≤ S(r, f) + S(r, g),

contradicting n ≥ 14.
If, on the other hand, f(z) and g(z) are entire of zero order. Replacing (3.3)

and (3.4) by Lemma 2.5, and using the similar method above, we obtain

(n− 5)[T (r, f(z)) + T (r, g(z))] ≤ S(r, f) + S(r, g),

contradicting n ≥ 6.
So, by Lemma 3.1, we obtain either F (z) ≡ G(z) or F (z)G(z) ≡ 1.

If F (z) ≡ G(z), i.e., f(z)nf(qz) = g(z)ng(qz), by denoting h(z) = f(z)
g(z) , we

obtain

(3.13) h(z)nh(qz) = 1.
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It follows from Lemma 2.4 and (3.13) that

nT (r, h(z)) = T (r, h(z)n) = T

(

r,
1

h(qz)

)

≤ T (r, h(z)) + S(r, h).

Then h(z) must be nonzero constant since n ≥ 6. Suppose that h(z) = t, we
deduce from (3.13) that tn+1 = 1. Therefore, f(z) = tg(z) and tn+1 = 1.

If F (z)G(z) ≡ 1, i.e.,

(3.14) f(z)nf(qz)g(z)ng(qz) = 1.

Set s(z) = f(z)g(z). Then s(z)ns(qz) = 1. Similar to the discussion of (3.13),
we also get s(z) must be a nonzero constant, say t. Obviously, tn+1 = 1 from
(3.14). Therefore, f(z)g(z) = t and tn+1 = 1. The proof of Theorem 3.1 is
completed. �

Proof of Theorem 3.2. Let F (z) = f(z)nf(qz) and G(z) = g(z)ng(qz). Similar
to the proof of Theorem 3.1, we still obtain that (3.3)−(3.11) hold. Let H(z)
be defined as Lemma 3.2 and suppose that H(z) 6≡ 0.

If f(z) and g(z) are meromorphic of zero order, then we deduce from Lemma
2.4 that

(3.15) N(r, F (z)) ≤ N(r, f(z))+N(r, f(qz))+S(r, f) ≤ 2T (r, f(z))+S(r, f).

Similarly,

N(r,G(z)) ≤ 2T (r, g(z)) + S(r, g),(3.16)

N

(

r,
1

F (z)

)

≤ 2T (r, f(z)) + S(r, f),(3.17)

N

(

r,
1

G(z)

)

≤ 2T (r, g(z)) + S(r, g).(3.18)

It follows from Lemma 3.2, (3.8)−(3.11) and (3.15)−(3.18) that

T (r, F (z)) + T (r,G(z)) ≤ 24[T (r, f(z)) + T (r, g(z))] + S(r, f) + S(r, g).

Therefore, we deduce from (3.3) and (3.4) and above inequality that

(n− 1)[T (, f(z)) + T (r, g(z))] ≤ 24[T (r, f(z)) + T (r, g(z))] + S(r, f) + S(r, g),

contradicting n ≥ 26.
If, on the other hand, f(z) and g(z) are entire of zero order, then, replacing

(3.3) and (3.4) by Lemma 2.5, and using the similar method above, we also get

(n− 11)[T (r, f(z)) + T (r, g(z))] ≤ S(r, f) + S(r, g),

contradicting n ≥ 12.
Thus, using Lemma 3.2 again, we get H(z) ≡ 0, i.e.,

F
′′

(z)

F ′(z)
− 2

F
′

(z)

F (z)− 1
=

G
′′

(z)

G′(z)
− 2

G
′

(z)

G(z)− 1
.
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By integrating the above equality twice, we conclude that

(3.19) F (z) =
(b + 1)G(z) + (a− b− 1)

bG(z) + (a− b)
,

where a(6= 0), b are two constants. In order to prove the conclusions of Theorem
3.2 are true, we will prove that either F (z) = G(z) or F (z)G(z) = 1. Now,
according to the coefficients of (3.19), we need to prove the following three
cases.

Case 3.1. b 6= 0,−1.
If a− b− 1 6= 0, we obtain from (3.19) that

N

(

r,
1

F (z)

)

= N

(

r,
1

G(z) + a−b−1
b+1

)

.

Obviously, by Valiron-Mohon’ko lemma, (3.3), (3.4), (3.5) and (3.19) show that

(3.20)

{

(n− 1)T (r, f(z)) ≤ (n+ 1)T (r, g) + S(r, f) + S(r, g),
(n− 1)T (r, g(z)) ≤ (n+ 1)T (r, g) + S(r, f) + S(r, g).

Thus, S(r, f) = S(r, g).
Now, we may apply the second main theorem, Lemma 2.4, (3.4) and (3.20)

to conclude that

(n− 1)T (r, g(z)) ≤ T (r,G(z)) + S(r, g)

≤ N(r,G(z)) +N

(

r,
1

G(z)

)

+N

(

r,
1

G(z) + a−b−1
b+1

)

+ S(r, g)

≤ N(r,G(z)) +N

(

r,
1

G(z)

)

+N

(

r,
1

F (z)

)

+ S(r, g)

≤ N(r, g(z)) +N(r, g(qz)) +N

(

r,
1

g(z)

)

+N

(

r,
1

g(qz)

)

+N

(

r,
1

f(z)

)

+N

(

r,
1

f(qz)

)

+ S(r, f) + S(r, g)

≤ 2T (r, f(z)) + 4T (r, g(z)) + S(r, g)

≤

(

2(n+ 1)

n− 1
+ 4

)

T (r, g) + S(r, g).

This implies that n2 − 8n+ 3 ≤ 0, contradicting n ≥ 12.
If a− b− 1 = 0, then (3.19) turns out to be

(3.21) F (z) =
(b + 1)G(z)

bG(z) + 1
.

Using a same method above, we also deduce a contradiction.

Case 3.2. b = −1 and a 6= −1.
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Otherwise, if b = −1 and a = −1, we obtain F (z)G(z) = 1. Thus, we get
f(z)g(z) = t and tn+1 = 1 by using similar proof of (3.14). So, we only need
to prove it is incorrect if b = −1 and a 6= −1. Here, (3.19) turns into

F (z) =
a

−G(z) + a+ 1
.

Using a similar method of Case 3.1, we also deduce a contradiction.

Case 3.3. b = 0 and a 6= 1.
(3.19) turns into

F (z) =
G(z) + a− 1

a
.

Using a similar method of Case 3.1 again, we deduce a contradiction. Thus,
b = 0 and a = 1. Therefore F (z) = G(z). Similar to discuss (3.13), we deduce
that f(z) = tg(z) and tn+1 = 1. The Proof of Theorem 3.2 is completed. �

Proof of Theorem 3.3. Since P (f(z))f(qz) and P (g(z))g(qz) share 1,∞ CM ,
there exists an entire function α(z) such that

(3.22)
P (f(z))f(qz)− 1

P (g(z))g(qz)− 1
= eα(z).

We deduce that eα(z) ≡ constant, say c, since f(z) and g(z) are both mero-
morphic of zero order. Rewriting (3.22), we obtain

(3.23) cP (g(z))g(qz) = P (f(z))f(qz)− 1 + c.

We assert that c = 1.
If c 6= 1, f(z) and g(z) are meromorphic of zero order, then we may apply

Nevanlinna main theorems, Lemma 2.2 and (3.23) to obtain

T (r, P (f(z)f(qz))) ≤ N(r, P (f(z))f(qz)) +N

(

r,
1

P (f(z))f(qz)

)

+N

(

r,
1

P (f(z))f(qz)− 1 + c

)

+ S(r, f)

≤ N(r, P (f(z))) +N(r, f(qz)) +N

(

r,
1

P (f(z))

)

+N

(

r,
1

f(qz)

)

+N

(

r,
1

P (g(z))g(qz)

)

+ S(r, f)

≤ (m+ 1)N(r, f(z)) + (m+ 1)N

(

r,
1

f(z)

)

+N

(

r,
1

P (g(z))

)

+N

(

r,
1

g(qz)

)

+ S(r, f) + S(r, g)

≤ 2(m+ 1)T (r, f(z)) + (m+ 1)T (r, g(z))

+ S(r, f) + S(r, g).(3.24)
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We also deduce from the first main theorem and Lemma 2.4 that

nT (r, f(z)) + S(r, f) = T (r, P (f(z)))

≤ T (r, P (f(z))f(qz)) + T

(

r,
1

f(qz)

)

+ S(r, f)

≤ T (r, P (f(z))f(qz)) + T (r, f(z)) + S(r, f).

Therefore

(3.25) (n− 1)T (r, f(z)) ≤ T (r, P (f(z))f(qz)) +O(1).

Substituting (3.24) into (3.25), we conclude that

(n− 2m− 3)T (r, f(z)) ≤ (m+ 1)T (r, g(z)) + S(r, f) + S(r, g).

Similarly,

(n− 2m− 3)T (r, g(z)) ≤ (m+ 1)T (r, f(z)) + S(r, f) + S(r, g).

By combining the last two inequalities, we get

(n− 3m− 4)[T (r, f(z)) + T (r, g(z))] ≤ S(r, f) + S(r, g),

contradicting n > 3m+ 4.
If c 6= 1, f(z) and g(z) are entire of zero order, then

T (r, P (f(z))f(qz)) ≤ N

(

r,
1

P (f(z))f(qz)

)

+N

(

r,
1

P (f(z))f(qz)− 1 + c

)

+ S(r, f)

≤ N

(

r,
1

P (f(z))f(qz)

)

+N

(

r,
1

P (g(z))g(qz)

)

≤ (m+ 1)T (r, f(z)) + (m+ 1)T (r, g(z))

+ S(r, f) + S(r, g).

Taking using of the Valiron-Mohon’ko lemma, Lemma 2.5 and above inequality,
we deduce that

(n+ 1)T (r, f(z)) = T (r, P (f(z))f(z)) + S(r, f)

= T (r, P (f(z))f(qz)) + S(r, f)

≤ (m+ 1)T (r, f(z)) + (m+ 1)T (r, g(z)) + S(r, f) + S(r, g).

Therefore,

(3.26) (n−m)T (r, f(z)) ≤ (m+ 1)T (r, g(z)) + S(r, f) + S(r, g).

Similarly,

(3.27) (n−m)T (r, g(z)) ≤ (m+ 1)T (r, f(z)) + S(r, f) + S(r, g).

(3.26) and (3.27) yield

(n− 2m− 1)[T (r, f(z)) + T (r, g(z))] ≤ S(r, f) + S(r, g),

contradicting n > 2m+ 1.
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Thus, c = 1 and (3.23) turns into

(3.28) P (f(z))f(qz) = P (g(z))g(qz).

Set h(z) = f(z)
g(z) . We will discuss the following two cases.

Case 3.A. Suppose that h(z) ≡ constant, say h. Substituting f(z) = hg(z)
into (3.28), we obtain

g(qz)[ang(z)
n(hn+1 − 1) + an−1g(z)

n−1(hn − 1) + · · ·+ a1g(z)(h
2 − 1) + a0(h− 1)] ≡ 0.

Since g(z) is nonconstant meromorphic function, we have g(qz) 6≡ 0. Hence,
we get
(3.29)
ang(z)

n(hn+1−1)+an−1g(z)
n−1(hn−1)+ · · ·+a1g(z)(h

2−1)+a0(h−1) ≡ 0.

We assert that hd = 1, where d is defined as the assumption of Theorem 3.3.
Therefore, f(z) = tg(z) for a constant such that td = 1. So, we need to prove
the following two subcases.

Subcase 3.A.1. Suppose that an is the only nonzero coefficient in (3.29).
Since g(z) is nonconstant meromorphic function, we obtain hn+1 = 1.

Subcase 3.A.2. Suppose that an is not the only nonzero coefficient in
(3.29). If hn+1 6= 1, by applying Valiron-Mohon’ko lemma to (3.29), we obtain
T (r, g(z)) = S(r, g). This is a impossible. Hence, hn+1 = 1. Similarly, we also
deduce hj+1 = 1 if aj 6= 0 for j = 0, 1, . . . , n.

Case 3.B. Suppose that h(z) is not a constant. we deduce from (3.28) that
f(z) and g(z) satisfy algebraic equation R(f(z), g(z)) = 0, where R(w1, w2) =
P (w1)w1(qz)− P (w2)w2(qz).

The proof of Theorem 3.3 is completed. �
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