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We consider 𝑞𝑞-difference Riccati equations and second-order linear 𝑞𝑞-difference equations in the complex plane. We present
some basic properties, such as the transformations between these two equations, the representations and the value distribution
of meromorphic solutions of 𝑞𝑞-difference Riccati equations, and the 𝑞𝑞-Casorati determinant of meromorphic solutions of second-
order linear 𝑞𝑞-difference equations. In particular, we �nd that the meromorphic solutions of these two equations are concerned
with the 𝑞𝑞-Gamma function when 𝑞𝑞 𝑞 𝑞 such that 0 < |𝑞𝑞𝑞𝑞  𝑞. Some examples are also listed to illustrate our results.

1. Introduction andMain Results

In this paper, a meromorphic function means meromorphic
in the whole complex plane ℂ, unless stated otherwise. We
also assume that the reader is familiar with the standard
symbols and fundamental results such as 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚,
and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 , of Nevanlinna theory, see, for example, [1, 2],
for a given meromorphic function 𝑓𝑓𝑓𝑓𝑓𝑓. A meromorphic
function 𝑎𝑎𝑎𝑎𝑎𝑎 is said to be a small function relative to 𝑓𝑓𝑓𝑓𝑓𝑓 if
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 , where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  is used to denote any quantity
satisfying 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆 as 𝑟𝑟 𝑟 𝑟, possibly outside
of a set of �nite logarithmic measure, furthermore, possibly
outside of a set 𝐸𝐸 of logarithmic density logdens(𝐸𝐸𝐸𝐸
lim𝑟𝑟𝑟𝑟 ∫[1,𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑 𝑑𝑑𝑑𝑑  . For a small function 𝑎𝑎𝑎𝑎𝑎𝑎
relative to 𝑓𝑓𝑓𝑓𝑓𝑓, we de�ne

𝛿𝛿 󶀡󶀡𝑎𝑎𝑎𝑎𝑎 󶀱󶀱= lim
𝑟𝑟𝑟𝑟

𝑚𝑚 󶀡󶀡𝑟𝑟𝑟𝑟𝑟  󶀡󶀡𝑓𝑓 𝑓 𝑓𝑓󶀱󶀱󶀱󶀱
𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱

=1− lim
𝑟𝑟𝑟𝑟

𝑁𝑁󶀡󶀡𝑟𝑟𝑟𝑟𝑟  󶀡󶀡𝑓𝑓 𝑓 𝑓𝑓󶀱󶀱󶀱󶀱
𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱

.

(1)

Recently, Ishizaki [3] considered difference Riccati equa-
tion

Δ𝑓𝑓 (𝑧𝑧) +
𝑓𝑓(𝑧𝑧)2 + 𝐴𝐴 (𝑧𝑧)
𝑓𝑓 (𝑧𝑧) −1

= 0, (2)

and second-order linear difference equation

Δ2𝑦𝑦 (𝑧𝑧) + 𝐴𝐴 (𝑧𝑧) 𝑦𝑦 (𝑧𝑧) = 0, (3)

where 𝐴𝐴𝐴𝐴𝐴𝐴 is meromorphic function, and gave surveys of
basic properties of (2) and (3), which are analogues in the
differential cases.

Now, we are concernedwith 𝑞𝑞-difference Riccati equation

𝑔𝑔 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 =−
𝑎𝑎1 (𝑧𝑧) 𝑔𝑔 (𝑧𝑧) + 𝑎𝑎0 (𝑧𝑧)

𝑔𝑔 (𝑧𝑧)
, (4)

and second-order linear 𝑞𝑞-difference equation

𝑓𝑓 󶀢󶀢𝑞𝑞2𝑧𝑧󶀲󶀲 + 𝑎𝑎1 (𝑧𝑧) 𝑓𝑓 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 + 𝑎𝑎0 (𝑧𝑧) 𝑓𝑓 (𝑧𝑧) = 0, (5)

where 𝑞𝑞 𝑞 𝑞 𝑞 𝑞𝑞𝑞, |𝑞𝑞𝑞 𝑞 𝑞, 𝑎𝑎1(𝑧𝑧𝑧 and 𝑎𝑎0(𝑧𝑧𝑧 ̸≡ 0 are ratio-
nal functions and will obtain some parallel results for 𝑞𝑞-
difference case. For a meromorphic function ℎ(𝑧𝑧𝑧, the 𝑞𝑞-
difference operator Δ𝑞𝑞 is de�ned by Δ𝑞𝑞ℎ(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧    .

is paper is organized as follows. In Section 2, we
describe the transformation between 𝑞𝑞-difference Riccati
equation (4) and second-order linear 𝑞𝑞-difference equation
(5). In Section 3, we present some properties of 𝑞𝑞-difference
Riccati equation (4), such as 𝑞𝑞-difference analogue on the
property of a cross ratio for four distinct meromorphic
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solutions of a differential Riccati equation, the meromorphic
solutions concerning with 𝑞𝑞-Gamma function. In Section 4,
we study the value distribution of transcendental meromor-
phic solutions of 𝑞𝑞-difference Riccati equation (4) and the
form of meromorphic solutions of second-order linear 𝑞𝑞-
difference equation (5). In Section 5,we discuss the properties
on the 𝑞𝑞-Casorati determinant of meromorphic solutions of
second-order linear 𝑞𝑞-difference equation (5).

2. Transformations between 𝑞𝑞-Difference
Riccati Equations and Linear 𝑞𝑞-Difference
Equations of Second-Order

It is well known that a differential Riccati equation

𝑤𝑤′ (𝑧𝑧) + 𝑤𝑤(𝑧𝑧)2 + 𝐴𝐴 (𝑧𝑧) = 0 (6)

and second-order linear differential equation

𝑢𝑢′′ (𝑧𝑧) + 𝐴𝐴 (𝑧𝑧) 𝑢𝑢 (𝑧𝑧) = 0 (7)

are closely related by the transformation

𝑤𝑤 (𝑧𝑧) = −
𝑢𝑢′ (𝑧𝑧)
𝑢𝑢 (𝑧𝑧)

, (8)

where 𝐴𝐴𝐴𝐴𝐴𝐴 is a meromorphic function, see, for example, [4,
pages 103–106].

Ishizaki [3] considered a difference analogue of (6) and
(7) and obtained that difference Riccati equation (2) and
second-order linear difference equation (3) are closely linked
by the transformation

𝑓𝑓 (𝑧𝑧) = −
Δ𝑦𝑦 (𝑧𝑧)
𝑦𝑦 (𝑧𝑧)

, (9)

where 𝐴𝐴𝐴𝐴𝐴𝐴 is a meromorphic function.
Here, we are concerned with a transformation between

(4) and (5), see [5]. For a nontrivial meromorphic solution
𝑓𝑓𝑓𝑓𝑓𝑓 of (5), we take

𝑔𝑔 (𝑧𝑧) =
𝑓𝑓 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
𝑓𝑓 (𝑧𝑧)

. (10)

en 𝑔𝑔𝑔𝑔𝑔𝑔 satis�es 𝑞𝑞-difference Riccati equation (4). In fact,
we deduce from (5) that

𝑓𝑓 󶀢󶀢𝑞𝑞2𝑧𝑧󶀲󶀲
𝑓𝑓 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

+ 𝑎𝑎1 (𝑧𝑧) + 𝑎𝑎0 (𝑧𝑧)
𝑓𝑓 (𝑧𝑧)
𝑓𝑓 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

= 0, (11)

which implies the desired form of (4).
Conversely, if (4) admits a nontrivial meromorphic solu-

tion 𝑔𝑔𝑔𝑔𝑔𝑔, then meromorphic function 𝑓𝑓𝑓𝑓𝑓𝑓 of �rst-order 𝑞𝑞-
difference equation (10) satis�es (5). In fact, we conclude
from (4) and (10) that

𝑓𝑓 󶀢󶀢𝑞𝑞2𝑧𝑧󶀲󶀲 = 𝑔𝑔 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑓𝑓 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 = 󶀥󶀥−
𝑎𝑎1 (𝑧𝑧) 𝑔𝑔 (𝑧𝑧) + 𝑎𝑎0 (𝑧𝑧)

𝑔𝑔 (𝑧𝑧)
󶀵󶀵𝑓𝑓 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

= −𝑎𝑎1 (𝑧𝑧) 𝑓𝑓 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 − 𝑎𝑎0 (𝑧𝑧) 𝑓𝑓 (𝑧𝑧) ,
(12)

which implies (5).

Example 1. Suppose that 𝑞𝑞 𝑞 𝑞 𝑞 𝑞𝑞𝑞 and |𝑞𝑞𝑞 𝑞 𝑞. Let 𝑎𝑎0(𝑧𝑧𝑧𝑧
(𝑞𝑞2𝑧𝑧2 − (𝑞𝑞2 − 2𝑞𝑞 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞   𝑞𝑞𝑞𝑞𝑞𝑞  2) and 𝑎𝑎1(𝑧𝑧𝑧𝑧𝑧𝑧𝑧  𝑧𝑧 𝑧𝑧𝑧 .
en 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔       and 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓     satisfy
𝑞𝑞-difference Riccati equation (4) and second-order linear 𝑞𝑞-
difference equation (5), respectively, which both satisfy the
transformation (10).

3. Representations of Solutions of 𝑞𝑞-Difference
Riccati Equations

e representations on meromorphic solutions of Riccati
equations are interesting. Bank et al. [6, pages 371–373]
obtained that differential Riccati equation (6) possesses a one
parameter family ofmeromorphic solutions (𝑓𝑓𝑐𝑐)𝑐𝑐𝑐𝑐 if (6) has
three distinctmeromorphic solutions 𝛼𝛼1(𝑧𝑧𝑧𝑧𝑧𝑧 2(𝑧𝑧𝑧, and 𝛼𝛼3(𝑧𝑧𝑧.
Ishizaki extended this property to difference Riccati equation
(2) and obtained a difference analogue of this property, see
[3, Proposition 2.1]. Now, we present this property for 𝑞𝑞-
difference case below, which can also be seen as a 𝑞𝑞-difference
analogue of the fact that a cross ratio for four distinct
meromorphic solutions of a differential Riccati equation is a
constant, see, for example, [4, pages 108-109]. Furthermore,
we �nd that meromorphic solutions of 𝑞𝑞-difference Riccati
equations (4) are concernedwith 𝑞𝑞- Gamma function if 𝑞𝑞 𝑞 𝑞
such that 0 < |𝑞𝑞𝑞𝑞𝑞  .

eorem2. Suppose that (4) possesses three distinctmeromor-
phic solutions 𝑔𝑔1(𝑧𝑧𝑧𝑧𝑧𝑧 2(𝑧𝑧𝑧, and 𝑔𝑔3(𝑧𝑧𝑧. en any meromorphic
solution 𝑔𝑔𝑔𝑔𝑔𝑔 of (4) can be represented by

𝑔𝑔 (𝑧𝑧) = 󶀡󶀡𝑔𝑔1 (𝑧𝑧) 𝑔𝑔2 (𝑧𝑧) − 𝑔𝑔2 (𝑧𝑧) 𝑔𝑔3 (𝑧𝑧) − 𝑔𝑔1 (𝑧𝑧) 𝑔𝑔2 (𝑧𝑧) 𝜙𝜙 (𝑧𝑧)

+𝑔𝑔1 (𝑧𝑧) 𝑔𝑔3 (𝑧𝑧) 𝜙𝜙 (𝑧𝑧)󶀱󶀱

× 󶀡󶀡𝑔𝑔1 (𝑧𝑧) − 𝑔𝑔3 (𝑧𝑧) − 𝑔𝑔2 (𝑧𝑧) 𝜙𝜙 (𝑧𝑧) + 𝑔𝑔3 (𝑧𝑧) 𝜙𝜙 (𝑧𝑧)󶀱󶀱
−1,
(13)

where 𝜙𝜙𝜙𝜙𝜙𝜙 is a meromorphic function satisfying 𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙  𝜙𝜙𝜙𝜙𝜙𝜙.
Conversely, if for any meromorphic function 𝜙𝜙𝜙𝜙𝜙𝜙 satisfying
𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙  𝜙𝜙𝜙𝜙𝜙𝜙, we de�ne a function 𝑔𝑔𝑔𝑔𝑔𝑔 by (13), then 𝑔𝑔𝑔𝑔𝑔𝑔
is a meromorphic solution of (4).

Proof of eorem 2. Let ℎ𝑗𝑗(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧      𝑧 be distinct mero-
morphic functions. We denote a cross ratio of ℎ𝑗𝑗(𝑧𝑧𝑧𝑧𝑧𝑧𝑧 
1, 2, 3, 4 by

𝑅𝑅 󶀡󶀡ℎ1, ℎ2, ℎ3, ℎ4; 𝑧𝑧󶀱󶀱 =
ℎ1 (𝑧𝑧) − ℎ3 (𝑧𝑧)
ℎ1 (𝑧𝑧) − ℎ4 (𝑧𝑧)

∶
ℎ2 (𝑧𝑧) − ℎ3 (𝑧𝑧)
ℎ2 (𝑧𝑧) − ℎ4 (𝑧𝑧)

.

(14)

Suppose that 𝑔𝑔𝑔𝑔𝑔𝑔 is meromorphic solution of (4) and is also
distinct from 𝑔𝑔1(𝑧𝑧𝑧𝑧𝑧𝑧 2(𝑧𝑧𝑧, and 𝑔𝑔3(𝑧𝑧𝑧. We �rst show that 𝑔𝑔𝑔𝑔𝑔𝑔
is ameromorphic solution of 𝑞𝑞-differenceRiccati equation (4)
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if and only if 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅𝑅, where 𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔𝑔 𝑔𝑔𝑔.
In fact, we conclude from (4) that

𝑅𝑅 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 =
𝑔𝑔1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 − 𝑔𝑔3 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
𝑔𝑔1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 − 𝑔𝑔 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

∶
𝑔𝑔2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 − 𝑔𝑔3 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
𝑔𝑔2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 − 𝑔𝑔 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

=
𝑎𝑎0 (𝑧𝑧) 󶀡󶀡𝑔𝑔1 (𝑧𝑧) − 𝑔𝑔3 (𝑧𝑧)󶀱󶀱 /𝑔𝑔1 (𝑧𝑧) 𝑔𝑔3 (𝑧𝑧)
𝑎𝑎0 (𝑧𝑧) 󶀡󶀡𝑔𝑔1 (𝑧𝑧) − 𝑔𝑔 (𝑧𝑧)󶀱󶀱 /𝑔𝑔1 (𝑧𝑧) 𝑔𝑔 (𝑧𝑧)

∶
𝑎𝑎0 (𝑧𝑧) 󶀡󶀡𝑔𝑔2 (𝑧𝑧) − 𝑔𝑔3 (𝑧𝑧)󶀱󶀱 /𝑔𝑔2 (𝑧𝑧) 𝑔𝑔3 (𝑧𝑧)
𝑎𝑎0 (𝑧𝑧) 󶀡󶀡𝑔𝑔2 (𝑧𝑧) − 𝑔𝑔 (𝑧𝑧)󶀱󶀱 /𝑔𝑔2 (𝑧𝑧) 𝑔𝑔 (𝑧𝑧)

=
𝑔𝑔1 (𝑧𝑧) − 𝑔𝑔3 (𝑧𝑧)
𝑔𝑔1 (𝑧𝑧) − 𝑔𝑔 (𝑧𝑧)

∶
𝑔𝑔2 (𝑧𝑧) − 𝑔𝑔3 (𝑧𝑧)
𝑔𝑔2 (𝑧𝑧) − 𝑔𝑔 (𝑧𝑧)

= 𝑅𝑅 (𝑧𝑧) .

(15)

Conversely, if 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅𝑅, then

𝑎𝑎0 (𝑧𝑧) 󶀡󶀡𝑔𝑔1 (𝑧𝑧) − 𝑔𝑔3 (𝑧𝑧)󶀱󶀱 /𝑔𝑔1 (𝑧𝑧) 𝑔𝑔3 (𝑧𝑧)
− 󶀡󶀡𝑎𝑎1 (𝑧𝑧) 𝑔𝑔 (𝑧𝑧) + 𝑎𝑎0 (𝑧𝑧) /𝑔𝑔 (𝑧𝑧)󶀱󶀱 − 𝑔𝑔 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

∶
𝑎𝑎0 (𝑧𝑧) 󶀡󶀡𝑔𝑔2 (𝑧𝑧) − 𝑔𝑔3 (𝑧𝑧)󶀱󶀱 /𝑔𝑔2 (𝑧𝑧) 𝑔𝑔3 (𝑧𝑧)
− 󶀡󶀡𝑎𝑎2 (𝑧𝑧) 𝑔𝑔 (𝑧𝑧) + 𝑎𝑎0 (𝑧𝑧) /𝑔𝑔 (𝑧𝑧)󶀱󶀱 − 𝑔𝑔 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

=
𝑔𝑔1 (𝑧𝑧) − 𝑔𝑔3 (𝑧𝑧)
𝑔𝑔1 (𝑧𝑧) − 𝑔𝑔 (𝑧𝑧)

∶
𝑔𝑔2 (𝑧𝑧) − 𝑔𝑔3 (𝑧𝑧)
𝑔𝑔2 (𝑧𝑧) − 𝑔𝑔 (𝑧𝑧)

.

(16)

We conclude from (16) that 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  1(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧  0(𝑧𝑧𝑧𝑧𝑧
𝑔𝑔𝑔𝑔𝑔𝑔, which shows that 𝑔𝑔𝑔𝑔𝑔𝑔 satis�es (4).

us, for any meromorphic function 𝜙𝜙𝜙𝜙𝜙𝜙 satisfying
𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙  𝜙𝜙𝜙𝜙𝜙𝜙, we de�ne 𝑔𝑔𝑔𝑔𝑔𝑔 by

𝑅𝑅 󶀡󶀡𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔𝑔 𝑔𝑔󶀱󶀱 = 𝜙𝜙 (𝑧𝑧) . (17)

en 𝑔𝑔𝑔𝑔𝑔𝑔 is represented by (13), and also satis�es 𝑞𝑞-
difference Riccati equation (4). e proof of eorem 2 is
completed.

Now, we recall some results of transcendental meromor-
phic solutions concerned with 𝑞𝑞-difference Riccati equation
(4). Bergweiler et al. [7, 8] pointed out that all transcendental
meromorphic solutions of (5) satisfy 𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇  𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇2) if
𝑞𝑞 𝑞 𝑞 and 0 < |𝑞𝑞𝑞𝑞𝑞  . Since (10) is a transformation between
(4) and (5), we obtain that all transcendental meromorphic
solutions of (4) are of order zero if 𝑞𝑞 𝑞 𝑞 and 0 < |𝑞𝑞𝑞𝑞𝑞  .
On the other hand, if 𝑔𝑔𝑔𝑔𝑔𝑔 is a transcendental meromorphic
solution of

𝑔𝑔 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 = 𝑅𝑅 󶀡󶀡𝑧𝑧𝑧𝑧𝑧  (𝑧𝑧)󶀱󶀱 , (18)

where 𝑞𝑞 𝑞 𝑞𝑞𝑞𝑞𝑞𝑞  𝑞 𝑞 and the coefficients of 𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅
are small functions relative to 𝑔𝑔𝑔𝑔𝑔𝑔, Gundersen et al. [9]
showed that the order of growth of (18) is equal to
log deg𝑔𝑔(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  𝑅𝑅𝑅, where deg𝑔𝑔(𝑅𝑅𝑅 is the degree of irre-
ducible rational function 𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅 in 𝑔𝑔𝑔𝑔𝑔𝑔. us, from the
above two cases, we obtain that all transcendental meromor-
phic solutions of (4) are of order zero for all 𝑞𝑞 𝑞 𝑞 𝑞 𝑞𝑞𝑞 and
|𝑞𝑞𝑞 𝑞 𝑞.

We also illustrate some of the results on 𝑞𝑞-difference
equations, which are explicitly solvable in terms of known
zero-order meromorphic functions (see [5]). Let 𝑞𝑞 𝑞 𝑞 be

such that 0 < |𝑞𝑞𝑞𝑞𝑞  . en 𝑞𝑞-Gamma function Γ𝑞𝑞(𝑥𝑥𝑥 is
de�ned by

Γ𝑞𝑞 (𝑥𝑥) ∶=
󶀡󶀡𝑞𝑞𝑞𝑞𝑞 󶀱󶀱∞
󶀡󶀡𝑞𝑞𝑥𝑥;𝑞𝑞 󶀱󶀱∞

󶀡󶀡1 − 𝑞𝑞󶀱󶀱1−𝑥𝑥, (19)

where (𝑎𝑎𝑎𝑎𝑎𝑎 ∞ = ∏∞
𝑘𝑘𝑘𝑘(1 − 𝑎𝑎𝑎𝑎

𝑘𝑘). It is a meromorphic function
with poles at 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  , where 𝑘𝑘 and 𝑛𝑛 are
nonnegative integers, see [10]. By de�ning

𝛾𝛾𝑞𝑞 (𝑧𝑧) ∶= 󶀡󶀡1 − 𝑞𝑞󶀱󶀱
𝑥𝑥𝑥𝑥Γ𝑞𝑞 (𝑥𝑥) , 𝑧𝑧𝑧𝑧𝑧  𝑥𝑥, (20)

and 𝛾𝛾𝑞𝑞(0) ∶=(𝑞𝑞𝑞𝑞𝑞𝑞  ∞, we see that 𝛾𝛾𝑞𝑞(𝑧𝑧𝑧 is a meromorphic
function of zero-order with no zeros, having its poles at
{𝑞𝑞𝑘𝑘}

∞
𝑘𝑘𝑘𝑘.
erefore, the �rst-order linear 𝑞𝑞-difference equation

ℎ 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 = (1 − 𝑧𝑧) ℎ (𝑧𝑧) (21)

is solved by the function 𝛾𝛾𝑞𝑞(𝑧𝑧𝑧. �oreover, for general �rst-
order linear 𝑞𝑞-difference equation,

ℎ 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 = 𝑎𝑎 (𝑧𝑧) ℎ (𝑧𝑧) , (22)

where 𝑎𝑎𝑎𝑎𝑎𝑎 is a rational function. If 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎 is a constant, (22)
is solvable in terms of rational functions if and only if log𝑞𝑞𝑎𝑎
is an integer. If 𝑎𝑎𝑎𝑎𝑎𝑎 is nonconstant, let 𝛼𝛼𝑖𝑖, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖   𝑖 𝑖𝑖𝑖  and
𝛽𝛽𝑗𝑗, 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗   𝑗𝑗 be the zeros and poles of 𝑎𝑎𝑎𝑎𝑎𝑎, respectively,
repeated according to their multiplicities. en 𝑎𝑎𝑎𝑎𝑎𝑎 can be
written in the form

𝑎𝑎 (𝑧𝑧) =
𝑐𝑐 󶀡󶀡1 − 𝑧𝑧𝑧𝑧𝑧1󶀱󶀱 󶀱󶀱1 − 𝑧𝑧𝑧𝑧𝑧2󶀱󶀱⋯ 󶀡󶀡1 − 𝑧𝑧𝑧𝑧𝑧𝑛𝑛󶀱󶀱
󶀡󶀡1 − 𝑧𝑧𝑧𝑧𝑧1󶀱󶀱 󶀱󶀱1 − 𝑧𝑧𝑧𝑧𝑧2󶀱󶀱⋯ 󶀡󶀡1 − 𝑧𝑧𝑧𝑧𝑧𝑚𝑚󶀱󶀱

, (23)

where 𝑐𝑐 𝑐𝑐  is a complex number depending on 𝑎𝑎𝑎𝑎𝑎𝑎. So, (22)
is solved by

ℎ (𝑧𝑧) =𝑧𝑧 log𝑞𝑞𝑐𝑐
𝛾𝛾𝑞𝑞 󶀡󶀡𝑧𝑧𝑧𝑧𝑧1󶀱󶀱 𝛾𝛾𝑞𝑞 󶀡󶀡𝑧𝑧𝑧𝑧𝑧2󶀱󶀱⋯𝛾𝛾𝑞𝑞 󶀡󶀡𝑧𝑧𝑧𝑧𝑧𝑛𝑛󶀱󶀱
𝛾𝛾𝑞𝑞 󶀡󶀡𝑧𝑧𝑧𝑧𝑧1󶀱󶀱 𝛾𝛾𝑞𝑞 󶀡󶀡𝑧𝑧𝑧𝑧𝑧2󶀱󶀱⋯𝛾𝛾𝑞𝑞 󶀡󶀡𝑧𝑧𝑧𝑧𝑧𝑚𝑚󶀱󶀱

, (24)

which is meromorphic if and only if log𝑞𝑞𝑐𝑐 is an integer.
Now, let 𝑐𝑐1(𝑧𝑧𝑧 and 𝑐𝑐2(𝑧𝑧𝑧 be two distinct rational solutions

of the differential Riccati equation (6). If there exists a
rational solution 𝑐𝑐3(𝑧𝑧𝑧 distinct from 𝑐𝑐𝑗𝑗(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧    , then
all meromorphic solutions of (6) are rational solutions. If
there exists a transcendental meromorphic solution 𝑤𝑤𝑤𝑤𝑤𝑤,
then there is no rational solution other than 𝑐𝑐𝑗𝑗(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧    ,
see, for example, [6, pages 393-394]. For difference Riccati
equation (2), Ishizaki obtained a difference analogue, see [3,
Proposition 2.2]. In the following, we give a 𝑞𝑞-difference case
for 𝑞𝑞-difference Riccati equation (4).

eorem 3. Let 𝑞𝑞 𝑞 𝑞 be such that 0 < |𝑞𝑞𝑞𝑞𝑞  . Suppose that
𝑞𝑞-difference Riccati equation (4) possesses two distinct rational
solutions 𝑔𝑔1(𝑧𝑧𝑧 and 𝑔𝑔2(𝑧𝑧𝑧. en there exists a meromorphic
solution 𝑔𝑔3(𝑧𝑧𝑧 distinct from 𝑔𝑔1(𝑧𝑧𝑧 and 𝑔𝑔2(𝑧𝑧𝑧 so that any
meromorphic solution 𝑔𝑔𝑔𝑔𝑔𝑔 of (4) is represented in the form
(13).
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Proof of eorem 3. Since 𝑔𝑔1(𝑧𝑧𝑧 and 𝑔𝑔2(𝑧𝑧𝑧 are two distinct
rational solutions of (4), we de�ne a translation

𝑔𝑔 (𝑧𝑧) =
𝑔𝑔1 (𝑧𝑧) ℎ (𝑧𝑧) + 𝑔𝑔2 (𝑧𝑧)

ℎ (𝑧𝑧) + 1
. (25)

en 𝜎𝜎𝜎𝜎𝜎𝜎  𝜎𝜎𝜎𝜎𝜎𝜎𝜎  𝜎. Substituting (25) into (4), we conclude
that

ℎ 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 =
𝑔𝑔1 (𝑧𝑧)
𝑔𝑔2 (𝑧𝑧)

ℎ (𝑧𝑧) , (26)

which is type of (22). So, ℎ(𝑧𝑧𝑧 is a meromorphic solution of
(26) as in the form (24).erefore, we conclude from (25) that
𝑔𝑔3(𝑧𝑧𝑧 is ameromorphic solution of (4), which is distinct from
𝑔𝑔1(𝑧𝑧𝑧 and 𝑔𝑔2(𝑧𝑧𝑧. So, we now deduce fromeorem 2 that any
meromorphic solution of (4) is represented in the form (13).
e proof of eorem 3 is completed.

Example 4. Let 𝑞𝑞 𝑞 𝑞𝑞𝑞𝑞𝑞𝑞, 𝑎𝑎1(𝑧𝑧𝑧 𝑧𝑧 𝑧𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑧𝑧 𝑧 and
𝑎𝑎0(𝑧𝑧𝑧 𝑧𝑧 𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧𝑧𝑧 𝑧𝑧 𝑧 in (4) and (5). en functions

𝑔𝑔1 (𝑧𝑧) = −2, 𝑔𝑔2 (𝑧𝑧) = −
𝑧𝑧 𝑧𝑧

2 (𝑧𝑧 𝑧𝑧 )
(27)

satisfy 𝑞𝑞-difference Riccati equation (4), and (26) turns into

ℎ 󶀤󶀤−
1
2
𝑧𝑧󶀴󶀴 =

4 (𝑧𝑧 𝑧𝑧 )
2 (𝑧𝑧 𝑧𝑧 )

ℎ (𝑧𝑧) =
−2 [1 − 𝑧𝑧𝑧 (−1)]

1 − 𝑧𝑧𝑧𝑧
ℎ (𝑧𝑧) . (28)

We note that

𝛾𝛾𝑞𝑞 (𝑧𝑧) = 󶀡󶀡1 − 𝑞𝑞󶀱󶀱
𝑥𝑥𝑥𝑥Γ𝑞𝑞 (𝑥𝑥) =

󶀡󶀡𝑞𝑞𝑞 𝑞𝑞󶀱󶀱∞
󶀡󶀡𝑞𝑞𝑥𝑥; 𝑞𝑞󶀱󶀱∞

=
󶀡󶀡𝑞𝑞𝑞 𝑞𝑞󶀱󶀱∞
󶀡󶀡𝑧𝑧𝑧𝑧𝑧 󶀱󶀱∞

. (29)

us, we conclude from (24) and (29) that

ℎ (𝑧𝑧) = 𝑧𝑧{log−1/2−2} ⋅
𝛾𝛾−1/2 (−𝑧𝑧)
𝛾𝛾−1/2 (𝑧𝑧𝑧𝑧)

= 𝑧𝑧−1
(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 )∞
(−𝑧𝑧𝑧𝑧𝑧𝑧𝑧 )∞

= 𝑧𝑧−1
∏∞

𝑘𝑘𝑘𝑘 󶀢󶀢1 − (𝑧𝑧𝑧𝑧) (−1/2)
𝑘𝑘󶀲󶀲

∏∞
𝑘𝑘𝑘𝑘 󶀢󶀢1 + 𝑧𝑧(−1/2)

𝑘𝑘󶀲󶀲

= 𝑧𝑧−1
∏∞

𝑘𝑘𝑘𝑘 󶀢󶀢1 + 𝑧𝑧(−1/2)
𝑘𝑘𝑘𝑘󶀲󶀲

∏∞
𝑘𝑘𝑘𝑘 󶀢󶀢1 + 𝑧𝑧(−1/2)

𝑘𝑘󶀲󶀲

= 𝑧𝑧−1 󶀥󶀥󶀥󶀥󶁤󶁤1 + 󶀤󶀤−
1
2
󶀴󶀴 𝑧𝑧󶁴󶁴 󶁴󶁴1 + 󶀤󶀤−

1
2
󶀴󶀴
2
𝑧𝑧󶁵󶁵

⋯󶁦󶁦1 + 󶀤󶀤−
1
2
󶀴󶀴
𝑘𝑘
𝑧𝑧󶁶󶁶⋯󶀶󶀶

× 󶀥󶀥󶀥1 + 𝑧𝑧) 󶁤󶁤1 + 󶀤󶀤−
1
2
󶀴󶀴 𝑧𝑧󶁴󶁴 󶁴󶁴1 + 󶀤󶀤−

1
2
󶀴󶀴
2
𝑧𝑧󶁵󶁵

⋯󶁦󶁦1 + 󶀤󶀤−
1
2
󶀴󶀴
𝑘𝑘
𝑧𝑧󶁶󶁶⋯󶀶󶀶

−1

󶀷󶀷 =
1

𝑧𝑧 (𝑧𝑧 𝑧𝑧 )
,

𝑔𝑔3 (𝑧𝑧) =
𝑔𝑔1 (𝑧𝑧) ℎ (𝑧𝑧) + 𝑔𝑔2 (𝑧𝑧)

ℎ (𝑧𝑧) + 1
= − (𝑧𝑧 𝑧𝑧 )2

2 󶀡󶀡𝑧𝑧2 + 𝑧𝑧 𝑧𝑧 󶀱󶀱
(30)

is ameromorphic solution of (4), which is distinct from 𝑔𝑔1(𝑧𝑧𝑧
and 𝑔𝑔2(𝑧𝑧𝑧. Moreover, we also conclude from (10), (27), and
(5) that

𝑓𝑓1 󶀤󶀤−
1
2
𝑧𝑧󶀴󶀴 = −2𝑓𝑓1 (𝑧𝑧) , 𝑓𝑓2 󶀤󶀤−

1
2
𝑧𝑧󶀴󶀴 =

1 − 𝑧𝑧𝑧𝑧
1 − 𝑧𝑧𝑧 (−1)

𝑓𝑓2 (𝑧𝑧) ,

(31)

which are corresponding to 𝑔𝑔1(𝑧𝑧𝑧 and 𝑔𝑔2(𝑧𝑧𝑧, respectively, and
are also the types of (22). us, we deduce from (24) that

𝑓𝑓1 (𝑧𝑧) =
1
𝑧𝑧
, 𝑓𝑓2 (𝑧𝑧) =

𝛾𝛾−1/2 (𝑧𝑧𝑧𝑧)
𝛾𝛾−1/2 (−𝑧𝑧)

= 𝑧𝑧 𝑧𝑧  (32)

satisfy second-order linear 𝑞𝑞-difference equation (5).

4. Value Distribution of Solutions of
𝑞𝑞-Difference Riccati Equations and Form
of Solutions of Second-Order Linear
𝑞𝑞-Difference Equations

We �rst consider the value distribution of transcendental
meromorphic solution of 𝑞𝑞-difference Riccati equation (4).

eorem 5. Let 𝑎𝑎1(𝑧𝑧𝑧 and 𝑎𝑎0(𝑧𝑧𝑧 be nonconstant rational
functions. If 𝑔𝑔𝑔𝑔𝑔𝑔 is a zero-order transcendental meromorphic
solution of 𝑞𝑞-difference Riccati equation

𝑔𝑔 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 = −
𝑎𝑎1 (𝑧𝑧) 𝑔𝑔 (𝑧𝑧) + 𝑎𝑎0 (𝑧𝑧)

𝑔𝑔 (𝑧𝑧)
(33)

with 𝑞𝑞 𝑞 𝑞 𝑞 𝑞𝑞𝑞 and |𝑞𝑞𝑞 𝑞 𝑞, then

(i) if

󶙡󶙡𝑞𝑞󶙡󶙡 > 1, 𝑁𝑁 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 + 𝑁𝑁󶀥󶀥𝑟𝑟𝑟
1
𝑔𝑔
󶀵󶀵 = 𝑆𝑆 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 , (34)

then 𝑔𝑔𝑔𝑔𝑔𝑔 has at most one Borel exceptional value;
(ii) if |𝑞𝑞𝑞 𝑞 𝑞, then �evanlinna de�ciencies 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 

𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿   ;

(iii) if |𝑞𝑞𝑞 𝑞 𝑞 and 𝑞𝑞𝑞𝑞2 + 𝑧𝑧𝑧𝑧1(𝑧𝑧𝑧 𝑧𝑧𝑧 0(𝑧𝑧𝑧 ̸≡ 0, then 𝑔𝑔𝑔𝑔𝑔𝑔 has
in�nitely many �xed points.

In particular, we obtain the following theorem.

eorem 6. If 𝑎𝑎1(𝑧𝑧𝑧 𝑧𝑧𝑧 1 and 𝑎𝑎0(𝑧𝑧𝑧 𝑧𝑧𝑧 0( ≠0)  are constants,
and if 𝑞𝑞 𝑞 𝑞𝑞𝑞𝑞𝑞 and |𝑞𝑞𝑞 𝑞 𝑞, then 𝑞𝑞-difference Riccati equation
(4) has only rational solutions. Furthermore, if 𝑎𝑎1(𝑧𝑧𝑧 𝑧𝑧  and
𝑎𝑎0(𝑧𝑧𝑧 𝑧𝑧𝑧 0 is nonzero constant, then (4) has only a nonzero
constant solution 𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑔𝑔, which satis�es 𝑑𝑑2 + 𝑎𝑎0 = 0.

We need some preliminaries to proveeorems 5 and 6.
e theorem of Tumura and Clunie is an important result

in Nevanlinna theory, see [11, 12]. Weissenborn extended it
and obtained the following lemma.
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Lemma 7 (see [13, eorem]). Let ℎ(𝑧𝑧𝑧 be a meromorphic
function and let 𝜙𝜙 be given by

𝜙𝜙 (𝑧𝑧) = 𝑐𝑐𝑛𝑛 (𝑧𝑧) ℎ(𝑧𝑧)
𝑛𝑛 + 𝑐𝑐𝑛𝑛𝑛𝑛 (𝑧𝑧) ℎ(𝑧𝑧)

𝑛𝑛𝑛𝑛 + ⋯ + 𝑐𝑐0 (𝑧𝑧) ,

𝑇𝑇 󶀢󶀢𝑟𝑟𝑟𝑟𝑟 𝑗𝑗󶀲󶀲 = 𝑆𝑆 (𝑟𝑟𝑟𝑟 ) , 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗  𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗    𝑗
(35)

en either

𝜙𝜙 𝜙 󶀥󶀥ℎ +
𝑐𝑐𝑛𝑛𝑛𝑛 (𝑧𝑧)
𝑛𝑛𝑛𝑛𝑛𝑛 (𝑧𝑧)

󶀵󶀵
𝑛𝑛
, (36)

or

𝑇𝑇 (𝑟𝑟𝑟𝑟 ) ≤ 𝑁𝑁󶀥󶀥𝑟𝑟𝑟
1
𝜙𝜙
󶀵󶀵 + 𝑁𝑁 (𝑟𝑟𝑟𝑟 ) + 𝑆𝑆 (𝑟𝑟𝑟𝑟 ) . (37)

Lemma 8. Suppose that ℎ(𝑧𝑧𝑧 is a nonconstant meromorphic
function satisfying

𝑁𝑁(𝑟𝑟𝑟𝑟 ) + 𝑁𝑁󶀤󶀤𝑟𝑟𝑟
1
ℎ
󶀴󶀴 = 𝑆𝑆 (𝑟𝑟𝑟𝑟 ) . (38)

Let

𝜙𝜙 (𝑧𝑧) = 𝑐𝑐𝑛𝑛 (𝑧𝑧) ℎ(𝑧𝑧)
𝑛𝑛 + 𝑐𝑐𝑛𝑛𝑛𝑛 (𝑧𝑧) ℎ(𝑧𝑧)

𝑛𝑛𝑛𝑛 + ⋯ + 𝑐𝑐0 (𝑧𝑧) (39)

be a polynomial in ℎ(𝑧𝑧𝑧 with 𝑛𝑛 𝑛 𝑛, and coefficients satisfying

𝑇𝑇 󶀢󶀢𝑟𝑟𝑟𝑟𝑟 𝑗𝑗󶀲󶀲 = 𝑆𝑆 (𝑟𝑟𝑟𝑟 ) , 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗  𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     𝑛𝑛 (𝑧𝑧) 𝑐𝑐0 (𝑧𝑧) ̸≡ 0.
(40)

en

𝑁𝑁󶀥󶀥𝑟𝑟𝑟
1
𝜙𝜙
󶀵󶀵 = 𝑛𝑛𝑛𝑛 (𝑟𝑟𝑟𝑟 ) + 𝑆𝑆 (𝑟𝑟𝑟𝑟 ) (41)

or

𝑁𝑁󶀥󶀥𝑟𝑟𝑟
1
𝜙𝜙
󶀵󶀵 ≥ 𝑇𝑇 (𝑟𝑟𝑟𝑟 ) + 𝑆𝑆 (𝑟𝑟𝑟𝑟 ) . (42)

us, 𝜙𝜙𝜙𝜙𝜙𝜙 ̸≡ 0.

Proof of Lemma 8. By differentiating both sides of (39), we
conclude that

𝜙𝜙′ (𝑧𝑧) =
𝑛𝑛
󵠈󵠈
𝑗𝑗𝑗𝑗

󶀧󶀧𝑐𝑐′𝑗𝑗 (𝑧𝑧) + 𝑗𝑗𝑗𝑗𝑗𝑗 (𝑧𝑧)
ℎ′ (𝑧𝑧)
ℎ (𝑧𝑧)

󶀷󶀷 ℎ(𝑧𝑧)𝑗𝑗. (43)

us, we deduce from (39) and (43) that

󶀧󶀧𝑐𝑐′𝑛𝑛 (𝑧𝑧) + 𝑛𝑛𝑛𝑛𝑛𝑛 (𝑧𝑧)
ℎ′ (𝑧𝑧)
ℎ (𝑧𝑧)

󶀷󶀷𝜙𝜙 (𝑧𝑧) − 𝑐𝑐𝑛𝑛𝜙𝜙
′ (𝑧𝑧)

=
𝑛𝑛𝑛𝑛
󵠈󵠈
𝑗𝑗𝑗𝑗

󶁧󶁧𝑐𝑐𝑗𝑗 (𝑧𝑧)󶀧󶀧𝑐𝑐
′
𝑛𝑛 (𝑧𝑧) + 𝑛𝑛𝑛𝑛𝑛𝑛 (𝑧𝑧)

ℎ′ (𝑧𝑧)
ℎ (𝑧𝑧)

󶀷󶀷

−𝑐𝑐𝑛𝑛 (𝑧𝑧)󶀧󶀧𝑐𝑐
′
𝑗𝑗 (𝑧𝑧) + 𝑗𝑗𝑗𝑗𝑗𝑗 (𝑧𝑧)

ℎ′ (𝑧𝑧)
ℎ (𝑧𝑧)

󶀷󶀷󶀷󶀷 ℎ(𝑧𝑧)𝑗𝑗

+ 𝑐𝑐0 (𝑧𝑧)󶀧󶀧𝑐𝑐
′
𝑛𝑛 (𝑧𝑧) + 𝑛𝑛𝑛𝑛𝑛𝑛 (𝑧𝑧)

ℎ′ (𝑧𝑧)
ℎ (𝑧𝑧)

󶀷󶀷 .

(44)

erefore, (𝑐𝑐′𝑛𝑛(𝑧𝑧𝑧 𝑧𝑧𝑧𝑧𝑧 𝑛𝑛(𝑧𝑧𝑧𝑧𝑧
′(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑧𝑧𝑧 𝑛𝑛𝜙𝜙

′(𝑧𝑧𝑧 is a
polynomial in ℎ(𝑧𝑧𝑧 with degree no greater than 𝑛𝑛 𝑛 𝑛 and the
term of degree zero is 𝑐𝑐0(𝑧𝑧𝑧𝑧𝑧𝑧

′
𝑛𝑛(𝑧𝑧𝑧 𝑧𝑧𝑧𝑧𝑧 𝑛𝑛(𝑧𝑧𝑧𝑧𝑧

′(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 ̸≡ 0.
en

𝑐𝑐′𝑛𝑛 (𝑧𝑧) + 𝑛𝑛𝑛𝑛𝑛𝑛 (𝑧𝑧)
ℎ′ (𝑧𝑧)
ℎ (𝑧𝑧)

̸≡ 0. (45)

Otherwise, if 𝑐𝑐′𝑛𝑛(𝑧𝑧𝑧 𝑧𝑧𝑧𝑧𝑧 𝑛𝑛(𝑧𝑧𝑧𝑧𝑧
′(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑧𝑧 , then 𝑐𝑐𝑛𝑛(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

𝑛𝑛

is a nonzero constant, a contradiction. We also note that
𝑐𝑐0(𝑧𝑧𝑧𝑧𝑧𝑧

′
𝑛𝑛(𝑧𝑧𝑧 𝑧𝑧𝑧𝑧𝑧 𝑛𝑛(𝑧𝑧𝑧𝑧𝑧

′(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 is a small function relative
to ℎ(𝑧𝑧𝑧 by (38) and the lemma of logarithmic derivative. Set

𝜇𝜇1 (𝑧𝑧) = 𝑐𝑐
′
𝑛𝑛 (𝑧𝑧) + 𝑛𝑛𝑛𝑛𝑛𝑛 (𝑧𝑧)

ℎ′ (𝑧𝑧)
ℎ (𝑧𝑧)

, 𝜈𝜈1 (𝑧𝑧) = 𝑐𝑐𝑛𝑛. (46)

en 𝜇𝜇1(𝑧𝑧𝑧 and 𝜈𝜈1(𝑧𝑧𝑧 are small functions relative to ℎ(𝑧𝑧𝑧 and

𝜙𝜙1 (𝑧𝑧) = 𝜇𝜇1 (𝑧𝑧) 𝜙𝜙 (𝑧𝑧) − 𝜈𝜈1 (𝑧𝑧) 𝜙𝜙
′ (𝑧𝑧) (47)

is a polynomial in ℎ(𝑧𝑧𝑧 with degree no greater than 𝑛𝑛 𝑛 𝑛 and
the term of degree zero is small function relative to ℎ(𝑧𝑧𝑧.

If the degree of 𝜙𝜙1(𝑧𝑧𝑧 is greater than zero, then by
repeating the above process, we can get two small functions
𝜇𝜇2(𝑧𝑧𝑧 and 𝜈𝜈2(𝑧𝑧𝑧 such that

𝜙𝜙2 (𝑧𝑧) = 𝜇𝜇2 (𝑧𝑧) 𝜙𝜙1 (𝑧𝑧) − 𝜈𝜈1 (𝑧𝑧) 𝜙𝜙
′
1 (𝑧𝑧) (48)

is a polynomial in ℎ(𝑧𝑧𝑧 with a degree less than the degree of
𝜙𝜙1(𝑧𝑧𝑧 and the term of degree zero is a small function relative
to ℎ(𝑧𝑧𝑧.

We note that such process will be terminated at most
𝑛𝑛 times. us, We can proceed this process to obtain small
functions𝜇𝜇𝑗𝑗(𝑧𝑧𝑧 and𝜈𝜈𝑗𝑗(𝑧𝑧𝑧, where 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗  𝑗 𝑗 𝑗𝑗𝑗 𝑗𝑗𝑗𝑗 and 𝑠𝑠𝑠𝑠𝑠  ,
such that

𝜙𝜙𝑗𝑗 (𝑧𝑧) = 𝜇𝜇𝑗𝑗 (𝑧𝑧) 𝜙𝜙𝑗𝑗𝑗𝑗 (𝑧𝑧) − 𝜈𝜈𝑗𝑗 (𝑧𝑧) 𝜙𝜙
′
𝑗𝑗𝑗𝑗 (𝑧𝑧) (49)

are polynomial in ℎ(𝑧𝑧𝑧 with deg 𝜙𝜙𝑗𝑗(𝑧𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧𝑧 𝑗𝑗𝑗𝑗(𝑧𝑧𝑧 𝑧𝑧𝑧𝑧
1, 2,… , 𝑠𝑠𝑠, where 𝜙𝜙0(𝑧𝑧𝑧 𝑧𝑧𝑧𝑧 𝑧𝑧𝑧 and

𝜙𝜙𝑠𝑠𝑠𝑠 (𝑧𝑧) = 𝜇𝜇𝑠𝑠𝑠𝑠 (𝑧𝑧) 𝜙𝜙𝑠𝑠 (𝑧𝑧) − 𝜈𝜈𝑠𝑠𝑠𝑠 (𝑧𝑧) 𝜙𝜙
′
𝑠𝑠 (𝑧𝑧) (50)

is a small function relative to ℎ(𝑧𝑧𝑧. us, we deduce that the
small function 𝜙𝜙𝑠𝑠𝑠𝑠(𝑧𝑧𝑧 can be expressed as a linear differential
polynomial in 𝜙𝜙𝜙𝜙𝜙𝜙 with coefficients being small functions
relative to ℎ(𝑧𝑧𝑧. So,

𝑚𝑚󶀥󶀥𝑟𝑟𝑟
1
𝜙𝜙
󶀵󶀵 = 𝑆𝑆 (𝑟𝑟𝑟𝑟 ) . (51)

On the other hand, we deduce from Lemma 7 that either

𝜙𝜙 𝜙 󶀥󶀥ℎ +
𝑐𝑐𝑛𝑛𝑛𝑛 (𝑧𝑧)
𝑛𝑛𝑛𝑛𝑛𝑛 (𝑧𝑧)

󶀵󶀵
𝑛𝑛

(52)

or

𝑇𝑇 (𝑟𝑟𝑟𝑟 ) ≤ 𝑁𝑁󶀥󶀥𝑟𝑟𝑟
1
𝜙𝜙
󶀵󶀵 + 𝑁𝑁 (𝑟𝑟𝑟𝑟 ) + 𝑆𝑆 (𝑟𝑟𝑟𝑟 ) . (53)

us, we deduce from Valiron-Mohon’ko Lemma, (51), and
(52) that (41) holds and obtain from (38) and (53) that
(42) holds. erefore, 𝜙𝜙𝜙𝜙𝜙𝜙 ̸≡ 0. e proof of Lemma 8 is
completed.
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Lemma 9 (see [9,eorem 5.2]). Let ℎ(𝑧𝑧𝑧 be a transcendental
meromorphic solution of

ℎ 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 = 𝑅𝑅 (𝑧𝑧𝑧 𝑧 (𝑧𝑧)) =
∑𝑝𝑝
𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖 (𝑧𝑧) ℎ(𝑧𝑧)

𝑖𝑖

∑𝑞𝑞
𝑗𝑗𝑗𝑗 𝑏𝑏𝑗𝑗𝑏𝑏𝑗𝑗 (𝑧𝑧) ℎ(𝑧𝑧)

𝑗𝑗 (54)

with meromorphic coefficients 𝑎𝑎𝑖𝑖(𝑧𝑧𝑧𝑧 𝑧𝑧𝑗𝑗(𝑧𝑧𝑧 relative to ℎ(𝑧𝑧𝑧 and
𝑞𝑞 𝑞 𝑞 such that |𝑞𝑞𝑞 𝑞 𝑞. If𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  𝑁 𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 , then
(54) is either of the form

𝑓𝑓 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 = 𝑎𝑎𝑝𝑝 (𝑧𝑧) 𝑓𝑓(𝑧𝑧)
𝑝𝑝 or 𝑓𝑓 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 =

𝑎𝑎0 (𝑧𝑧)
𝑓𝑓(𝑧𝑧)𝑞𝑞

. (55)

Lemma 10 (see [5, eorem 2.2]). Let 𝑓𝑓𝑓𝑓𝑓𝑓 be a nonconstant
zero-order meromorphic solution of

𝑃𝑃 󶀡󶀡𝑧𝑧𝑧 𝑧𝑧󶀱󶀱 = 0, (56)

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  is a 𝑞𝑞-difference polynomials in 𝑓𝑓𝑓𝑓𝑓𝑓. If
𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃 ̸≡ 0 for a small function 𝛼𝛼𝛼𝛼𝛼𝛼 relative to 𝑓𝑓𝑓𝑓𝑓𝑓, then

𝑚𝑚󶀥󶀥𝑟𝑟𝑟
1

𝑓𝑓 𝑓 𝑓𝑓
󶀵󶀵 = 𝑜𝑜 󶀡󶀡𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱󶀱󶀱 (57)

on a set of logarithmic density 1.

Lemma 11 (see [2, eorem 2.2.5 and Corollary 2.2.7]).
Let 𝑓𝑓𝑓𝑓𝑓𝑓 be a meromorphic function. en for all irreducible
rational functions in 𝑓𝑓𝑓𝑓𝑓𝑓,

𝑅𝑅 󶀡󶀡𝑧𝑧𝑧 𝑧𝑧 (𝑧𝑧)󶀱󶀱 =
∑𝑝𝑝
𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖 (𝑧𝑧) 𝑓𝑓(𝑧𝑧)

𝑖𝑖

∑𝑞𝑞
𝑗𝑗𝑗𝑗 𝑏𝑏𝑗𝑗 (𝑧𝑧) 𝑓𝑓(𝑧𝑧)

𝑗𝑗 , (58)

with meromorphic coefficients 𝑎𝑎𝑖𝑖(𝑧𝑧𝑧𝑧 𝑧𝑧𝑗𝑗(𝑧𝑧𝑧, the characteristic
function of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  satis�es

𝑇𝑇 󶀡󶀡𝑅𝑅 󶀡󶀡𝑧𝑧𝑧 𝑧𝑧 (𝑧𝑧)󶀱󶀱󶀱󶀱 = 𝑑𝑑𝑑𝑑 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 + 𝑂𝑂 (Ψ (𝑟𝑟)) , (59)

where 𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑 and Ψ(𝑟𝑟𝑟𝑟𝑟𝑟𝑟  𝑖𝑖𝑖𝑖𝑖{𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖), 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑗𝑗)}.
In the particular case when

𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 𝑖𝑖󶀱󶀱 = 𝑆𝑆 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 , 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖

𝑇𝑇 󶀢󶀢𝑟𝑟𝑟𝑟𝑟 𝑗𝑗󶀲󶀲 = 𝑆𝑆 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 , 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗   
(60)

we have

𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟  󶀡󶀡𝑧𝑧𝑧 𝑧𝑧 (𝑧𝑧)󶀱󶀱󶀱󶀱 = 𝑑𝑑𝑑𝑑 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 +𝑆𝑆  󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 . (61)

We also use the observation [7, page 2] that, for any meromor-
phic function 𝑓𝑓𝑓𝑓𝑓𝑓 and any constant 𝑞𝑞 𝑞 𝑞 𝑞 𝑞𝑞𝑞,

𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟  󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱󶀱󶀱 = 𝑇𝑇 󶀡󶀡󶀡󶀡𝑞𝑞󶙡󶙡 𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 + 𝑂𝑂 (1) . (62)

Proof of eorem 5. Suppose that 𝑔𝑔𝑔𝑔𝑔𝑔 is a zero-order tran-
scendental meromorphic solution of 𝑞𝑞-difference Riccati
equation (4).

(i) Suppose that 𝑔𝑔𝑔𝑔𝑔𝑔 has two �nite Borel exceptional
values 𝑎𝑎 and 𝑏𝑏𝑏 𝑏 𝑏𝑏𝑏𝑏𝑏 . For the case where one of 𝑎𝑎 and 𝑏𝑏 is
in�nite, we can use a similar method to prove. Set

ℎ (𝑧𝑧) =
𝑔𝑔 (𝑧𝑧) − 𝑎𝑎
𝑔𝑔 (𝑧𝑧) − 𝑏𝑏

. (63)

Since𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 , we deduce from (63) that

𝑁𝑁(𝑟𝑟𝑟𝑟 ) + 𝑁𝑁󶀤󶀤𝑟𝑟𝑟
1
ℎ
󶀴󶀴 = 𝑆𝑆 (𝑟𝑟𝑟𝑟 ) . (64)

We also conclude from (63) that

𝑔𝑔 (𝑧𝑧) =
𝑎𝑎 𝑎𝑎𝑎𝑎  (𝑧𝑧)
1−  ℎ (𝑧𝑧)

. (65)

Now, substituting (65) into (4), we conclude that

ℎ 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱=
󶀡󶀡𝑏𝑏𝑏𝑏1 (𝑧𝑧)+𝑎𝑎0 (𝑧𝑧)+𝑎𝑎𝑎𝑎󶀱󶀱 ℎ (𝑧𝑧)−󶀢󶀢𝑎𝑎𝑎𝑎1 (𝑧𝑧)+𝑎𝑎0 (𝑧𝑧)+𝑎𝑎

2󶀲󶀲

󶀢󶀢𝑏𝑏𝑏𝑏1 (𝑧𝑧)+𝑎𝑎0 (𝑧𝑧)+𝑏𝑏
2󶀲󶀲 ℎ (𝑧𝑧)−󶀡󶀡𝑎𝑎𝑎𝑎1 (𝑧𝑧)+𝑎𝑎0 (𝑧𝑧)+𝑎𝑎𝑎𝑎󶀱󶀱

.

(66)

By the assumptions of eorem 5, we get

󶀡󶀡𝑏𝑏𝑏𝑏1 (𝑧𝑧) + 𝑎𝑎0 (𝑧𝑧) + 𝑎𝑎𝑎𝑎󶀱󶀱 ̸≡ 0, 󶀢󶀢𝑏𝑏𝑏𝑏1 (𝑧𝑧) + 𝑎𝑎0 (𝑧𝑧) + 𝑏𝑏
2󶀲󶀲 ̸≡ 0.

(67)

us, we deduce from Lemma 9, (64), and (66) that

ℎ 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 = 𝑐𝑐 (𝑧𝑧) ℎ(𝑧𝑧)𝑘𝑘, 𝑘𝑘 𝑘 𝑘 𝑘 {0} , (68)

where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇    .
If 𝑘𝑘 𝑘 𝑘, we conclude from (66) and (68) that

𝑐𝑐 (𝑧𝑧) 󶀢󶀢𝑏𝑏𝑏𝑏1 (𝑧𝑧) + 𝑎𝑎0 (𝑧𝑧) + 𝑏𝑏
2󶀲󶀲 ℎ(𝑧𝑧)𝑘𝑘𝑘𝑘

− 𝑐𝑐 (𝑧𝑧) 󶀡󶀡𝑎𝑎𝑎𝑎1 (𝑧𝑧) + 𝑎𝑎0 (𝑧𝑧) + 𝑎𝑎𝑎𝑎󶀱󶀱 ℎ(𝑧𝑧)
𝑘𝑘

− 󶀡󶀡𝑏𝑏𝑏𝑏1 (𝑧𝑧) + 𝑎𝑎0 (𝑧𝑧) + 𝑎𝑎𝑎𝑎󶀱󶀱 ℎ (𝑧𝑧) + 󶀢󶀢𝑎𝑎𝑎𝑎1 (𝑧𝑧) + 𝑎𝑎0 (𝑧𝑧) + 𝑎𝑎
2󶀲󶀲

= 0.
(69)

us, we deduce from Lemma 8 and (64) that (69) is a
contradiction. If 𝑘𝑘 𝑘 𝑘𝑘, we use the same method as above to
get another contradiction. erefore, 𝑔𝑔𝑔𝑔𝑔𝑔 at most one Borel
exceptional value.

(ii) We �rst prove 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿   . We obtain from (4) that

𝑃𝑃1 󶀡󶀡𝑧𝑧𝑧 𝑧𝑧󶀱󶀱 = 𝑔𝑔 (𝑧𝑧) 𝑔𝑔 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 + 𝑎𝑎1 (𝑧𝑧) 𝑔𝑔 (𝑧𝑧) + 𝑎𝑎0 (𝑧𝑧) = 0. (70)

Since 𝑃𝑃1(𝑧𝑧𝑧 𝑧𝑧 𝑧𝑧𝑧 0(𝑧𝑧𝑧 ̸≡ 0, we deduce from Lemma 10 and
(70) that

𝑚𝑚󶀥󶀥𝑟𝑟𝑟
1
𝑔𝑔
󶀵󶀵 = 𝑆𝑆 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 (71)

on a set 𝐸𝐸 of logarithmic density 1. erefore,

0≤  𝛿𝛿 󶀡󶀡0, 𝑔𝑔󶀱󶀱 = lim
𝑟𝑟𝑟𝑟

𝑚𝑚 󶀡󶀡𝑟𝑟𝑟𝑟𝑟𝑟𝑟 󶀱󶀱
𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱

≤ lim
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑚𝑚 󶀡󶀡𝑟𝑟𝑟𝑟𝑟𝑟𝑟 󶀱󶀱
𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱

= 0.

(72)

us, 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿   .
We second prove 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿   . Set 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  . en

𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 = 𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 + 𝑂𝑂 (1) ,𝑆𝑆  󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 = 𝑆𝑆 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 . (73)
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Now, substituting 𝑔𝑔𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 into (4), we conclude that

𝑃𝑃2 󶀡󶀡𝑧𝑧𝑧 𝑧𝑧󶀱󶀱 =𝑦𝑦  󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 󶀱󶀱𝑎𝑎0 (𝑧𝑧) 𝑦𝑦 (𝑧𝑧) + 𝑎𝑎1 (𝑧𝑧)󶀱󶀱 + 1=  0. (74)

Since 𝑃𝑃2(𝑧𝑧𝑧 𝑧𝑧𝑧𝑧   ̸≡ 0, we obtain from Lemma 10 and (74)
that

𝑚𝑚󶀥󶀥𝑟𝑟𝑟
1
𝑦𝑦
󶀵󶀵 = 𝑆𝑆 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 (75)

on a set 𝐸𝐸 of logarithmic density 1. erefore,

𝑁𝑁󶀥󶀥𝑟𝑟𝑟
1
𝑦𝑦
󶀵󶀵 = 𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 + 𝑆𝑆 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 (76)

on a set 𝐸𝐸 of logarithmic density 1. us, we conclude from
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦   and (76) that

𝑁𝑁󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 = 𝑁𝑁󶀥󶀥𝑟𝑟𝑟
1
𝑦𝑦
󶀵󶀵 = 𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 + 𝑜𝑜 󶀡󶀡𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱󶀱󶀱

= 𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 + 𝑆𝑆 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱
(77)

on a set 𝐸𝐸 of logarithmic density 1, and so,

0 ≤ 𝛿𝛿 󶀡󶀡∞, 𝑔𝑔󶀱󶀱 =1  − lim
𝑟𝑟𝑟𝑟

𝑁𝑁󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱
𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱

≤ 1 − lim
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑁𝑁 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱
𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱

= 0.

(78)

us, 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿   .
(iii) Set 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦    . en

𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 = 𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 + 𝑆𝑆 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 , 𝑆𝑆 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 = 𝑆𝑆 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 . (79)

Substituting 𝑔𝑔𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔 into (4), we conclude that

𝑃𝑃3 󶀡󶀡𝑧𝑧𝑧 𝑧𝑧󶀱󶀱 =𝑦𝑦  (𝑧𝑧) 𝑦𝑦 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 + 𝑧𝑧𝑧𝑧 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 + 𝑞𝑞𝑞𝑞𝑞𝑞 (𝑧𝑧)

+ 𝑞𝑞𝑞𝑞2 + 𝑧𝑧𝑧𝑧1 (𝑧𝑧) + 𝑎𝑎0 (𝑧𝑧) = 0.
(80)

Since 𝑃𝑃3(𝑧𝑧𝑧 𝑧𝑧𝑧𝑧𝑧𝑧𝑧  2 + 𝑧𝑧𝑧𝑧1(𝑧𝑧𝑧𝑧𝑧𝑧  0(𝑧𝑧𝑧 ̸≡ 0, we deduce from
Lemma 10 and (80) that

𝑚𝑚󶀥󶀥𝑟𝑟𝑟
1
𝑦𝑦
󶀵󶀵 = 𝑆𝑆 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 (81)

on a set 𝐸𝐸 of logarithmic density 1. erefore

𝑁𝑁󶀥󶀥𝑟𝑟𝑟
1

𝑔𝑔 𝑔 𝑔𝑔
󶀵󶀵 = 𝑁𝑁󶀥󶀥𝑟𝑟𝑟

1
𝑦𝑦
󶀵󶀵 = 𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 + 𝑜𝑜 󶀡󶀡𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱󶀱󶀱

= 𝑇𝑇 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱 + 𝑆𝑆 󶀡󶀡𝑟𝑟𝑟𝑟𝑟 󶀱󶀱
(82)

on a set 𝐸𝐸 of logarithmic density 1. is shows that 𝑔𝑔𝑔𝑔𝑔𝑔 has
in�nitely many �xed points if 𝑞𝑞𝑞𝑞2 + 𝑧𝑧𝑧𝑧1(𝑧𝑧𝑧𝑧𝑧𝑧  0(𝑧𝑧𝑧 ̸≡ 0.

Proof of eorem 6. Suppose �rst that 0 < |𝑞𝑞𝑞𝑞𝑞   and (4)
with nonzero constant coefficients 𝑎𝑎1(𝑧𝑧𝑧 and 𝑎𝑎0(𝑧𝑧𝑧 admits a
meromorphic solution 𝑔𝑔𝑔𝑔𝑔𝑔. We assert that 𝑔𝑔𝑔𝑔𝑔𝑔 is rational.
In fact, we conclude from Lemma 11, (4), and (62) that

𝑇𝑇 󶀡󶀡𝑟𝑟𝑟 𝑟𝑟󶀱󶀱 ≤ 𝑇𝑇 󶀡󶀡󶙡󶙡𝑞𝑞󶙡󶙡 𝑟𝑟𝑟 𝑟𝑟󶀱󶀱 + 𝐴𝐴𝐴𝐴𝐴  𝐴 𝐴𝐴0, (83)

where 𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 0), 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 1)} ≥ 0,𝑅𝑅 0(>0) is
�xed number.

us, for any 𝑟𝑟 𝑟𝑟𝑟 0, there exists an 𝑛𝑛 𝑛 𝑛 such that
𝑅𝑅0
󶙡󶙡𝑞𝑞󶙡󶙡𝑛𝑛𝑛𝑛

≤ 𝑟𝑟 𝑟
𝑅𝑅0
󶙡󶙡𝑞𝑞󶙡󶙡𝑛𝑛

. (84)

By an inductive argument, we deduce from (84) that

𝑇𝑇 󶀡󶀡𝑟𝑟𝑟 𝑟𝑟󶀱󶀱 ≤ 𝑇𝑇 󶀡󶀡󶙡󶙡𝑞𝑞󶙡󶙡𝑛𝑛𝑟𝑟𝑟 𝑟𝑟󶀱󶀱 + 𝐴𝐴𝐴𝐴

≤ 𝑇𝑇 󶀡󶀡𝑅𝑅0,𝑓𝑓 󶀱󶀱 + 𝐴𝐴󶀦󶀦
log 𝑟𝑟

log 󶀡󶀡1/ 󶙡󶙡𝑞𝑞󶙡󶙡󶀱󶀱
−

log 𝑅𝑅0
log 󶀡󶀡1/ 󶙡󶙡𝑞𝑞󶙡󶙡󶀱󶀱

+ 1󶀶󶀶

= 𝑂𝑂 󶀡󶀡log 𝑟𝑟󶀱󶀱 .
(85)

Suppose now that |𝑞𝑞𝑞𝑞𝑞   and (4) with nonzero constant
coefficients 𝑎𝑎1(𝑧𝑧𝑧 and 𝑎𝑎1(𝑧𝑧𝑧 admits a meromorphic solution
𝑔𝑔𝑔𝑔𝑔𝑔. Replacing 𝑧𝑧 by 𝑧𝑧𝑧𝑧𝑧 in (4), we proceed in a similar
method as above to get (85) again. erefore, 𝑔𝑔𝑔𝑔𝑔𝑔 is rational
solution of (4).

Now, we affirm that 𝑔𝑔𝑔𝑔𝑔𝑔 must be nonzero constant if
𝑎𝑎1(𝑧𝑧𝑧𝑧𝑧   and 𝑎𝑎0(𝑧𝑧𝑧𝑧𝑧𝑧  0( ≠ 0) is a constant.Otherwise, if𝑔𝑔𝑔𝑔𝑔𝑔
is nonconstant rational and has a pole 𝑧𝑧0 ≠ 0, we conclude
from (4) that 𝑔𝑔𝑔𝑔𝑔𝑔 has in�nitely many poles of the forms
𝑞𝑞2(𝑛𝑛𝑛𝑛𝑛𝑧𝑧0 and in�nitely many zeros of the forms 𝑞𝑞2(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑧𝑧0
for all 𝑛𝑛 𝑛 𝑛. Conversely, If 𝑔𝑔𝑔𝑔𝑔𝑔 is nonconstant rational and
has a zero 𝑧𝑧0 ≠ 0, we conclude from (4) that 𝑔𝑔𝑔𝑔𝑔𝑔 has in�nitely
many zeros of the forms 𝑞𝑞2(𝑛𝑛𝑛𝑛𝑛𝑧𝑧0 and in�nitelymany poles of
the forms 𝑞𝑞2(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑧𝑧0 for all 𝑛𝑛 𝑛 𝑛. ese are both impossible
since 𝑔𝑔𝑔𝑔𝑔𝑔 is rational.us, the only possible pole (resp. zero)
of 𝑔𝑔𝑔𝑔𝑔𝑔 is at 0. So 𝑔𝑔𝑔𝑔𝑔𝑔may have the form 𝑔𝑔𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑘𝑘(𝑘𝑘 𝑘 𝑘𝑘,
where 𝑑𝑑 is a nonzero constant. If 𝑘𝑘 𝑘𝑘 , we get a contradiction
from (4).erefore, 𝑘𝑘 𝑘𝑘  and (4) has only a nonzero constant
solution 𝑔𝑔𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔, which satis�es 𝑑𝑑2 + 𝑎𝑎0 = 0. e proof of
eorem 6 is completed.

We now consider the form of meromorphic solutions of
(5), which is according to eorem 6. In fact, more details
about meromorphic solutions of (5) have been studied in [7,
14]. Here, we only consider the case that all coefficients are
constants.

eorem 12. If 𝑎𝑎1(𝑧𝑧𝑧𝑧𝑧   and 𝑎𝑎0(𝑧𝑧𝑧𝑧𝑧𝑧  0 is constant, and
if 𝑞𝑞 𝑞 𝑞 𝑞 𝑞𝑞𝑞 and |𝑞𝑞𝑞𝑞𝑞  , then every meromorphic solution
𝑓𝑓𝑓𝑓𝑓𝑓 of second-order linear 𝑞𝑞-difference equation (5) has the
form 𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓𝑓𝑓𝑓𝑘𝑘, where 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽     and 𝑘𝑘 𝑘 𝑘 satisfying
𝑞𝑞2𝑘𝑘 + 𝑎𝑎0 = 0.

We �rst list a lemma needed below.

Lemma 13 (see [14, eorem 2.1]). Suppose that 𝑞𝑞 𝑞 𝑞 𝑞
{0} and |𝑞𝑞𝑞𝑞𝑞  . Let 𝑎𝑎0, 𝑎𝑎1,… , 𝑎𝑎𝑛𝑛 be complex constants and let
𝑄𝑄𝑄𝑄𝑄𝑄 be of the reduced form𝑄𝑄𝑄𝑄𝑄𝑄𝑄  𝑄𝑄1(𝑧𝑧𝑧𝑧𝑧𝑧

l, where 𝑝𝑝1(𝑧𝑧𝑧 is a
polynomial of degree 𝑑𝑑 and 𝑙𝑙 𝑙𝑙 𝑙 𝑙𝑙𝑙. en all meromorphic
solutions 𝑓𝑓𝑓𝑓𝑓𝑓 of

𝑛𝑛
󵠈󵠈
𝑗𝑗𝑗𝑗
𝑎𝑎𝑗𝑗 (𝑧𝑧) 𝑓𝑓 󶀢󶀢𝑞𝑞

𝑗𝑗𝑧𝑧󶀲󶀲 = 𝑄𝑄 (𝑧𝑧) (86)
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are of the reduced form 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓2(𝑧𝑧𝑧𝑧𝑧𝑧
𝑝𝑝, where 𝑝𝑝2(𝑧𝑧𝑧 is a

polynomial and 𝑝𝑝 𝑝 𝑝𝑝.

Proof of eorem 12. We deduce from Lemma 13 that all
meromorphic solutions 𝑓𝑓𝑓𝑓𝑓𝑓 of (5) are of the form 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓
𝑝𝑝2(𝑧𝑧𝑧𝑧𝑧𝑧

𝑝𝑝, where 𝑝𝑝2(𝑧𝑧𝑧 and 𝑝𝑝 are de�ned as Lemma 13. us,
we conclude fromeorem 6 and (10) that

𝑑𝑑 𝑑 𝑑𝑑 (𝑧𝑧) =
𝑓𝑓 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
𝑓𝑓 (𝑧𝑧)

=
1
𝑞𝑞𝑝𝑝

⋅
𝑝𝑝2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
𝑝𝑝2 (𝑧𝑧)

, (87)

where 𝑑𝑑 is de�ned as eorem 6. From (87), we obtain that
there exists𝛽𝛽 𝛽 𝛽𝛽𝛽𝛽𝛽 and𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚𝑚 such that𝑝𝑝2(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 

𝑚𝑚,
and so𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓2(𝑧𝑧𝑧𝑧𝑧𝑧

𝑝𝑝 = 𝛽𝛽𝛽𝛽𝑚𝑚/𝑧𝑧𝑝𝑝 =∶ 𝛽𝛽𝛽𝛽𝑘𝑘, where 𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘𝑘𝑘
ℤ. Now, substituting 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑘𝑘 into (5), we conclude that 𝑘𝑘
satis�es 𝑞𝑞2𝑘𝑘 + 𝑎𝑎0 =0 . e proof of eorem 12 is completed.

Example 14. Let 𝑞𝑞 𝑞𝑞𝑞𝑞𝑞𝑞𝑞    𝑞𝑞𝑞𝑞 𝑞 𝑞, 𝑎𝑎1(𝑧𝑧𝑧 𝑧 𝑧 and 𝑎𝑎0(𝑧𝑧𝑧𝑧
−1/𝑞𝑞2. en second-order 𝑞𝑞-difference equation (5) is solved
by 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓. Obviously, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓 and 𝑘𝑘 𝑘 𝑘𝑘 satisfy the
conclusions described byeorem 12.

5. Linear 𝑞𝑞-Difference Equations of
Second-Order

Let 𝑦𝑦1(𝑧𝑧𝑧 and 𝑦𝑦2(𝑧𝑧𝑧 be meromorphic solutions of (5). We
de�ne the 𝑞𝑞-Casorati determinant of meromorphic functions
𝑦𝑦1(𝑧𝑧𝑧 and 𝑦𝑦2(𝑧𝑧𝑧 by

󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧) = 󵰄󵰄𝐶𝐶𝑞𝑞 󶀡󶀡𝑦𝑦1, 𝑦𝑦2; 𝑧𝑧󶀱󶀱 = 󶙥󶙥
𝑦𝑦1 (𝑧𝑧) 𝑦𝑦2 (𝑧𝑧)
𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

󶙥󶙥 . (88)

en the 𝑞𝑞-Casorati determinant 󵰄󵰄𝐶𝐶𝑞𝑞(𝑧𝑧𝑧 vanishes identically
on ℂ if and only if the functions 𝑦𝑦1(𝑧𝑧𝑧 and 𝑦𝑦2(𝑧𝑧𝑧 are linearly
dependent over the �eld of functions 𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙  𝜙𝜙𝜙𝜙𝜙𝜙. On the
other hand, 𝑔𝑔1(𝑧𝑧𝑧 and 𝑔𝑔2(𝑧𝑧𝑧 are linear independent if and
only if󵰄󵰄𝐶𝐶𝑞𝑞(𝑔𝑔1, 𝑔𝑔2; 𝑧𝑧𝑧 ̸≡0 . From this de�nition, we have some
properties on the 𝑞𝑞-Casorati determinant󵰄󵰄𝐶𝐶𝑞𝑞(𝑧𝑧𝑧 as follows.

eorem 15. If 𝑦𝑦1(𝑧𝑧𝑧 and 𝑦𝑦2(𝑧𝑧𝑧 are nontrivial meromorphic
solutions of (5), then 𝑞𝑞-Casorati determinant 󵰄󵰄𝐶𝐶𝑞𝑞(𝑦𝑦1, 𝑦𝑦2; 𝑧𝑧𝑧
satis�es a �rst-order 𝑞𝑞-difference equation

Δ𝑞𝑞󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧) = 󶀡󶀡𝑎𝑎0 − 1󶀱󶀱󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧) . (89)

Conversely, we assume that 𝑦𝑦1(𝑧𝑧𝑧𝑧 ̸≡0)  and 𝑦𝑦2(𝑧𝑧𝑧 satisfy (89).
If 𝑦𝑦1(𝑧𝑧𝑧 is a meromorphic solution of (5), then 𝑦𝑦2(𝑧𝑧𝑧 is also a
meromorphic solution of (5).

Proof of eorem 15. Suppose �rst that 𝑦𝑦1(𝑧𝑧𝑧 and 𝑦𝑦2(𝑧𝑧𝑧 are
nontrivial meromorphic solutions of (5), we conclude that

󵰄󵰄𝐶𝐶𝑞𝑞 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

= 󵰄󵰄𝐶𝐶𝑞𝑞 󶀡󶀡𝑦𝑦1, 𝑦𝑦2; 𝑞𝑞𝑞𝑞󶀱󶀱 = 󶙀󶙀

󶙘󶙘

𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

𝑦𝑦1 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲 𝑦𝑦2 󶀢󶀢𝑞𝑞

2𝑧𝑧󶀲󶀲
󶙀󶙀

󶙘󶙘

= 󶙀󶙀

󶙘󶙘

𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
−𝑎𝑎1𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 − 𝑎𝑎0 (𝑧𝑧) 𝑦𝑦1 (𝑧𝑧) −𝑎𝑎1𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 − 𝑎𝑎0 (𝑧𝑧) 𝑦𝑦2 (𝑧𝑧)

󶙀󶙀

󶙘󶙘

= 󶙀󶙀

󶙘󶙘

𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
−𝑎𝑎0 (𝑧𝑧) 𝑦𝑦1 (𝑧𝑧) −𝑎𝑎0 (𝑧𝑧) 𝑦𝑦2 (𝑧𝑧)

󶙀󶙀

󶙘󶙘

= 𝑎𝑎0 (𝑧𝑧) 󶙀󶙀

󶙘󶙘

𝑦𝑦1 (𝑧𝑧) 𝑦𝑦2 (𝑧𝑧)
𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

󶙀󶙀

󶙘󶙘
= 𝑎𝑎0 (𝑧𝑧)󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧) .

(90)

erefore,

Δ𝑞𝑞󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧) = 󵰄󵰄𝐶𝐶𝑞𝑞 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 − 󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧) = 󶀡󶀡𝑎𝑎0 (𝑧𝑧) − 1󶀱󶀱󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧) . (91)

Second, if 𝑦𝑦1(𝑧𝑧𝑧𝑧 ̸≡0)  and 𝑦𝑦2(𝑧𝑧𝑧 satisfy (89), then we have

󶙀󶙀

󶙘󶙘

𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

𝑦𝑦1 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲 𝑦𝑦2 󶀢󶀢𝑞𝑞

2𝑧𝑧󶀲󶀲
󶙀󶙀

󶙘󶙘
= 𝑎𝑎0 (𝑧𝑧) 󶙀󶙀

󶙘󶙘

𝑦𝑦1 (𝑧𝑧) 𝑦𝑦2 (𝑧𝑧)

𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
󶙀󶙀

󶙘󶙘
. (92)

We note that, for any meromorphic function 𝑐𝑐𝑐𝑐𝑐𝑐 ̸≡0 ,

󶙀󶙀

󶙘󶙘

𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

𝑦𝑦1 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲 𝑦𝑦2 󶀢󶀢𝑞𝑞

2𝑧𝑧󶀲󶀲
󶙀󶙀

󶙘󶙘

= 󶙀󶙀

󶙘󶙘

𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

𝑦𝑦1 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲 + 𝑐𝑐 (𝑧𝑧) 𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦2 󶀢󶀢𝑞𝑞

2𝑧𝑧󶀲󶀲 + 𝑐𝑐 (𝑧𝑧) 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
󶙀󶙀

󶙘󶙘
.

(93)

In particular, we take 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  1(𝑧𝑧𝑧. us,

󶙀󶙀

󶙘󶙘

𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

𝑦𝑦1 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲 + 𝑎𝑎1 (𝑧𝑧) 𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦2 󶀢󶀢𝑞𝑞

2𝑧𝑧󶀲󶀲 + 𝑎𝑎1 (𝑧𝑧) 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
󶙀󶙀

󶙘󶙘

= 𝑎𝑎0 (𝑧𝑧) 󶙀󶙀

󶙘󶙘

𝑦𝑦1 (𝑧𝑧) 𝑦𝑦2 (𝑧𝑧)

𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
󶙀󶙀

󶙘󶙘
.

(94)

So, we have

󶙀󶙀

󶙘󶙘

𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

𝑦𝑦1 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲 + 𝑎𝑎1 (𝑧𝑧) 𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦2 󶀢󶀢𝑞𝑞

2𝑧𝑧󶀲󶀲 + 𝑎𝑎1 (𝑧𝑧) 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
󶙀󶙀

󶙘󶙘

+ 󶙀󶙀

󶙘󶙘

𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
𝑎𝑎0 (𝑧𝑧) 𝑦𝑦1 (𝑧𝑧) 𝑎𝑎0 (𝑧𝑧) 𝑦𝑦2 (𝑧𝑧)

󶙀󶙀

󶙘󶙘
=0 .

(95)
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From this, we conclude that

𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 󶁢󶁢𝑦𝑦2 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲 + 𝑎𝑎1 (𝑧𝑧) 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 + 𝑎𝑎0 (𝑧𝑧) 𝑦𝑦2 (𝑧𝑧)󶁲󶁲

= 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 󶀱󶀱𝑦𝑦1 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲 + 𝑎𝑎1 (𝑧𝑧) 𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 + 𝑎𝑎0 (𝑧𝑧) 𝑦𝑦1 (𝑧𝑧)󶁲󶁲 .

(96)

Since 𝑦𝑦1(𝑧𝑧𝑧𝑧 ̸≡ 0) is a meromorphic solution of (5), we have

𝑦𝑦1 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲 + 𝑎𝑎1 (𝑧𝑧) 𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 + 𝑎𝑎0 (𝑧𝑧) 𝑦𝑦1 (𝑧𝑧) = 0, (97)

and so,

𝑦𝑦2 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲 + 𝑎𝑎1 (𝑧𝑧) 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 + 𝑎𝑎0 (𝑧𝑧) 𝑦𝑦2 (𝑧𝑧) = 0. (98)

is shows that 𝑦𝑦2(𝑧𝑧𝑧 is a meromorphic solution of (5). e
proof of eorem 15 is completed.

eorem 16. (i) Let 𝑦𝑦1(𝑧𝑧𝑧 and 𝑦𝑦2(𝑧𝑧𝑧 be linear indepen-
dent meromorphic solutions of (5), and let󵰄󵰄𝐶𝐶𝑞𝑞(𝑧𝑧𝑧 be the 𝑞𝑞-
Casoratian determinant of 𝑦𝑦1(𝑧𝑧𝑧 and 𝑦𝑦2(𝑧𝑧𝑧. en 𝑦𝑦2(𝑧𝑧𝑧 is
represented as 𝑦𝑦2(𝑧𝑧𝑧𝑧  𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧1(𝑧𝑧𝑧, where 𝑔𝑔𝑔𝑔𝑔𝑔 satis�es

Δ𝑞𝑞𝑔𝑔 (𝑧𝑧) =
󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧)

𝑦𝑦1 (𝑧𝑧) 𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
. (99)

(ii) Let 𝑦𝑦1(𝑧𝑧𝑧 be a nontrivial meromorphic solution of (5),
and let 󵰄󵰄𝐶𝐶𝑞𝑞(𝑧𝑧𝑧 be a meromorphic solution of (89). If 𝑔𝑔𝑔𝑔𝑔𝑔
satis�es (99), then 𝑦𝑦2(𝑧𝑧𝑧𝑧  𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧1(𝑧𝑧𝑧 is a meromorphic
solution of (5).

Proof of eorem 16. (i) From the de�nition of 󵰄󵰄𝐶𝐶𝑞𝑞(𝑧𝑧𝑧, we
obtain

󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧) = 𝑦𝑦1 (𝑧𝑧) 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 − 𝑦𝑦2 (𝑧𝑧) 𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 . (100)

is shows that 𝑦𝑦2(𝑧𝑧𝑧 satis�es �rst-order 𝑞𝑞-difference equa-
tion of type

𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 = 𝑦𝑦2 (𝑧𝑧) ⋅
𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
𝑦𝑦1 (𝑧𝑧)

+
󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧)
𝑦𝑦1 (𝑧𝑧)

. (101)

By substituting 𝑦𝑦2(𝑧𝑧𝑧𝑧  𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧1(𝑧𝑧𝑧 into (101), we conclude
that

𝑔𝑔 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 = 𝑔𝑔 (𝑧𝑧) 𝑦𝑦1 (𝑧𝑧) ⋅
𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
𝑦𝑦1 (𝑧𝑧)

+
󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧)
𝑦𝑦1 (𝑧𝑧)

, (102)

and so we obtain the desired form (99).
(ii) Obviously, we conclude from (99) and (89) that

𝑔𝑔 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 = 𝑔𝑔 (𝑧𝑧) +
󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧)

𝑦𝑦1 (𝑧𝑧) 𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
,

𝑔𝑔 󶀢󶀢𝑞𝑞2𝑧𝑧󶀲󶀲 = 𝑔𝑔 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 +
󵰄󵰄𝐶𝐶𝑞𝑞 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦1 󶀡󶀡𝑞𝑞2𝑧𝑧󶀱󶀱

= 𝑔𝑔 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 +
𝑎𝑎0 (𝑧𝑧)󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧)

𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦1 󶀡󶀡𝑞𝑞2𝑧𝑧󶀱󶀱
.

(103)

Since 𝑦𝑦2(𝑧𝑧𝑧𝑧  𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧1(𝑧𝑧𝑧,󵰄󵰄𝐶𝐶𝑞𝑞(𝑧𝑧𝑧𝑧𝑧𝑧  1(𝑧𝑧𝑧𝑧𝑧2(𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞2(𝑧𝑧𝑧𝑧𝑧1(𝑞𝑞𝑞𝑞𝑞,
and

𝑦𝑦1 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲 + 𝑎𝑎1 (𝑧𝑧) 𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 + 𝑎𝑎0 (𝑧𝑧) 𝑦𝑦1 (𝑧𝑧) = 0, (104)

we conclude from (103), and (104) that

𝑦𝑦2 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲

= 𝑔𝑔 󶀢󶀢𝑞𝑞2𝑧𝑧󶀲󶀲 𝑦𝑦1 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲

= 󶀧󶀧𝑔𝑔 (𝑧𝑧) +
󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧)

𝑦𝑦1 (𝑧𝑧) 𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
+

𝑎𝑎0 (𝑧𝑧)󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧)
𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 𝑦𝑦1 󶀡󶀡𝑞𝑞2𝑧𝑧󶀱󶀱

󶀷󶀷𝑦𝑦1 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲

= 𝑔𝑔 (𝑧𝑧) 𝑦𝑦1 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲 +

𝑦𝑦1 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲 + 𝑎𝑎0 (𝑧𝑧) 𝑦𝑦1 (𝑧𝑧)
𝑦𝑦1 (𝑧𝑧) 𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

⋅󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧)

= 𝑔𝑔 (𝑧𝑧) 𝑦𝑦1 󶀢󶀢𝑞𝑞
2𝑧𝑧󶀲󶀲 +

−𝑎𝑎1 (𝑧𝑧) 𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱
𝑦𝑦1 (𝑧𝑧) 𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱

⋅󵰄󵰄𝐶𝐶𝑞𝑞 (𝑧𝑧)

=
𝑦𝑦2 (𝑧𝑧)
𝑦𝑦1 (𝑧𝑧)

⋅ 󶀡󶀡−𝑎𝑎1 (𝑧𝑧) 𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 − 𝑎𝑎0 (𝑧𝑧) 𝑦𝑦1 (𝑧𝑧)󶀱󶀱 −
𝑎𝑎1 (𝑧𝑧)
𝑦𝑦1 (𝑧𝑧)

⋅ 󶀡󶀡𝑦𝑦1 (𝑧𝑧) 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 − 𝑦𝑦2 (𝑧𝑧) 𝑦𝑦1 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱󶀱󶀱

= −𝑎𝑎1 (𝑧𝑧) 𝑦𝑦2 󶀡󶀡𝑞𝑞𝑞𝑞󶀱󶀱 − 𝑎𝑎0 (𝑧𝑧) 𝑦𝑦2 (𝑧𝑧) .
(105)

is yields that 𝑦𝑦2(𝑧𝑧𝑧𝑧  𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧1(𝑧𝑧𝑧 is a meromorphic solution
of (5). e proof of eorem 16 is completed.
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