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In this article, we treat complex difference equation of the form
A+ + -+ 4 [+ 1) + A)(2) f(2) = Ap1 (2),

where A(z)(j=0,1,...,n,n4+1) are meromorphic functions. We give
answers to the growth estimates of the meromorphic solutions, and firstly
consider the deficiency and fixed points of the meromorphic solutions of
these equations. Some examples are listed to show that the result about the
properties of fixed points is the best possible in a certain sense.

Keywords: growth; difference equations; deficiency; fixed points

AMS Subject Classifications: 30D35; 39B32

1. Introduction

In this article, we are concerned with the properties of the meromorphic solution of
linear difference equations of the forms

A, fz+n)+--+ A1) f(z+ 1)+ Ao(2) f(z) = 0, (1.1)
and
A fz+n)+- + 4@+ 1)+ 4o(2) f(2) = Api1(2), (1.2)
where A(z)(j=0,1,...,n, n+1) are meromorphic functions.

We use the standard notations of Nevanlinna theory in this article [1-4].

We know that the lemma on the logarithmic derivative of a meromorphic
function plays a key role in the study of meromorphic functions and complex
differential equations. Thus, in order to use Nevanlinna theory to difference operator
and difference equations [5-15], it is necessary to have a difference analogue of the
lemma on the logarithmic derivative. Fortunately, there are two papers [9,10]
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containing very similar results about a difference analogue of the lemma on the
logarithmic derivative.

TuHeorem 1.1 [10, Theorem 2.1] Let f(z) be a non-constant meromorphic function,
ceC,0<é8<1lande>0. Then

fe+o\ [T+ lel.f)
”(“.ﬂn )‘0< ” )

Sfor all r outside of a possible exceptional set E with finite logarithmic measure

[rE < +o0.

THeorEM 1.2 [9, Corollary 2.6] Let ny, 1, be two complex numbers such that ny #n»
and let f(z) be a finite-order meromorphic function. Let o(f) be the order of f(z), then for
each ¢ > 0, we have

SCE+nm)\ o(f)—1+e
m(r, fi(z n ’72)) =0 ).

In order to relate our results, we also need the following preliminaries.

Let g(z) be an entire function. The order o(g) and the type 7(g) of g(z) are defined,
respectively,

loglog M log T
o(g) = limsup 22108 M) _ o 08158 o i sup
r—>+00 10g r r——+00 log r F——+00

log M(r, g)
7o :

2. The growth of the solutions of the difference equations

Y.M. Chiang and S.J. Feng considered the growth of meromorphic solutions of a
general linear difference equations (1.1), and they obtained the following theorem.

TuaeoREM 2.1 [9, Theorem 9.2] Let Ao(z), A1(2), ..., A,(z) be entire functions such
that there exists an integer [, 0 <I<n, such that

Jmax {o(4))) < o(4y). @.1)

If f(z) is a meromorphic solution of equations (1.1), then o(f)>o(A;) + 1.

In Theorem 2.1, the coefficients of (1.1) should satisfy the condition (2.1). If the
condition (2.1) was replaced by 0(A4;) = maxo<jz<,{o(4;)}, what will be the results?
Regarding this, I. Laine and C.C. Yang obtained the following theorem.

Tueorem 2.2 [15, Theorem 5.2] Let Ao(z), A1(2),...,A,(z) be entire functions of

finite order such that among those having the maximal order o = maXo<jxi<n{o(A;)},

exactly one has its type strictly greater than the others. Then for any meromorphic
solution of (1.1), we have o(f)>o0(A)+ 1.

Remark 2.1 1In [15], Laine and Yang asked whether all meromorphic solutions f{z)
of equation (1.1) satisfy o(f) > 1 + maxo<j<,{0(4;)}, even if there is no dominating
coefficient.
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Here, we assert that the above conclusion does not hold identically if there is no
dominating coefficient in (1.1). For example:

Example 2.1 Let

M@ =f+1)—f(), A" f(2)=AMAY ().
By n(eN) times iteration of the above difference operator to f{z), we have
AfE) =) ( )(—1)"fjf'(z +)), 22)

n
=0\

and

re+n =3 (")are.

J=0
Then, by the Theorem 1.1 in [14], the equation

(622 + 192 + 15)Af(2) + (z + A’ (2) — Af(z) — f(2) = 0, 2.3)

admits an entire solution f{(z) of order o(f) = %
By making use of the relation (2.2), we can rewrite Equation (2.3) to an equation
of the form (1.1), i.e.,

(622 + 192+ 15)f(z + 3) — (182° + 56z +42) f(z + 2)
+ (1822 + 5524+ 38) f(z 4+ 1) — (62° + 182+ 12) f(z) = 0. (2.4)
Thus, Equation (2.4) also has an entire solution f{z) with order o(f) = % Here, all
the coefficients of (2.4) have order 0 and type +oco. Obviously, the conclusion of
Theorem 2.2 does not hold if there is no dominating coefficient.

But the following example shows that, if there is no dominating coefficient, f(z)
may satisfy o(f) > 1 + maxg<j<,{o(4;)}.

Example 2.2 f(z)=¢" + z is a solution of the equation
[(e— Dz =11z +2) = [(€* — Dz = 2f(z + 1) +[(¢* = 2)z + (¢* — 2¢)](z) = 0.
(2.5)

Here, the all coefficients of (2.5) have the order 0 and the type 4o0, but o(f) =1
satisfies the conclusion of Theorem 2.2.

Now, we will discuss the properties of the solutions of Equation (1.2) and obtain
the following theorems.

THEOREM 2.3 Suppose that the coefficients Afz)(j=0,1,...,n,n+1) in (1.2) are
meromorphic functions with finite order <o. If for any given ¢ > 0, there exists some
1€{0,1,...,n, n+ 1} and an unbounded domain D C C such that

|4 (2)] = expfar”™},

[4; (2)] <exp{pr’*}, jel{0,1,....,n,n+ 1}\{}}
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for all ze D, where a > B> 0 are real numbers. Then each nontrivial meromorphic
solution f(z) of (1.2) satisfies o(f) > o.

THEOREM 2.4 Suppose  that Az) = Bi(z)e”*(j=0,1,...,n), Ay11(2) = Byy1(2),

where B(z)(j=0,1,...,n,n+1) are meromorphic functions with order o(B) <1
(j=0,1,....n,n+1), q,:oq,e’g, a;>0, 0€[0,2n)(j=0,1,...,n). If there exists
le{0,1,...,n} such that o;>a=max{a; j#I, 0<j<n}, then each nontrivial

meromorphic solution f(z) of equation (1.2) satisfies o(f)> 1.

CoRrROLLARY 2.5 Suppose that Ai(z) = Pl(z)e“*(j=0,1,...,n), where P(z)(j=0,
1,...,n) are polynomials, aj:o(jem, a;>0, 0€[0,2n)(j=0,1,...,n). If there exists
1e{0, 1,...,n} such that ;> a=max{a; j#I, 0<j<n} and A, \(z) is an entire
Sfunction with the order o(A4,,1(z)) < 1, then each nontrivial entire solution f(z) of the
equation (1.2) satisfies o(f)>1.

In order to prove Theorems 2.3 and 2.4, we need the following lemmas.

Lemma 2.1[5, Lemma 1] Given ¢ > 0 and meromorphic function f(z), the Nevanlinna
characteristic function T(r,f) satisfies

I(r.fz+0) =+ )T+ lcl.f), Tr+lcl.f)=1A+e)T(r.[)
for all r > %, where ¢ is a complex number.

LemMma 2.2 [16, Lemma 2.1] Let g(z) be a meromorphic function of order
o(g)=pB < +oo. Then for any given & > 0, there exists a set EC[0,2m) that has
finite linear measure mkE, such that for all z satisfying arg z=¢ €[0,2n)\E and
lzZl=r>R > 1, we have

exp{—r} < |g(re?)| < exp{r’*).

LemMma 2.3 Suppose that H(z)=h(z)e®, where h(z) is a nonzero meromorphic
function with order o(h)y=a <1, a=de”, 6€[0,2n), d>0 a constant. Set
Ey={¢€[0,2m): cos(0+¢)=0}. Then for any given &0 < e < 1—«), there exists
a set E that has linear measure zero, if z =re?, ¢ €[0,2m)\(E\J Ey), we have r
sufficiently large,

(i) if cos(@+¢) > 0, then
exp{(1 — e)drcos(d + ¢)} < [H(re'?)| < exp{(1 + &)drcos(d + )},
(ii) if cos(@+¢) <0, then
exp{(1 + e)drcos(0 + @)} < |H(re”")| < exp{(1 — e)drcos(® + ¢)}.
Proof of Lemma 2.3 We can use the similar method used in [17] to prove it. Here,
we omit it.

Lemma 2.4 [9, Corollary 8.3] Let ny,n, be two arbitrary complex numbers, and let
f(2) be a meromorphic function of finite order o(f). Let € > 0 be given, then there exists
a subset E C R with finite logarithmic measure such that for all r ¢ EU[0, 1], we have
a(n-1+ey o fE+M) o(/)-1+¢

exp{ —r < [—/———| < exp(r .

pi b= K(Z +m2) p( )




Downloaded by [Zhi-Bo Huang] at 17:06 25 September 2013

Complex Variables and Elliptic Equations 1027

Proof of Theorem 2.3 Suppose that the conclusion does not hold, i.e., o(f)=p < 0.
By Lemma 2.1, we have o(f(z+)))=p < o for all j=0, 1,...,n.

By Lemma 2.2, for any given ¢(0 < 2¢ < o — p), there exists a set £ C [0, 27) that
has finite linear measure, such that for all z satisfying arg z=¢ €[0, 27)\E, and
|zl=r>R > 1, we have

exp{—r*} < | f(re? +))| < exp{r’*), j=0,1,....n. (2.6)

By assumption, we can choose a sequence of points {z; = rxe™} C D C C, where

0, €[0,2m)\E; and |zx|=r,> R > 1, riy— 400 as k — +oo,such that

|4; (re™)| > explar® ¢}, (2.7

|4; (ree™)| < exp{Bri® ), je{0,1,...,nn+ 1\{]}, (2.8)

where o > B > 0 are real numbers.
If /#£n+1, It follows from (1.2) and (2.6-2.8) that

expl{ar™ — 1"t} < |A; (ree™)| - | f (e 4+ 1)

= 2”: |A; (ree™®)| - | £ (riee™ + )] + | A1 (re™))|
j=0
#l
<+ 1)exp{Br®* + ey,
which implies that
exp{(a — A’ =2y <n+1

holds for all sufficiently large r,. This is a contradiction since 0 < 2e < 0 — p and
a>p>0.

If /I=n+1, we can use the same method to deduce a similar contradiction.

The proof of Theorem 2.3 is completed.

Proof of Theorem 2.4 Suppose that the conclusion does not hold, i.e., o(f)=p < 1.
Set

z=re?,  8(0,¢) =cos(0+¢), Eo={p:cos(0+¢)=0}, p= omax I{G(B_,')}.

Then Ej is a finite set and g < 1. Thus, for any ¢ €[0, 27)\ Ey, we have §(0, ¢) > 0 or
3(0,¢) < 0.

Here, we only prove the case §(6, ¢) > 0 and deduce a contradiction.

By Lemma 2.3, for any given

8(O<28< min{al_a,l—p,l—ﬁ}>,
o+ o

there exists a set E, that has linear measure zero, if z = re', ¢ € [0, 2m)\(Eo | E»), we
have r sufficiently large,

|4; (re?)| < exp{(1 + &)ard(@,¢)}, je{0,1,....n,n+ 1}\ {1}, (2.9)

|4 (re””)] = exp{(1 — &)oyrd (6, ¢)}. (2.10)
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Since we have assumed that o(f)=p <1, we also have o(f(z+1)) =
o(.ﬁ) =p<1. By Lemma 2.2, for any given & above, there exists a set
E5€]0,2m) that has finite linear measure mEs, such that for all z satisfying arg
z=¢€[0,2n)\E; and |z]=r> R > 1, we have

exp{—r""} < < exp{r’*}, (2.11)

1
‘f(ref«* T 1)‘
exp{—rPTf) < |4,41(re)| < exp{rP*¢}. (2.12)
It follows from (1.2), (2.9)~2.12) and Lemma 2.4 that, for any given

s(O <2< min{u,l —p 1 —,3})
o + o

and z = re®, ¢ € [0, 2m)\(Ey | E2 | E3), we have r sufficiently large,
exp{(1 — &)ord(0, §)} < |4, (re?)|

n i .
+3 14 ey L ED)

< [Ap1(re®)] - T

| f(re + 1)

/=0
J#

= CXp{rﬂ‘FS} . exp{yp+€} + nexp{(1 + &)ars(0, ¢)} - exp{rp—l-hv,}
< (n+ Dexp{(1 + &)ard(6, ¢p) + rPTe 4 rP+e),

which implies that
1
exp{z(oq —a)rd(0, ) — rPre — rp“} <n+1,
for all sufficiently large r. This is a contradiction since

0<2e< min{al —
o+

ayl_psl_lg}s
o

a; > «a and §(6, ¢) > 0.
The proof of Theorem 2.4 is completed.

Now, we consider the more general coefficients of (1.2).
Define

o= max {o(4)}, I={je{0.1,....n+1}:0(4)=0). (2.13)
0<j<n+1 ‘ ’

According to these notations, we obtain the following theorem.

THEOREM 2.6  Suppose that o >0 and that Aj(z) = B{(2)e“” for all jel, where
a;e C\{0}(jel) and Bfz)(jel) are meromorphic functions with finite order
o(B)) < o. If the constants afjel) are distinct, then each nontrivial meromorphic
solution f(z) of Equation (1.2) satisfies o(f)>o.

In order to prove Theorem 2.6, we need the following lemma.

LemMma 2.5 [4, p. 79-80] Let f(z)(j=1,2,...,n)(n=>2) be meromorphic functions,
gi(z)(j=1, 2,...,n) be entire functions, and satisfy

(1) X5 fi(2)es? = 0;



Downloaded by [Zhi-Bo Huang] at 17:06 25 September 2013

Complex Variables and Elliptic Equations 1029

(2) when 1<j < k<n, g{z) — gi(z) is not a constant;
(3) when 1<j<n, 1<h<k<n,

T(r.fj) = o{ T(r, e *)}(r — +o0,r £ E),

where EC (1, +00) is of finite linear measure or finite logarithmic measure. Then
[(0)=0j=1,2,...,n).

Proof of Theorem 2.6 'We suppose that o(f) < +o0o. Assume that the assertion does
not hold, i.e., every nontrivial solution f{(z) of Equation (1.2) satisfies o(f)=p < 0.
By Lemma 2.1, we have o(f(z+)))=o(f)=p <o forall j=0,1,2,...,n.

Now, we can rewrite Equation (1.2) the form

> Gi(z2)e"” + B(z) = 0. (2.14)

jel

In (2.14), if n+ 1€,
Gi(2) =B, fz+ ) Nn+1)).Gup1(2) = —Bus1, B) = Y A;(2) f(z +)).

JET
ifn+1¢1,

Gi(2) =B () f+))eD. BE) =) A4;)[E+))— Ani(2).
JET
By (2.13) and the assumption of Theorem 2.6 o(G,) <o and B(z) is a
meromorphic function with finite order o(B) < o.
It follows from Lemma 2.5 and (2.14) that G(z)=0, jel. This is impossible.
The proof of Theorem 2.3 is completed.

Now, we consider that the coefficients of Equation (1.2) are transcendental
meromorphic functions and obtain the following theorem.

THEOREM 2.7  Suppose that o =+o00 and that Ai(z) = Bj(z)eg/(z) for all je I, where
g{(z) are transcendental entire functions and Bfz)(jel) are meromorphic functions
with finite order. Moreover, suppose that g{z) — g{z) is transcendental entire function
foralli,je I, i#j. Then each nontrivial solution of Equation (1.2) satisfies o(f) = +o0.

Proof of Theorem 2.7 The proof is similar to the proof of Theorem 2.6. Here we
omit it.

Remark From Theorems 2.6 and 2.7, if the coefficients 4(z)(j=0, 1,...,n, n+1)
are entire functions, We can find that those coefficients have the maximum order o,
exactly one of its type is strictly greater than the others. So we obtain the following
theorem.

THEOREM 2.8 Suppose that the coefficients A(z)(j=0,1,....n, n+1) in (1.2) are
entire functions with finite order such that among those coefficients having the
maximum order o = maxo<j<,4+110(4;(2))}, exactly one has its type strictly greater
than the others. Then each nontrivial entire solution f(z) of (1.2) satisfies o(f)>o.
Moreover, if f(z) is an entire solution of (1.2) with finite order o(f) =0 and if | € I and
1(A;) > t=max{t(4)): je \{l}}, then ©(f) > 1(4;) — max{z(4)): je \{[}}.

In order to prove Theorem 2.8, we need the following lemmas.



Downloaded by [Zhi-Bo Huang] at 17:06 25 September 2013

1030 Z.-B. Huang et al.

LeEmMA 2.6 [18, Lemma 4] Let f(z) be an entire function of order o(f)=0 < +o0.

Then for any given € > 0, there is a set E C[1, +00) that has finite linear measure mk

and finite logarithmic measure ImE, such that for all z satisfying |z| =r [0, 1JU E,
exp{—r"""} < | f(2)] < exp{r"**}.

LemMA 2.7 Let f(z) be an entire function with the order o(f)=0(0 < o < +00) and

the type ©(f)=1t(0 < t <+00). Then for any given positive number B < t, there exists

a set E C[1, 400) that has infinite linear measure mE and infinite logarithmic measure
ImE, such that for all r € E,

log M(r,f) > pr°.

Remark 2.2 1In [19], Tu and Yi obtained the same result when 0 < t < +o00 and
EC[1, 400) that has infinite logarithmic measure. The main idea of the proof of
Lemma 2.7 comes from [19], but the details are somewhat different. For the
convenience, we give a complete proof.

Proof of Lemma 2.7 We prove the conclusion by considering the following two
cases.

Casel If0 <1< +4o00.

By the definition of type function, there exists an increasing sequences
{ra}(r, — +00, n— +00) satisfying (1 +1)r, < r,;; and

log M(r,,
lim 108 Mw.f) _

n—+400 4

Then for any given positive number 8 < t and for any given &(0 < ¢ < T — f), there
exists No € N such that for all n> N,, we have

log M(ry,f) > (t — &)rf. (2.15)

Since 0 < & < 7— B, we have 0 < % < 1. Thus, there exists N; € N such that for

all n> Ny, we have
n \° B
. 2.16
(n+1) g T—¢ (2.16)

It follows from (2.15) and (2.16) that for all n> N =max{N,, N;} and for all
r€[rn, (1 4+1)r,], we have

log M(r.f) > log M(r,,f) > (z — &) > (z — ) (n - ) SpT. 1)
Set
+00 1
E= Hv[r,,, (1 + Z)"”}
then
400 ¥
E=)Y 2= 2.1
mE="" - =400 (2.18)
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since

n . n . 1
lim | 7t! /r_ — fim 2o im (1 +-- & 1,
n—+oo| n + 1" n n—>+o0o 1, n-—+ 1 n—-+400 n n-+ 1

and

ImE = +Z /(H o ldt +Zoolog<l + ) (2.19)

Case 2 If 1=+400.

By the definition of type function, there exists an increasing sequence
{ru}(r,— +o00, n— +o00) satisfying (1 + %)rn < rps+1 such that

log M(ry,f) > Arf, (2.20)

for any given positive number 4 < 4o0.
For any given positive number 8 < A4, there exists N € N such that for all n > N,

we have
n\" B
L 2.21
(n—i— 1) ~ A @21)

By using the same method similar to case 1, we also can prove that (2.17)—(2.19)
hold.
Together with Case 1 and Case 2, the proof of Lemma 2.7 is completed.

Proof of Theorem 2.8 Suppose that the conclusion does not hold, i.e., o(f)=p < o,
then o(f +/) = o(;z) = p <o forall j=0,1,....n.

Since the coefticients of (1.2) have the maximum order o = maxg<j<n+1{0(4;(2))},
exactly one has its type strictly greater than the others, without loss of generality, we
can set /el and satisfies (4;) > t=max{t(4)): je \{/}}.

Define

B=max{o(4;):je{0,1,....,n,n+ 1}\I},

then B8 < o by (2.13).

By Lemma 2.6, for any given ¢(0 < 2¢ < min{o — p, o — B}), there exists a set
E4C[1, +00) that has finite linear measure and finite logarithmic measure , such that
for all z satisfying |z] =r €[0, 1]U E4, we have

<exp{r"™),  [fz+)) sexp{r”™), j=0,1....n, (2.22)

1
fz+1)
|4; (2)] < exp{r’*} <exp{r"™®}, je{0,1,...,n,n+ 1\L (2.23)

Let ay, oy be positive real numbers such that v < «; < o, < ©(4;). By Lemma 2.7
and the definition of type of an entire function, there exists a set E5C[1,+00) that
has infinite linear measure and infinite logarithmic measure , such that for all z
satisfying |z| =r € Es, we have

M(r, A;(2)) > exp{aar?}, (2.24)

M(r, A;(2)) < explair?},je I\{1}. (2.25)
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Thus, for all z satisfying |z| =r€ Es5\([0, 11U Ey), (2.22)—(2.25) hold. So there
exists a subsequence {r,: |z| =r,} € E5\([0, 1]U E,) such that |4,(z)| = M(r, A(z)) and

exp{(on — ) = 2"y <n+1,

whether /=n+1 or [#n+1.

Now we will show that 7(f) > t(4,) — t. Suppose that the conclusion does not
hold, i.e., 7(f) < ©(4) —t.

Since we suppose that f(z) is an entire solution of (1.2) with finite order o(f) =0,
we have o(f(z +/)) = o(;2) =0 < +oo forall j=0,1,....,n.

By Lemma 2.6, for any given &(0 < 4¢ < min{o — B, ©(A4;) — 1}), there exists a set
Eg C[1, +00) that has finite linear measure and finite logarithmic measure, such that
for all z satisfying |z] =r €[0, 1]U Eg, we have

1
‘m‘ < exp{r"”}, (226)

|4; (2)] < exp{rP*} <exp{r"™*}, je{0,1,...,n,n+ 1\L (2.27)

By Lemma 2.7 and the definition of type of an entire function, there exists a set
E; C[1, 4o00) that has infinite linear measure and infinite logarithmic measure, such
that for all z satisfying |z| =r € E;, we have

M(r, A;(2)) > exp{(z(4;) — &)r’}, (2.28)
M(r.f(z+))) = exp{(z(/) + &)’} j=0,1,....n, (2.29)
M(r, 4;(2)) < exp{(t+ &)}, jel\{l}. (2.30)

Thus, for all z satisfying |z| =r€ E;\([0, 11U Ej), (2.26)—(2.30) hold. So there
exists a subsequence {r,: |z| =r,} € E;\([0, 1]U Ej) such that |A,z)| = M(r, A(z)) and
exp{(t(A)) — 7 — 26)° — (x(f) + ey — 1)
<exp{(t(4;) — 7= 2e)r" — (z(f) + &)’} =n+1,

whether /=n+1 or [#n+1.
This is a contradiction. The proof of Theorem 2.8 is completed.

3. The deficiency and fixed points of the solutions of the difference equations

We first briefly recall some of the basic definition of Nevanlinna theory. We refer to
[9,13] for a comprehensive description of the value distribution theory. Denote the

Nevanlinna deficiency of a by
N(r, L
i .. m(r,a) . ( ’ f—a)
3(a,f) = liminf =1—-limsup———*
@D =870 i T0f)

for a non-constant meromorphic function f{z) and for all a € C:=CuU {oo}.
Let f(z) be meromorphic function. Set g(z) =f{(z) — z, then z is a fixed point of f{z)
if and only if g(z)=0.
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In [6,7], Bergweiler et al. considered the zeros and fixed points of differences of
meromorphic functions. Here, we consider the deficiency and the fixed points of
solutions of difference equations (1.1) and (1.2).

In [3], Lanie considered the differential equation and obtained the following
Theorem.

Tuaeorem 3.1 [3, Theorem 4.3] Let f(z) be an admissible meromorphic solution of
equation

an(2)f @) + a1 f V@) 4+ a(2) () =0, an(Dan(z) #0, (3.1)
where T(r, a)) = S(r.f) for all j=0,1,...,n. Then
3, f)=0
for all a#0, oco. Especially this is true for transcendental solutions of (3.1) with
polynomial coefficients.

If we consider the difference equation (1.1), by using the similar method as
Theorem 3.1, we also obtain the similar result as follows.

THEOREM 3.2 Let f(z) be a finite-order meromorphic solution of Equation (1.1),
where the entire coefficients A(z)(j=0,1,...,n) are small functions relative to f(z).

(1) If a(z) is a small meromorphic function relative to f(z) and satisfies

Y Ai@az+)) #0, (3.2
J=0
we obtain
8(a(2),f) = 0.
(2) If a(z) =z is a small function relative to f(z) and satisfies
Y 4@ +)) 20, (3.3)
j=0

we obtain that f(z) has infinitely many fixed points and satisfies M(f(z) — z) = o(f).

CoRrOLLARY 3.3 Suppose that the coefficients A(z)(j=0,1,...,n) in (1.1) are entire
functions with finite order such that among those coefficients having the maximum
order 0 = maxo<j<u{0(4;)}, exactly one has its type strictly greater than the others. Let
f(2) be a finite order meromorphic solution of Equation (1.1).

(1) If a(z) is a meromorphic function with finite order <o+ 1 and satisfies

Y 4j(2az +j) £ 0,
=0
we obtain
8(a(2),f) = 0.
(2) If a(z) =z and satisfies
D A=)z +)) 20,
=0

we obtain that f(z) has infinitely many fixed points and satisfies M(f(z) — z) = o(f).
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Now, we will consider the fixed point of the solutions of the more general
equations (1.2), and obtain the following theorems.

THEOREM 3.4 Suppose that o >0 and that Aj(z) = Bi(2)e“” for all jel, where
a;e C\{0}(j € 1) and B{(z)(j € I) are meromorphic functions with finite order o(B)) < o.
If the constants afjel) are distinct, then every nontrivial finite-order meromorphic
solution f(z) of Equation (1.2) has infinitely many fixed points and satisfies

Mfz) —z)=0(f)zo0.

Proof By using Theorem 2.6, we obtain that every nontrivial solution f{(z) of
Equation (1.2) satisfies o(f) > o. Now we suppose that the assertion does not hold,
i.e., AMf(z) —z) < o(f) < oo. This shows that there exists a positive integer k(>o0) such
that o(f(z) — z) = o(f) = k. Thus we can rewrite f(z) — z the form

f(2) =z = P(z)ef, (3.4)
where $ is a nonzero constant and P(z) is a meromorphic function with
o(P) < max{r(f(z) —z),k— 1} < k.
From (3.4), we have

fe+))=z4j+ PE+))0; ()", (3.5)

where

0,(2) = exp{BCL" 4+ BCI 2P 4+ 4 ), 0(Q)=k—1, j=1,...,n.
By (1.2), (3.4) and (3.5), we obtain

> PG+ )0 (DA (2 + D (2 +))4;1(2) = A (2). (3.6)
j=0 Jj=0

Together with (2.13) and 4,(z) = Bj(z)e*" for all je I, if n+1€1, (3.6) can be
rewritten in the form

> PEHNQ@B @+ S 4B @ = B

jeNn+1) jeNn+1}
+ (Z P(z +))0; (2)4; (z)) P+ +)4;(2) =0, (3.7)
JET JET

if n4+1¢1, (3.6) can be rewritten in the form

> PG +)01 (2B ()% 3 (2 + /) By (2)e

jel jel

+ (Z P(z +)Q;(2)4; (z)) o + (Z(z +)A4;(2) — An+1(z)> =0. (3.8)

JET JEI



Downloaded by [Zhi-Bo Huang] at 17:06 25 September 2013

Complex Variables and Elliptic Equations 1035

By the above assumptions, we find that (3.7) and (3.8) satisfy the conditions of
Lemma 2.5 respectively. Hence, we obtain

P(z+))Q;(2)B;(2) = 0,j € \{n + 1}.
This is a contradiction. The proof of Theorem 3.4 is completed.

THEOREM 3.5 Suppose that the coefficients Afz)(j=0,1,...,n,n+1) in (1.2) are
entire functions with finite order such that among those coefficients having the
maximum order o = maxXo<j<,+110(4;(2))}, exactly one has its type strictly greater
than the others. Then every nontrivial finite-order meromorphic solution f(z) of
Equation (1.2) has infinitely many fixed points and satisfies M(f(z) —z)=o(f) > 0.

The remaining part of this section is devoted to show that the result of
Theorem 3.2(2) is the best possible in certain senses.

Example 3.1 f(z)=e¢"+1 is a solution of the equation
EHDfC+)—(+ D@+ D) fz+ 1) +ez+1)f(2) =0. (3.9)
Obviously, the coefficients of Equation (3.9) are small functions relative to f{z), and
EH+DE+)—(+ D@+ D+ D+e@+Dz=(1—e) (> +1)£0,

also satisfies (3.3). Here, f(z) =¢“+ 1 has infinitely many fixed points and satisfies

Mf(z)—2)=0o(f)=1.

The following example shows that the condition (3.3) cannot be omitted.

Example 3.2 f(z)=¢"—z and f(z) = ¢" + z both are the solutions of the equation

[(e—Dz—=11fz+2) —[(¢" = Dz =2lf(z+ 1)+ [(¢* — e)z + (¢* — 2)] f(2) = 0.
(3.10)

Obviously, the coefficients of Equation (3.10) are small functions relative to f{z). But
[(e—Dz—1]z+2) = [(&® — Dz =2]z+ 1)+ [(e* — &)z + (¢* — 2¢)]z = 0.

Thus, it does not satisfy the condition (3.3). In this case, f(z) = ¢ — z has infinitely
many fixed points and satisfies A(f(z) —z) =o(f) =1, but f(z)=¢"+ z has no fixed
point.
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