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The classical Valiron-Mohon’ko theorem has many applications in the study of complex equations. In this paper, we investigate
rational functions in f (z) and the shifts of f (z). We get some results on their characteristic functions. These results may be viewed
as difference analogues of Valiron-Mohon’ko theorem.

1. Introduction and Results

We use the basic notions of Nevanlinna’s theory in this work
(see [1, 2]). Let 𝑓(𝑧) be a meromorphic function. We say
that a meromorphic function 𝛼(𝑧) is a small function of 𝑓(𝑧)
if 𝑇(𝑟, 𝛼) = 𝑆(𝑟, 𝑓), where 𝑆(𝑟, 𝑓) = 𝑜(𝑇(𝑟, 𝑓)) outside a
possible exceptional set of finite logarithmic measure.

The Valiron-Mohon’ko theorem has been proved to be an
extremely useful tool in the study of meromorphic solutions
of differential, difference, and functional equations. It is stated
as follows.

Theorem A (see [3, page 29]). Let 𝑓 be a meromorphic
function. Then for all irreducible rational functions in 𝑓

𝑅 (𝑧, 𝑓) =
∑
𝑝

𝑖=0
𝑎𝑖 (𝑧) 𝑓

𝑖

∑
𝑞

𝑗=0
𝑏𝑗 (𝑧) 𝑓

𝑗
(1)

with meromorphic coefficients 𝑎𝑖(𝑧), 𝑏𝑗(𝑧) such that

𝑇 (𝑟, 𝑎𝑖) = 𝑆 (𝑟, 𝑓) , 𝑖 = 0, . . . , 𝑝,

𝑇 (𝑟, 𝑏𝑗) = 𝑆 (𝑟, 𝑓) , 𝑗 = 0, . . . , 𝑞,
(2)

the characteristic function of 𝑅(𝑟, 𝑓(𝑧)) satisfies

𝑇 (𝑟, 𝑅 (𝑧, 𝑓)) = max{𝑝, 𝑞} 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (3)

Recently, a number of papers have focused on difference
analogues of Nevanlinna’s theory; see, for instance, [4–12].

Among these papers, difference polynomials are investigated
extensively (see [5, 9–11]). But the difference analogues of
Valiron-Mohon’ko theorem have not been established. In this
paper, we are devoted to this work.

A difference polynomial of 𝑓(𝑧) is an expression of the
form

𝐻(𝑧, 𝑓) = ∑
𝜆∈𝐽

𝑎𝜆 (𝑧)

𝜏𝜆

∏
𝑗=1

𝑓(𝑧 + 𝛿𝜆,𝑗)
𝜇𝜆,𝑗

, (4)

where 𝐽 is an index set, 𝛿𝜆,𝑗 are complex constants, and 𝜇𝜆,𝑗
are nonnegative integers. In what follows, we assume that the
coefficients of difference polynomials are, unless otherwise
stated, small functions. The maximal total degree of 𝐻(𝑧, 𝑓)
in 𝑓(𝑧) and the shifts of 𝑓(𝑧) is defined by

deg
𝑓
𝐻 = max

𝜆∈𝐽

𝜏𝜆

∑
𝑗=1

𝜇𝜆,𝑗. (5)

First, we investigate the rational function

𝑅1 (𝑧, 𝑓) =
𝑃 (𝑧, 𝑓)

𝑑1 (𝑧) 𝑓 (𝑧 + 𝑐) + 𝑑0 (𝑧)
, (6)

where 𝑐 is an arbitrary complex number, and 𝑑0(𝑧) and 𝑑1(𝑧)
are small functions of𝑓(𝑧)with 𝑑0(𝑧) ̸≡ 0 or 𝑑1(𝑧) ̸≡ 0. Our
result is stated as follows.

Theorem 1. Let𝑓(𝑧) be ameromorphic function of finite order
such that 𝑁(𝑟, 𝑓) = 𝑆(𝑟, 𝑓). Suppose that 𝑃(𝑧, 𝑓) ̸≡ 0 is a
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difference polynomial in 𝑓(𝑧) and that 𝑅1(𝑧, 𝑓) is of the form
(6). Then

𝑇 (𝑟, 𝑅1) ≤ (deg
𝑓
𝑃)𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (7)

In many papers (see, for instance, [7, 13, 14]), linear
difference expressions often appear. Concerning their char-
acteristic functions, we have the following corollary, which is
obtained easily fromTheorem 1.

Corollary 2. Let 𝑓(𝑧) be a meromorphic function of finite
order such that𝑁(𝑟, 𝑓) = 𝑆(𝑟, 𝑓). Suppose that 𝐿(𝑧, 𝑓) ̸≡ 0 is
a linear combination in 𝑓(𝑧) and the shifts of 𝑓(𝑧). Then

𝑇 (𝑟, 𝐿) ≤ 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (8)

Next we consider the rational function

𝑅2 (𝑧, 𝑓) =
𝑃 (𝑧, 𝑓)

𝑓 (𝑧 + 𝑐1) ⋅ ⋅ ⋅ 𝑓 (𝑧 + 𝑐𝑛)
, (9)

where 𝑐1, . . . , 𝑐𝑛 are different complex constants. We get the
following result.

Theorem3. Let𝑓(𝑧) be ameromorphic function of finite order
such that 𝑁(𝑟, 𝑓) = 𝑆(𝑟, 𝑓). Suppose that 𝑃(𝑧, 𝑓) ̸≡ 0 is a
difference polynomial in 𝑓(𝑧) and that 𝑅2(𝑧, 𝑓) is of the form
(9). Then

𝑇 (𝑟, 𝑅2) ≤ max{deg
𝑓
𝑃, 𝑛} 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (10)

As for the general rational function in 𝑓(𝑧) and the shifts
of 𝑓(𝑧),

𝑅3 (𝑧, 𝑓) =
𝑃 (𝑧, 𝑓)

𝑄 (𝑧, 𝑓)
, (11)

we get the following two results.

Theorem4. Let𝑓(𝑧) be ameromorphic function of finite order
such that 𝑁(𝑟, 𝑓) = 𝑆(𝑟, 𝑓). Suppose that 𝑃(𝑧, 𝑓) ̸≡ 0 and
𝑄(𝑧, 𝑓) ̸≡ 0 are difference polynomials in 𝑓(𝑧) and that
𝑅3(𝑧, 𝑓) is of the form (11).

(i) If deg
𝑓
𝑃 ≥ deg

𝑓
𝑄 and 𝑃(𝑧, 𝑓) contains just one term

of maximal total degree, then

𝑇 (𝑟, 𝑅3) ≥ (deg
𝑓
𝑃 − deg

𝑓
𝑄)𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (12)

(ii) If deg
𝑓
𝑃 ≤ deg

𝑓
𝑄 and 𝑄(𝑧, 𝑓) contains just one term

of maximal total degree, then

𝑇 (𝑟, 𝑅3) ≥ (deg
𝑓
𝑄 − deg

𝑓
𝑃)𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (13)

Theorem 5. Let 𝑓(𝑧) be a meromorphic function of finite
order such that 𝑁(𝑟, 𝑓) + 𝑁(𝑟, 1/𝑓) = 𝑆(𝑟, 𝑓). Suppose that
𝑃(𝑧, 𝑓) ̸≡ 0 and 𝑄(𝑧, 𝑓) ̸≡ 0 are difference polynomials in
𝑓(𝑧) and that 𝑅3(𝑧, 𝑓) is of the form (11). Then

𝑇 (𝑟, 𝑅3) ≤ max{deg
𝑓
𝑃, deg

𝑓
𝑄}𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (14)

The following two examples show that the results in
Theorems 1–5 are sharp; that is, “≤” and “≥” cannot be
replaced by “<”, “>” or “=”.

Example 6. Let 𝑓(𝑧) = 𝑒𝑧 and

𝑃 (𝑧, 𝑓) = 𝑓(𝑧)
2𝑓 (𝑧 + 𝜋𝑖) + 𝑓(𝑧)

2

+ 2𝑓 (𝑧 + 𝜋𝑖) 𝑓 (𝑧) + 2𝑓 (𝑧) + 𝑓 (𝑧 + 𝜋𝑖) + 1.

(15)

Let

𝑅11 (𝑧, 𝑓) =
𝑃 (𝑧, 𝑓)

𝑓 (𝑧 + 𝜋𝑖) + 2
, 𝑅12 (𝑧, 𝑓) =

𝑃 (𝑧, 𝑓)

𝑓 (𝑧 + 𝜋𝑖) + 1
.

(16)

Then 𝑅11(𝑧, 𝑓) = (1 + 𝑒𝑧)
2
(1 − 𝑒𝑧)/(−𝑒𝑧 + 2) and 𝑅12(𝑧, 𝑓) =

(1 + 𝑒𝑧)2. Clearly,

𝑇 (𝑟, 𝑅11) = 3𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

𝑇 (𝑟, 𝑅12) = 2𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .
(17)

Therefore,

(deg
𝑓
𝑃 − 1)𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

< 𝑇 (𝑟, 𝑅11) = (deg
𝑓
𝑃)𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

(deg
𝑓
𝑃 − 1)𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

= 𝑇 (𝑟, 𝑅12) < (deg
𝑓
𝑃)𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(18)

Example 7. Let 𝑓(𝑧) = sin 𝑧 and

𝑃 (𝑧, 𝑓)=𝑓(𝑧 +
𝜋

2
)
2

𝑓 (𝑧) + 𝑓(𝑧)
2 + 𝑓 (𝑧 + 𝜋) 𝑓 (𝑧) − 𝑓 (𝑧) .

(19)

Let

𝑅21 (𝑧, 𝑓) =
𝑃 (𝑧, 𝑓)

𝑓(𝑧 + 𝜋/2)3
, 𝑅22 (𝑧, 𝑓) =

𝑃 (𝑧, 𝑓)

𝑓(𝑧 + 𝜋)2
.

(20)

Then 𝑅21(𝑧, 𝑓) = −tan3𝑧 and 𝑅22(𝑧, 𝑓) = − sin 𝑧. Clearly,

𝑇 (𝑟, 𝑅21) = 3𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

𝑇 (𝑟, 𝑅22) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .
(21)

Therefore,

(deg
𝑓
𝑃 − 3)𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

< 𝑇 (𝑟, 𝑅21) = (deg
𝑓
𝑃)𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

(deg
𝑓
𝑃 − 2)𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

= 𝑇 (𝑟, 𝑅22) < (deg
𝑓
𝑃)𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(22)
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2. Proof of Theorem 1

We need the following lemmas for the proof of Theorem 1.
The difference analogue of the logarithmic derivative

lemma was given by Halburd-Korhonen [8, Corollary 2.2]
and Chiang-Feng [7, Corollary 2.6], independently. The
following Lemma 8 is a variant of [8, Corollary 2.2].

Lemma 8. Let 𝑓(𝑧) be a nonconstant meromorphic function
of finite order, and let 𝜂1, 𝜂2 be two arbitrary complex numbers.
Then,

𝑚(𝑟,
𝑓 (𝑧 + 𝜂1)

𝑓 (𝑧 + 𝜂2)
) = S (𝑟, 𝑓) . (23)

In the remark of [15, page 15], it is pointed out that the
following lemma holds.

Lemma 9. Let 𝑓(𝑧) be a nonconstant finite order meromor-
phic function and let 𝑐 ̸= 0 be an arbitrary complex number.
Then,

𝑇 (𝑟 + |𝑐| , 𝑓) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

𝑁 (𝑟 + |𝑐| , 𝑓) = 𝑁 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .
(24)

Let 𝑓(𝑧) be a meromorphic function. It is shown in [16,
page 66] that for an arbitrary 𝑐 ̸= 0, the following inequalities:

(1 + 𝑜 (1)) 𝑇 (𝑟 − |𝑐| , 𝑓 (𝑧)) ≤ 𝑇 (𝑟, 𝑓 (𝑧 + 𝑐))

≤ (1 + 𝑜 (1)) 𝑇 (𝑟 + |𝑐| , 𝑓 (𝑧))

(25)

hold as 𝑟 → ∞. From its proofwe see that the above relations
are also true for counting functions. So by these relations and
Lemma 9, we get the following lemma.

Lemma 10. Let 𝑓(𝑧) be a nonconstant finite order meromor-
phic function and let 𝑐 ̸= 0 be an arbitrary complex number.
Then,

𝑇 (𝑟, 𝑓 (𝑧 + 𝑐)) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

𝑁 (𝑟, 𝑓 (𝑧 + 𝑐)) = 𝑁 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

𝑁(𝑟,
1

𝑓 (𝑧 + 𝑐)
) = 𝑁(𝑟,

1

𝑓
) + 𝑆 (𝑟, 𝑓) .

(26)

Remark 11. In [7], Chiang and Feng proved a similar result.
Let 𝑓(𝑧) be a meromorphic function with 𝜎(𝑓) < ∞, and let
𝜂 ̸= 0 be fixed; then for each 𝜀 > 0, we have

𝑇 (𝑟, 𝑓 (𝑧 + 𝜂)) = 𝑇 (𝑟, 𝑓) + 𝑂 (𝑟𝜎(𝑓)−1+𝜀) + 𝑂 (log 𝑟) . (27)

Proof of Theorem 1. Let

𝑃 (𝑧, 𝑓) = ∑
𝜆∈𝐼

𝑎𝜆 (𝑧)

𝜎𝜆

∏
𝑗=1

𝑓(𝑧 + 𝛼𝜆,𝑗)
𝑙𝜆,𝑗
, (28)

and deg
𝑓
𝑃 = 𝑝.

Rearranging the expression of 𝑃(𝑧, 𝑓) by collecting
together all terms having the same total degree, we get

𝑃 (𝑧, 𝑓) =

𝑝

∑
𝑖=0

ℎ𝑖 (𝑧) 𝑓(𝑧)
𝑖, (29)

where, for 𝑖 = 0, . . . , 𝑝,

ℎ𝑖 (𝑧) = ∑
𝜆∈𝐼𝑖

𝑎𝜆 (𝑧)

𝜎𝜆

∏
𝑗=1

(
𝑓(𝑧 + 𝛼𝜆,𝑗)

𝑓 (𝑧)
)

𝑙𝜆,𝑗

,

𝐼𝑖 =
{
{
{

𝜆 ∈ 𝐼 |
𝜎𝜆

∑
𝑗=1

𝑙𝜆,𝑗 = 𝑖
}
}
}

.

(30)

Since the coefficients 𝑎𝜆(𝑧) of 𝑃(𝑧, 𝑓) are small functions
of 𝑓(𝑧), we have

𝑚(𝑟, 𝑎𝜆) ≤ 𝑇 (𝑟, 𝑎𝜆) = 𝑆 (𝑟, 𝑓) . (31)

So by Lemma 8, we have, for all 𝑖 = 0, 1, . . . , 𝑝 the estimates

𝑚(𝑟, ℎ𝑖) = 𝑆 (𝑟, 𝑓) . (32)

Without loss of generality, we may assume 𝑐 = 0 in (6).
Otherwise, substituting 𝑧 − 𝑐 for 𝑧, we get

𝑅1 (𝑧 − 𝑐, 𝑓) =
𝑃 (𝑧 − 𝑐, 𝑓)

𝑑1 (𝑧 − 𝑐) 𝑓 (𝑧) + 𝑑0 (𝑧 − 𝑐)
. (33)

By Lemma 10, we see that

𝑇 (𝑟, 𝑅1 (𝑧 − 𝑐, 𝑓)) = 𝑇 (𝑟, 𝑅1 (𝑧, 𝑓)) + 𝑆 (𝑟, 𝑓) . (34)

So, in the following discussion, we only discuss the form

𝑅1 (𝑧, 𝑓) =
𝑃 (𝑧, 𝑓)

𝑑1 (𝑧) 𝑓 (𝑧) + 𝑑0 (𝑧)
. (35)

Assume first that 𝑑1(𝑧) = 0. Clearly, we may assume that
𝑑0(𝑧) = 1. By (29), we get

𝑅1 (𝑧, 𝑓) = 𝑃 (𝑧, 𝑓)

= ℎ𝑝 (𝑧) 𝑓(𝑧)
𝑝 + ℎ𝑝−1 (𝑧) 𝑓(𝑧)

𝑝−1

+ ⋅ ⋅ ⋅ + ℎ1 (𝑧) 𝑓 (𝑧) + ℎ0 (𝑧) .

(36)

If 𝑝 = 1, then 𝑅1(𝑧, 𝑓) = ℎ1(𝑧)𝑓(𝑧) + ℎ0(𝑧). So by (32), we get

𝑚(𝑟, 𝑅1) ≤ 𝑚 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (37)

If 𝑝 > 1, then rewrite 𝑅1(𝑧, 𝑓) in the form

𝑅1 (𝑧, 𝑓) = 𝑓 (𝑧) (ℎ𝑝 (𝑧) 𝑓(𝑧)
𝑝−1 + ⋅ ⋅ ⋅ + ℎ1 (𝑧)) + ℎ0 (𝑧) .

(38)

So we have

𝑚(𝑟, 𝑅1) ≤ 𝑚 (𝑟, 𝑓)

+ 𝑚 (𝑟, ℎ𝑝 (𝑧) 𝑓(𝑧)
𝑝−1 + ⋅ ⋅ ⋅ + ℎ1 (𝑧)) + 𝑆 (𝑟, 𝑓) .

(39)
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By (39) and the inductive argument, we have

𝑚(𝑟, 𝑅1) ≤ 𝑝𝑚 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (40)

To estimate𝑁(𝑟, 𝑅1), we use the form

𝑅1 (𝑧, 𝑓) = 𝑃 (𝑧, 𝑓) = ∑
𝜆∈𝐼

𝑎𝜆 (𝑧)

𝜎𝜆

∏
𝑗=1

𝑓(𝑧 + 𝛼𝜆,𝑗)
𝑙𝜆,𝑗
. (41)

Clearly,

𝑁(𝑟, 𝑅1)

≤ ∑
𝜆∈𝐼

(𝑁(𝑟, 𝑎𝜆) +
𝜎𝜆

∑
𝑗=1

𝑙𝜆,𝑗𝑁(𝑟, 𝑓 (𝑧 + 𝛼𝜆,𝑗))) + 𝑂 (1) .

(42)

So by (31),𝑁(𝑟, 𝑓) = 𝑆(𝑟, 𝑓), and Lemma 10, we get

𝑁(𝑟, 𝑅1) = 𝑆 (𝑟, 𝑓) . (43)

Combining this equality with (40), we get

𝑇 (𝑟, 𝑅1) ≤ 𝑝𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) , (44)

and we have completed the case 𝑑1(𝑧) = 0.
We now proceed to the case 𝑑1(𝑧) ̸= 0. Clearly, in this case

we may assume that 𝑑1(𝑧) = 1. By (29), we see that (6)
becomes

𝑅1 (𝑧, 𝑓)

= (ℎ𝑝 (𝑧) 𝑓(𝑧)
𝑝 + ℎ𝑝−1 (𝑧) 𝑓(𝑧)

𝑝−1

+ ⋅ ⋅ ⋅ + ℎ1 (𝑧) 𝑓 (𝑧) + ℎ0 (𝑧) )

× (𝑓 (𝑧) + 𝑑0 (𝑧))
−1
.

(45)

By (45), we get

𝑅1 (𝑧, 𝑓)

= ℎ𝑝 (𝑧) 𝑓(𝑧)
𝑝−1

+ (ℎ∗
𝑝−1

(𝑧) 𝑓(𝑧)
𝑝−1 + ℎ𝑝−2 (𝑧) 𝑓(𝑧)

𝑝−2

+ ⋅ ⋅ ⋅ + ℎ1 (𝑧) 𝑓 (𝑧) + ℎ0 (𝑧) )

× (𝑓 (𝑧) + 𝑑0 (𝑧))
−1

= ℎ𝑝 (𝑧) 𝑓(𝑧)
𝑝−1 + ℎ∗

𝑝−1
(𝑧) 𝑓(𝑧)

𝑝−2

+
ℎ∗
𝑝−2

(𝑧) 𝑓(𝑧)𝑝−2 + ⋅ ⋅ ⋅ + ℎ1 (𝑧) 𝑓 (𝑧) + ℎ0 (𝑧)

𝑓 (𝑧) + 𝑑0 (𝑧)

= ⋅ ⋅ ⋅

= ℎ𝑝 (𝑧) 𝑓(𝑧)
𝑝−1 + ℎ∗

𝑝−1
(𝑧) 𝑓(𝑧)

𝑝−2

+ ⋅ ⋅ ⋅ + ℎ∗
2
(𝑧) 𝑓 (𝑧) + ℎ∗

1
(𝑧) +

ℎ∗
0
(𝑧)

𝑓 (𝑧) + 𝑑0 (𝑧)
,

(46)

where

ℎ∗
𝑝−1

(𝑧) = ℎ𝑝−1 (𝑧) − ℎ𝑝 (𝑧) 𝑑0 (𝑧) ,

ℎ∗
𝑝−2

(𝑧) = ℎ𝑝−2 (𝑧) − ℎ∗
𝑝−1

(𝑧) 𝑑0 (𝑧) ,

...

ℎ∗
1
(𝑧) = ℎ1 (𝑧) − ℎ∗

2
(𝑧) 𝑑0 (𝑧) ,

ℎ∗
0
(𝑧) = ℎ0 (𝑧) − ℎ∗

1
(𝑧) 𝑑0 (𝑧) .

(47)

By (32), we get, for 𝑗 = 0, 1, . . . , 𝑝 − 1, the estimates

𝑚(𝑟, ℎ∗
𝑗
) = 𝑆 (𝑟, 𝑓) . (48)

By (46), using the same method as in (36)–(40), we get

𝑚(𝑟, 𝑅1)

≤ 𝑚 (𝑟, ℎ𝑝 (𝑧) 𝑓(𝑧)
𝑝−1 + ℎ∗

𝑝−1
(𝑧) 𝑓(𝑧)

𝑝−2 + ⋅ ⋅ ⋅ + ℎ∗
1
(𝑧))

+ 𝑚(𝑟,
ℎ∗
0
(𝑧)

𝑓 (𝑧) + 𝑑0 (𝑧)
)

≤ (𝑝 − 1)𝑚 (𝑟, 𝑓)

+ 𝑚(𝑟,
1

𝑓 (𝑧) + 𝑑0 (𝑧)
) + 𝑆 (𝑟, 𝑓) .

(49)

To estimate𝑁(𝑟, 𝑅1), we use the form

𝑅1 (𝑧, 𝑓) =
𝑃 (𝑧, 𝑓)

𝑓 (𝑧) + 𝑑0 (𝑧)

=
∑𝜆∈𝐼 𝑎𝜆 (𝑧)∏

𝜎𝜆
𝑗=1

𝑓(𝑧 + 𝛼𝜆,𝑗)
𝑙𝜆,𝑗

𝑓 (𝑧) + 𝑑0 (𝑧)
.

(50)

By (31),𝑁(𝑟, 𝑓) = 𝑆(𝑟, 𝑓), and Lemma 10, we get

𝑁(𝑟, 𝑅1) = 𝑁(𝑟,
1

𝑓 (𝑧) + 𝑑0 (𝑧)
) + 𝑆 (𝑟, 𝑓) . (51)

Combining this equality with (49), we get

𝑇 (𝑟, 𝑅1) ≤ (𝑝 − 1)𝑚 (𝑟, 𝑓)

+ 𝑇(𝑟,
1

𝑓 (𝑧) + 𝑑0 (𝑧)
) + 𝑆 (𝑟, 𝑓)

≤ 𝑝𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(52)

Theorem 1 is proved.

3. Proof of Theorem 3

Proof. Let 𝑃(𝑧, 𝑓) be of the form (28) and deg
𝑓
𝑃 = 𝑝.

Rearranging the expression of 𝑃(𝑧, 𝑓), we get (29) and (30).
We only discuss the case 𝑝 ≥ 𝑛 since the case 𝑝 < 𝑛 is easier.
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Rewrite 𝑅2(𝑧, 𝑓) in the form

𝑅2 (𝑧, 𝑓) =
𝑃 (𝑧, 𝑓)

𝑠 (𝑧) 𝑓(𝑧)𝑛
, (53)

where

𝑠 (𝑧) =
𝑓 (𝑧 + 𝑐1) ⋅ ⋅ ⋅ 𝑓 (𝑧 + 𝑐𝑛)

𝑓(𝑧)𝑛
. (54)

By Lemma 8, we get

𝑚(𝑟,
1

𝑠
) = 𝑆 (𝑟, 𝑓) . (55)

By (29) and (53), we get

𝑅2 (𝑧, 𝑓) =
∑
𝑝

𝑖=0
ℎ𝑖 (𝑧) 𝑓(𝑧)

𝑖

𝑠 (𝑧) 𝑓(𝑧)𝑛

=

𝑝

∑
𝑖=𝑛

ℎ𝑖 (𝑧)

𝑠 (𝑧)
𝑓(𝑧)
𝑖−𝑛

+
ℎ𝑛−1 (𝑧) 𝑓(𝑧)

𝑛−1 + ⋅ ⋅ ⋅ + ℎ0 (𝑧)

𝑠 (𝑧) 𝑓(𝑧)𝑛

=

𝑝

∑
𝑖=𝑛

ℎ𝑖 (𝑧)

𝑠 (𝑧)
𝑓(𝑧)
𝑖−𝑛

+
𝑛

∑
𝑗=1

ℎ𝑛−𝑗 (𝑧)

𝑠 (𝑧)
(

1

𝑓 (𝑧)
)
𝑗

.

(56)

By (32) and (55), we have, for all 𝑖 = 0, . . . , 𝑝, the estimates

𝑚(𝑟,
ℎ𝑖 (𝑧)

𝑠 (𝑧)
) = 𝑆 (𝑟, 𝑓) . (57)

By (57), using the same method as in (36)–(40), we get

𝑚(𝑟,

𝑝

∑
𝑖=𝑛

ℎ𝑖 (𝑧)

𝑠 (𝑧)
𝑓(𝑧)
𝑖−𝑛) ≤ (𝑝 − 𝑛)𝑚 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

𝑚(𝑟,
𝑛

∑
𝑗=1

ℎ𝑛−𝑗 (𝑧)

𝑠 (𝑧)
(

1

𝑓 (𝑧)
)
𝑗

) ≤ 𝑛𝑚(𝑟,
1

𝑓
) + 𝑆 (𝑟, 𝑓) .

(58)

Combining the above two inequalities with (56), we get

𝑚(𝑟, 𝑅2) ≤ (𝑝 − 𝑛)𝑚 (𝑟, 𝑓) + 𝑛𝑚(𝑟,
1

𝑓
) + 𝑆 (𝑟, 𝑓) . (59)

To estimate𝑁(𝑟, 𝑅2), we use the form

𝑅2 (𝑧, 𝑓) =
∑𝜆∈𝐼 𝑎𝜆 (𝑧)∏

𝜎𝜆
𝑗=1

𝑓(𝑧 + 𝛼𝜆,𝑗)
𝑙𝜆,𝑗

𝑓 (𝑧 + 𝑐1) ⋅ ⋅ ⋅ 𝑓 (𝑧 + 𝑐𝑛)
. (60)

By (31),𝑁(𝑟, 𝑓) = 𝑆(𝑟, 𝑓), and Lemma 10, we get

𝑁(𝑟, 𝑅2) = 𝑁(𝑟,
1

𝑓 (𝑧 + 𝑐1) ⋅ ⋅ ⋅ 𝑓 (𝑧 + 𝑐𝑛)
)

+ 𝑆 (𝑟, 𝑓) ≤ 𝑛𝑁(𝑟,
1

𝑓
) + 𝑆 (r, 𝑓) .

(61)

Combining this inequality with (59), we get

𝑇 (𝑟, 𝑅2) ≤ (𝑝 − 𝑛)𝑚 (𝑟, 𝑓) + 𝑛𝑇(𝑟,
1

𝑓
)

+ 𝑆 (𝑟, 𝑓) ≤ 𝑝𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(62)

Theorem 3 is proved.

4. Proof of Theorem 4

We need the following lemma for the proof of Theorem 4.

Lemma 12 (see [11]). Let 𝑓(𝑧) be a meromorphic function of
finite order such that𝑁(𝑟, 𝑓) = 𝑆(𝑟, 𝑓). Suppose that𝐻(𝑧, 𝑓) is
a difference polynomial in 𝑓(𝑧) and 𝐻(𝑧, 𝑓) contains just one
term of maximal total degree. Then,

𝑇 (𝑟,𝐻) = (deg
𝑓
𝐻)𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (63)

Proof of Theorem 4. We have the following.

Case 1. Suppose that deg
𝑓
𝑃 ≥ deg

𝑓
𝑄 and 𝑃(𝑧, 𝑓) contains

just one term of maximal total degree.
Let deg

𝑓
𝑃 = 𝑝 and deg

𝑓
𝑄 = 𝑞. By Lemma 12, we get

𝑇 (𝑟, 𝑃) = 𝑝𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (64)

ByTheorem 1, we get

𝑇 (𝑟, 𝑄) ≤ 𝑞𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (65)

By (11), we get

𝑃 (𝑧, 𝑓) = 𝑅3 (𝑧, 𝑓)𝑄 (𝑧, 𝑓) . (66)

By (64)–(66), we get

𝑝𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

= 𝑇 (𝑟, 𝑃 (𝑧, 𝑓))

= 𝑇 (𝑟, 𝑅3 (𝑧, 𝑓)𝑄 (𝑧, 𝑓))

≤ 𝑇 (𝑟, 𝑅3 (𝑧, 𝑓)) + 𝑇 (𝑟, 𝑄 (𝑧, 𝑓))

≤ 𝑇 (𝑟, 𝑅3 (𝑧, 𝑓)) + 𝑞𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(67)

So we have,

𝑇 (𝑟, 𝑅3) ≥ (𝑝 − 𝑞) 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (68)

Case 2. Suppose that deg
𝑓
𝑃 ≤ deg

𝑓
𝑄 and 𝑄(𝑧, 𝑓) contains

just one term of maximal total degree.
In this case, we consider 1/𝑅3(𝑧, 𝑓). Using the same

method as in Case 1, we can easily get

𝑇 (𝑟, 𝑅3) = 𝑇(𝑟,
1

𝑅3
) ≥ (𝑞 − 𝑝)𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (69)

Theorem 4 is proved.
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5. Proof of Theorem 5

Proof. Let 𝑃(𝑧, 𝑓) be of the form (28) and deg
𝑓
𝑃 = 𝑝. Let

𝑄 (𝑧, 𝑓) = ∑
𝜇∈𝐽

𝑏𝜇 (𝑧)

𝜏𝜇

∏
𝑗=1

𝑓(𝑧 + 𝛽𝜇,𝑗)
𝑚𝜇,𝑗

, (70)

and deg
𝑓
𝑄 = 𝑞.

Rearranging the expression of 𝑃(𝑧, 𝑓), we get (29) and
(30).

Similarly, rearranging the expression of 𝑄(𝑧, 𝑓), we get

𝑄 (𝑧, 𝑓) =

𝑞

∑
𝑘=0

𝑡𝑘 (𝑧) 𝑓(𝑧)
𝑘, (71)

where, for 𝑘 = 0, . . . , 𝑞,

𝑡𝑘 (𝑧) = ∑
𝜇∈𝐽𝑘

𝑏𝜇 (𝑧)

𝜏𝜇

∏
𝑗=1

(
𝑓(𝑧 + 𝛽𝜇,𝑗)

𝑓 (𝑧)
)

𝑚𝜇,𝑗

,

𝐽𝑘 =
{
{
{

𝜆 ∈ 𝐽 |

𝜏𝜇

∑
𝑗=1

𝑚𝜇,𝑗 = 𝑘
}
}
}

.

(72)

By (29) and (71), we get

𝑅3 (𝑧, 𝑓) =
∑
𝑝

𝑖=0
ℎ𝑖 (𝑧) 𝑓(𝑧)

𝑖

∑
𝑞

𝑘=0
𝑡𝑘 (𝑧) 𝑓(𝑧)

𝑘
. (73)

Since 𝑁(𝑟, 𝑓) + 𝑁(𝑟, 1/𝑓) = 𝑆(𝑟, 𝑓), by Lemma 10, we have,
for an arbitrary 𝜂,

𝑁(𝑟,
𝑓 (𝑧 + 𝜂)

𝑓 (𝑧)
) ≤ 𝑁(𝑟,

1

𝑓
) + 𝑁 (𝑟, 𝑓 (𝑧 + 𝜂))

= 𝑁(𝑟,
1

𝑓
) + 𝑁 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

= 𝑆 (𝑟, 𝑓) .

(74)

By (74) and Lemma 8, we have, for an arbitrary 𝜂,

𝑇(𝑟,
𝑓 (𝑧 + 𝜂)

𝑓 (𝑧)
) = 𝑆 (𝑟, 𝑓) . (75)

Since the coefficients 𝑎𝜆(𝑧) and 𝑏𝜇(𝑧) of 𝑃(𝑧, 𝑓) and 𝑄(𝑧, 𝑓)
are small functions of 𝑓(𝑧), by (30), (72), and (75), we get

𝑇 (𝑟, ℎ𝑖) = 𝑆 (𝑟, 𝑓) , 𝑖 = 0, . . . , 𝑝

𝑇 (𝑟, 𝑡𝑘) = 𝑆 (𝑟, 𝑓) , 𝑘 = 0, . . . , 𝑞.
(76)

By (73), we are not clear whether𝑅3(𝑧, 𝑓) is an irreducible
rational function in 𝑓(𝑧). So byTheorem A, we get

𝑇 (𝑟, 𝑅3) ≤ max {𝑝, 𝑞} 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (77)

Theorem 5 is proved.
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