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We consider 𝑞𝑞-difference Riccati equations and second-order linear 𝑞𝑞-difference equations in the complex plane. We present
some basic properties, such as the transformations between these two equations, the representations and the value distribution
of meromorphic solutions of 𝑞𝑞-difference Riccati equations, and the 𝑞𝑞-Casorati determinant of meromorphic solutions of second-
order linear 𝑞𝑞-difference equations. In particular, we �nd that the meromorphic solutions of these two equations are concerned
with the 𝑞𝑞-Gamma function when 𝑞𝑞 𝑞 𝑞 such that 0 < |𝑞𝑞| < 𝑞. Some examples are also listed to illustrate our results.

1. Introduction andMain Results

In this paper, a meromorphic function means meromorphic
in the whole complex plane 𝑞, unless stated otherwise. We
also assume that the reader is familiar with the standard
symbols and fundamental results such as 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚,
and 𝑇𝑇𝑚𝑚𝑚𝑚 𝑚𝑚𝑚, of Nevanlinna theory, see, for example, [1, 2],
for a given meromorphic function 𝑚𝑚𝑚𝑓𝑓𝑚. A meromorphic
function 𝑎𝑎𝑚𝑓𝑓𝑚 is said to be a small function relative to 𝑚𝑚𝑚𝑓𝑓𝑚 if
𝑇𝑇𝑚𝑚𝑚𝑚 𝑎𝑎𝑚 𝑇 𝑇𝑇𝑚𝑚𝑚𝑚 𝑚𝑚𝑚, where 𝑇𝑇𝑚𝑚𝑚𝑚 𝑚𝑚𝑚 is used to denote any quantity
satisfying 𝑇𝑇𝑚𝑚𝑚𝑚 𝑚𝑚𝑚 𝑇 𝑆𝑆𝑚𝑆𝑇𝑇𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑆 as 𝑚𝑚 𝑟 𝑟, possibly outside
of a set of �nite logarithmic measure, furthermore, possibly
outside of a set 𝐸𝐸 of logarithmic density logdens𝑚𝐸𝐸𝑚 𝑇
lim𝑚𝑚𝑟𝑟 ∫[𝑞𝑚𝑚𝑚𝑟𝑟𝐸𝐸𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑑 l𝑑𝑑 𝑚𝑚 𝑇 0. For a small function 𝑎𝑎𝑚𝑓𝑓𝑚
relative to 𝑚𝑚𝑚𝑓𝑓𝑚, we de�ne

𝛿𝛿 𝑎𝑎𝑚 𝑚𝑚𝑇 lim
𝑚𝑚𝑟𝑟

𝑚𝑚 𝑚𝑚𝑚 𝑞𝑑 𝑚𝑚 𝑓 𝑎𝑎
𝑇𝑇 𝑚𝑚𝑚 𝑚𝑚

𝑇𝑞𝑓 lim
𝑚𝑚𝑟𝑟

𝑚𝑚𝑚𝑚𝑚 𝑞𝑑 𝑚𝑚 𝑓 𝑎𝑎
𝑇𝑇 𝑚𝑚𝑚 𝑚𝑚

.

(1)

Recently, Ishizaki [3] considered difference Riccati equa-
tion

Δ𝑚𝑚 𝑚𝑓𝑓𝑚 +
𝑚𝑚𝑚𝑓𝑓𝑚2 + 𝐴𝐴 𝑚𝑓𝑓𝑚
𝑚𝑚 𝑚𝑓𝑓𝑚 𝑓 𝑞

𝑇 0𝑚 (2)

and second-order linear difference equation

Δ2𝑦𝑦 𝑚𝑓𝑓𝑚 + 𝐴𝐴 𝑚𝑓𝑓𝑚 𝑦𝑦 𝑚𝑓𝑓𝑚 𝑇 0𝑚 (3)

where 𝐴𝐴𝑚𝑓𝑓𝑚 is meromorphic function, and gave surveys of
basic properties of (2) and (3), which are analogues in the
differential cases.

Now, we are concernedwith 𝑞𝑞-difference Riccati equation

𝑔𝑔 𝑞𝑞𝑓𝑓 𝑇 𝑓
𝑎𝑎𝑞 𝑚𝑓𝑓𝑚 𝑔𝑔 𝑚𝑓𝑓𝑚 + 𝑎𝑎0 𝑚𝑓𝑓𝑚

𝑔𝑔 𝑚𝑓𝑓𝑚
𝑚 (4)

and second-order linear 𝑞𝑞-difference equation

𝑚𝑚 𝑞𝑞2𝑓𝑓 + 𝑎𝑎𝑞 𝑚𝑓𝑓𝑚 𝑚𝑚 𝑞𝑞𝑓𝑓 + 𝑎𝑎0 𝑚𝑓𝑓𝑚 𝑚𝑚 𝑚𝑓𝑓𝑚 𝑇 0𝑚 (5)

where 𝑞𝑞 𝑞 𝑞 𝑞 𝑆0𝑆, |𝑞𝑞| 𝑞 𝑞, 𝑎𝑎𝑞𝑚𝑓𝑓𝑚 and 𝑎𝑎0𝑚𝑓𝑓𝑚 ̸≡ 0 are ratio-
nal functions and will obtain some parallel results for 𝑞𝑞-
difference case. For a meromorphic function ℎ𝑚𝑓𝑓𝑚, the 𝑞𝑞-
difference operator Δ𝑞𝑞 is de�ned by Δ𝑞𝑞ℎ𝑚𝑓𝑓𝑚 𝑇 ℎ𝑚𝑞𝑞𝑓𝑓𝑚 𝑓 ℎ𝑚𝑓𝑓𝑚.

is paper is organized as follows. In Section 2, we
describe the transformation between 𝑞𝑞-difference Riccati
equation (4) and second-order linear 𝑞𝑞-difference equation
(5). In Section 3, we present some properties of 𝑞𝑞-difference
Riccati equation (4), such as 𝑞𝑞-difference analogue on the
property of a cross ratio for four distinct meromorphic
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solutions of a differential Riccati equation, the meromorphic
solutions concerning with 𝑞𝑞-Gamma function. In Section 4,
we study the value distribution of transcendental meromor-
phic solutions of 𝑞𝑞-difference Riccati equation (4) and the
form of meromorphic solutions of second-order linear 𝑞𝑞-
difference equation (5). In Section 5,we discuss the properties
on the 𝑞𝑞-Casorati determinant of meromorphic solutions of
second-order linear 𝑞𝑞-difference equation (5).

2. Transformations between 𝑞𝑞-Difference
Riccati Equations and Linear 𝑞𝑞-Difference
Equations of Second-Order

It is well known that a differential Riccati equation

𝑤𝑤′ (𝑧𝑧) + 𝑤𝑤(𝑧𝑧)2 + 𝐴𝐴 (𝑧𝑧) = 0 (6)

and second-order linear differential equation

𝑢𝑢′′ (𝑧𝑧) + 𝐴𝐴 (𝑧𝑧) 𝑢𝑢 (𝑧𝑧) = 0 (7)

are closely related by the transformation

𝑤𝑤 (𝑧𝑧) = −
𝑢𝑢′ (𝑧𝑧)
𝑢𝑢 (𝑧𝑧)

, (8)

where 𝐴𝐴(𝑧𝑧) is a meromorphic function, see, for example, [4,
pages 103–106].

Ishizaki [3] considered a difference analogue of (6) and
(7) and obtained that difference Riccati equation (2) and
second-order linear difference equation (3) are closely linked
by the transformation

𝑓𝑓 (𝑧𝑧) = −
Δ𝑦𝑦 (𝑧𝑧)
𝑦𝑦 (𝑧𝑧)

, (9)

where 𝐴𝐴(𝑧𝑧) is a meromorphic function.
Here, we are concerned with a transformation between

(4) and (5), see [5]. For a nontrivial meromorphic solution
𝑓𝑓(𝑧𝑧) of (5), we take

𝑔𝑔 (𝑧𝑧) =
𝑓𝑓 𝑞𝑞𝑧𝑧
𝑓𝑓 (𝑧𝑧)

. (10)

en 𝑔𝑔(𝑧𝑧) satis�es 𝑞𝑞-difference Riccati equation (4). In fact,
we deduce from (5) that

𝑓𝑓 𝑞𝑞2𝑧𝑧
𝑓𝑓 𝑞𝑞𝑧𝑧

+ 𝑎𝑎1 (𝑧𝑧) + 𝑎𝑎0 (𝑧𝑧)
𝑓𝑓 (𝑧𝑧)
𝑓𝑓 𝑞𝑞𝑧𝑧

= 0, (11)

which implies the desired form of (4).
Conversely, if (4) admits a nontrivial meromorphic solu-

tion 𝑔𝑔(𝑧𝑧), then meromorphic function 𝑓𝑓(𝑧𝑧) of �rst-order 𝑞𝑞-
difference equation (10) satis�es (5). In fact, we conclude
from (4) and (10) that

𝑓𝑓 𝑞𝑞2𝑧𝑧 = 𝑔𝑔 𝑞𝑞𝑧𝑧 𝑓𝑓 𝑞𝑞𝑧𝑧 = −
𝑎𝑎1 (𝑧𝑧) 𝑔𝑔 (𝑧𝑧) + 𝑎𝑎0 (𝑧𝑧)

𝑔𝑔 (𝑧𝑧)
𝑓𝑓 𝑞𝑞𝑧𝑧

= −𝑎𝑎1 (𝑧𝑧) 𝑓𝑓 𝑞𝑞𝑧𝑧 − 𝑎𝑎0 (𝑧𝑧) 𝑓𝑓 (𝑧𝑧) ,
(12)

which implies (5).

Example 1. Suppose that 𝑞𝑞 𝑞 𝑞 𝑞 𝑞0𝑞 and |𝑞𝑞| 𝑞 1. Let 𝑎𝑎0(𝑧𝑧) =
(𝑞𝑞2𝑧𝑧2 − (𝑞𝑞2 − 2𝑞𝑞 − 1)𝑧𝑧 + 1)𝑞(1 − 𝑧𝑧2) and 𝑎𝑎1(𝑧𝑧) = 2𝑞(𝑧𝑧 − 1).
en 𝑔𝑔(𝑧𝑧) = (𝑞𝑞𝑧𝑧 + 1)𝑞(𝑧𝑧 + 1) and 𝑓𝑓(𝑧𝑧) = 𝑧𝑧 + 1 satisfy
𝑞𝑞-difference Riccati equation (4) and second-order linear 𝑞𝑞-
difference equation (5), respectively, which both satisfy the
transformation (10).

3. Representations of Solutions of 𝑞𝑞-Difference
Riccati Equations

e representations on meromorphic solutions of Riccati
equations are interesting. Bank et al. [6, pages 371–373]
obtained that differential Riccati equation (6) possesses a one
parameter family ofmeromorphic solutions (𝑓𝑓𝑐𝑐)𝑐𝑐𝑞𝑞 if (6) has
three distinctmeromorphic solutions 𝛼𝛼1(𝑧𝑧), 𝛼𝛼2(𝑧𝑧), and 𝛼𝛼3(𝑧𝑧).
Ishizaki extended this property to difference Riccati equation
(2) and obtained a difference analogue of this property, see
[3, Proposition 2.1]. Now, we present this property for 𝑞𝑞-
difference case below, which can also be seen as a 𝑞𝑞-difference
analogue of the fact that a cross ratio for four distinct
meromorphic solutions of a differential Riccati equation is a
constant, see, for example, [4, pages 108-109]. Furthermore,
we �nd that meromorphic solutions of 𝑞𝑞-difference Riccati
equations (4) are concernedwith 𝑞𝑞- Gamma function if 𝑞𝑞 𝑞 𝑞
such that 0 < |𝑞𝑞| < 1.

eorem2. Suppose that (4) possesses three distinctmeromor-
phic solutions 𝑔𝑔1(𝑧𝑧), 𝑔𝑔2(𝑧𝑧), and 𝑔𝑔3(𝑧𝑧). en any meromorphic
solution 𝑔𝑔(𝑧𝑧) of (4) can be represented by

𝑔𝑔 (𝑧𝑧) = 𝑔𝑔1 (𝑧𝑧) 𝑔𝑔2 (𝑧𝑧) − 𝑔𝑔2 (𝑧𝑧) 𝑔𝑔3 (𝑧𝑧) − 𝑔𝑔1 (𝑧𝑧) 𝑔𝑔2 (𝑧𝑧) 𝜙𝜙 (𝑧𝑧)

+𝑔𝑔1 (𝑧𝑧) 𝑔𝑔3 (𝑧𝑧) 𝜙𝜙 (𝑧𝑧)

× 𝑔𝑔1 (𝑧𝑧) − 𝑔𝑔3 (𝑧𝑧) − 𝑔𝑔2 (𝑧𝑧) 𝜙𝜙 (𝑧𝑧) + 𝑔𝑔3 (𝑧𝑧) 𝜙𝜙 (𝑧𝑧)
−1,
(13)

where 𝜙𝜙(𝑧𝑧) is a meromorphic function satisfying 𝜙𝜙(𝑞𝑞𝑧𝑧) = 𝜙𝜙(𝑧𝑧).
Conversely, if for any meromorphic function 𝜙𝜙(𝑧𝑧) satisfying
𝜙𝜙(𝑞𝑞𝑧𝑧) = 𝜙𝜙(𝑧𝑧), we de�ne a function 𝑔𝑔(𝑧𝑧) by (13), then 𝑔𝑔(𝑧𝑧)
is a meromorphic solution of (4).

Proof of eorem 2. Let ℎ𝑗𝑗(𝑧𝑧), 𝑗𝑗 = 1, 2, 3, 𝑧 be distinct mero-
morphic functions. We denote a cross ratio of ℎ𝑗𝑗(𝑧𝑧), 𝑗𝑗 =
1, 2, 3, 𝑧 by

𝑅𝑅 ℎ1, ℎ2, ℎ3, ℎ𝑧; 𝑧𝑧 =
ℎ1 (𝑧𝑧) − ℎ3 (𝑧𝑧)
ℎ1 (𝑧𝑧) − ℎ𝑧 (𝑧𝑧)

∶
ℎ2 (𝑧𝑧) − ℎ3 (𝑧𝑧)
ℎ2 (𝑧𝑧) − ℎ𝑧 (𝑧𝑧)

.

(14)

Suppose that 𝑔𝑔(𝑧𝑧) is meromorphic solution of (4) and is also
distinct from 𝑔𝑔1(𝑧𝑧), 𝑔𝑔2(𝑧𝑧), and 𝑔𝑔3(𝑧𝑧). We �rst show that 𝑔𝑔(𝑧𝑧)
is ameromorphic solution of 𝑞𝑞-differenceRiccati equation (4)
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if and only if 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅𝑅, where 𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3, 𝑅𝑅𝑔 𝑅𝑅𝑅.
In fact, we conclude from (4) that

𝑅𝑅 𝑅𝑅𝑅𝑅 𝑅
𝑅𝑅1 𝑅𝑅𝑅𝑅 − 𝑅𝑅3 𝑅𝑅𝑅𝑅
𝑅𝑅1 𝑅𝑅𝑅𝑅 − 𝑅𝑅 𝑅𝑅𝑅𝑅

∶
𝑅𝑅2 𝑅𝑅𝑅𝑅 − 𝑅𝑅3 𝑅𝑅𝑅𝑅
𝑅𝑅2 𝑅𝑅𝑅𝑅 − 𝑅𝑅 𝑅𝑅𝑅𝑅

𝑅
𝑎𝑎0 𝑅𝑅𝑅𝑅 𝑅𝑅1 𝑅𝑅𝑅𝑅 − 𝑅𝑅3 𝑅𝑅𝑅𝑅 /𝑅𝑅1 𝑅𝑅𝑅𝑅 𝑅𝑅3 𝑅𝑅𝑅𝑅
𝑎𝑎0 𝑅𝑅𝑅𝑅 𝑅𝑅1 𝑅𝑅𝑅𝑅 − 𝑅𝑅 𝑅𝑅𝑅𝑅 /𝑅𝑅1 𝑅𝑅𝑅𝑅 𝑅𝑅 𝑅𝑅𝑅𝑅

∶
𝑎𝑎0 𝑅𝑅𝑅𝑅 𝑅𝑅2 𝑅𝑅𝑅𝑅 − 𝑅𝑅3 𝑅𝑅𝑅𝑅 /𝑅𝑅2 𝑅𝑅𝑅𝑅 𝑅𝑅3 𝑅𝑅𝑅𝑅
𝑎𝑎0 𝑅𝑅𝑅𝑅 𝑅𝑅2 𝑅𝑅𝑅𝑅 − 𝑅𝑅 𝑅𝑅𝑅𝑅 /𝑅𝑅2 𝑅𝑅𝑅𝑅 𝑅𝑅 𝑅𝑅𝑅𝑅

𝑅
𝑅𝑅1 𝑅𝑅𝑅𝑅 − 𝑅𝑅3 𝑅𝑅𝑅𝑅
𝑅𝑅1 𝑅𝑅𝑅𝑅 − 𝑅𝑅 𝑅𝑅𝑅𝑅

∶
𝑅𝑅2 𝑅𝑅𝑅𝑅 − 𝑅𝑅3 𝑅𝑅𝑅𝑅
𝑅𝑅2 𝑅𝑅𝑅𝑅 − 𝑅𝑅 𝑅𝑅𝑅𝑅

𝑅 𝑅𝑅 𝑅𝑅𝑅𝑅 .

(15)

Conversely, if 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅𝑅, then

𝑎𝑎0 𝑅𝑅𝑅𝑅 𝑅𝑅1 𝑅𝑅𝑅𝑅 − 𝑅𝑅3 𝑅𝑅𝑅𝑅 /𝑅𝑅1 𝑅𝑅𝑅𝑅 𝑅𝑅3 𝑅𝑅𝑅𝑅
− 𝑎𝑎1 𝑅𝑅𝑅𝑅 𝑅𝑅 𝑅𝑅𝑅𝑅 + 𝑎𝑎0 𝑅𝑅𝑅𝑅 /𝑅𝑅 𝑅𝑅𝑅𝑅 − 𝑅𝑅 𝑅𝑅𝑅𝑅

∶
𝑎𝑎0 𝑅𝑅𝑅𝑅 𝑅𝑅2 𝑅𝑅𝑅𝑅 − 𝑅𝑅3 𝑅𝑅𝑅𝑅 /𝑅𝑅2 𝑅𝑅𝑅𝑅 𝑅𝑅3 𝑅𝑅𝑅𝑅
− 𝑎𝑎2 𝑅𝑅𝑅𝑅 𝑅𝑅 𝑅𝑅𝑅𝑅 + 𝑎𝑎0 𝑅𝑅𝑅𝑅 /𝑅𝑅 𝑅𝑅𝑅𝑅 − 𝑅𝑅 𝑅𝑅𝑅𝑅

𝑅
𝑅𝑅1 𝑅𝑅𝑅𝑅 − 𝑅𝑅3 𝑅𝑅𝑅𝑅
𝑅𝑅1 𝑅𝑅𝑅𝑅 − 𝑅𝑅 𝑅𝑅𝑅𝑅

∶
𝑅𝑅2 𝑅𝑅𝑅𝑅 − 𝑅𝑅3 𝑅𝑅𝑅𝑅
𝑅𝑅2 𝑅𝑅𝑅𝑅 − 𝑅𝑅 𝑅𝑅𝑅𝑅

.

(16)

We conclude from (16) that 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 −𝑅𝑎𝑎1𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑎𝑎0𝑅𝑅𝑅𝑅𝑅/
𝑅𝑅𝑅𝑅𝑅𝑅, which shows that 𝑅𝑅𝑅𝑅𝑅𝑅 satis�es (4).

us, for any meromorphic function 𝜙𝜙𝑅𝑅𝑅𝑅 satisfying
𝜙𝜙𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝜙𝜙𝑅𝑅𝑅𝑅, we de�ne 𝑅𝑅𝑅𝑅𝑅𝑅 by

𝑅𝑅 𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3, 𝑅𝑅𝑔 𝑅𝑅 𝑅 𝜙𝜙 𝑅𝑅𝑅𝑅 . (17)

en 𝑅𝑅𝑅𝑅𝑅𝑅 is represented by (13), and also satis�es 𝑅𝑅-
difference Riccati equation (4). e proof of eorem 2 is
completed.

Now, we recall some results of transcendental meromor-
phic solutions concerned with 𝑅𝑅-difference Riccati equation
(4). Bergweiler et al. [7, 8] pointed out that all transcendental
meromorphic solutions of (5) satisfy 𝑇𝑇𝑅𝑇𝑇, 𝑇𝑇𝑅 𝑅 𝑇𝑇𝑅𝑅𝑇𝑇𝑇 𝑇𝑇𝑅2𝑅 if
𝑅𝑅 𝑞 𝑞 and 0 < |𝑅𝑅| < 1. Since (10) is a transformation between
(4) and (5), we obtain that all transcendental meromorphic
solutions of (4) are of order zero if 𝑅𝑅 𝑞 𝑞 and 0 < |𝑅𝑅| < 1.
On the other hand, if 𝑅𝑅𝑅𝑅𝑅𝑅 is a transcendental meromorphic
solution of

𝑅𝑅 𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅 𝑅𝑅, 𝑅𝑅 𝑅𝑅𝑅𝑅 , (18)

where 𝑅𝑅 𝑞 𝑞, |𝑅𝑅| 𝑞 1 and the coefficients of 𝑅𝑅𝑅𝑅𝑅, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅
are small functions relative to 𝑅𝑅𝑅𝑅𝑅𝑅, Gundersen et al. [9]
showed that the order of growth of (18) is equal to
𝑇𝑇𝑇 de𝑇𝑅𝑅𝑅𝑅𝑅𝑅/ 𝑇𝑇𝑇 |𝑅𝑅|, where de𝑇𝑅𝑅𝑅𝑅𝑅𝑅 is the degree of irre-
ducible rational function 𝑅𝑅𝑅𝑅𝑅, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅 in 𝑅𝑅𝑅𝑅𝑅𝑅. us, from the
above two cases, we obtain that all transcendental meromor-
phic solutions of (4) are of order zero for all 𝑅𝑅 𝑞 𝑞 𝑞 𝑞0𝑞 and
|𝑅𝑅| 𝑞 1.

We also illustrate some of the results on 𝑅𝑅-difference
equations, which are explicitly solvable in terms of known
zero-order meromorphic functions (see [5]). Let 𝑅𝑅 𝑞 𝑞 be

such that 0 < |𝑅𝑅| < 1. en 𝑅𝑅-Gamma function Γ𝑅𝑅𝑅𝑥𝑥𝑅 is
de�ned by

Γ𝑅𝑅 𝑅𝑥𝑥𝑅 ∶𝑅
𝑅𝑅𝑔 𝑅𝑅∞
𝑅𝑅𝑥𝑥𝑔 𝑅𝑅∞

1 − 𝑅𝑅1−𝑥𝑥, (19)

where 𝑅𝑎𝑎𝑔 𝑅𝑅𝑅∞ 𝑅 ∏∞
𝑘𝑘𝑅0𝑅1 − 𝑎𝑎𝑅𝑅

𝑘𝑘𝑅. It is a meromorphic function
with poles at 𝑥𝑥 𝑅 −𝑥𝑥 𝑥 2𝑥𝑥𝑥𝑥𝑘𝑘/ 𝑇𝑇𝑇 𝑅𝑅, where 𝑘𝑘 and 𝑥𝑥 are
nonnegative integers, see [10]. By de�ning

𝛾𝛾𝑅𝑅 𝑅𝑅𝑅𝑅 ∶𝑅 1 − 𝑅𝑅
𝑥𝑥−1Γ𝑅𝑅 𝑅𝑥𝑥𝑅 , 𝑅𝑅 𝑅 𝑅𝑅𝑥𝑥, (20)

and 𝛾𝛾𝑅𝑅𝑅0𝑅 ∶𝑅 𝑅𝑅𝑅𝑔 𝑅𝑅𝑅∞, we see that 𝛾𝛾𝑅𝑅𝑅𝑅𝑅𝑅 is a meromorphic
function of zero-order with no zeros, having its poles at
𝑞𝑅𝑅𝑘𝑘𝑞

∞
𝑘𝑘𝑅0.
erefore, the �rst-order linear 𝑅𝑅-difference equation

ℎ 𝑅𝑅𝑅𝑅 𝑅 𝑅1 − 𝑅𝑅𝑅 ℎ 𝑅𝑅𝑅𝑅 (21)

is solved by the function 𝛾𝛾𝑅𝑅𝑅𝑅𝑅𝑅. �oreover, for general �rst-
order linear 𝑅𝑅-difference equation,

ℎ 𝑅𝑅𝑅𝑅 𝑅 𝑎𝑎 𝑅𝑅𝑅𝑅 ℎ 𝑅𝑅𝑅𝑅 , (22)

where 𝑎𝑎𝑅𝑅𝑅𝑅 is a rational function. If 𝑎𝑎𝑅𝑅𝑅𝑅 𝑎 𝑎𝑎 is a constant, (22)
is solvable in terms of rational functions if and only if 𝑇𝑇𝑇𝑅𝑅𝑎𝑎
is an integer. If 𝑎𝑎𝑅𝑅𝑅𝑅 is nonconstant, let 𝛼𝛼𝑥𝑥, 𝑥𝑥 𝑅 1, 2,𝑖 , 𝑥𝑥 and
𝛽𝛽𝑗𝑗, 𝑗𝑗 𝑅 1, 2,𝑖 ,𝑗𝑗 be the zeros and poles of 𝑎𝑎𝑅𝑅𝑅𝑅, respectively,
repeated according to their multiplicities. en 𝑎𝑎𝑅𝑅𝑅𝑅 can be
written in the form

𝑎𝑎 𝑅𝑅𝑅𝑅 𝑅
𝑐𝑐 1 − 𝑅𝑅/𝛼𝛼1 1 − 𝑅𝑅/𝛼𝛼2⋯ 1 − 𝑅𝑅/𝛼𝛼𝑥𝑥
1 − 𝑅𝑅/𝛽𝛽1 1 − 𝑅𝑅/𝛽𝛽2⋯ 1 − 𝑅𝑅/𝛽𝛽𝑗𝑗

, (23)

where 𝑐𝑐 𝑞 0 is a complex number depending on 𝑎𝑎𝑅𝑅𝑅𝑅. So, (22)
is solved by

ℎ 𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑇𝑇𝑇𝑅𝑅𝑐𝑐
𝛾𝛾𝑅𝑅 𝑅𝑅/𝛼𝛼1 𝛾𝛾𝑅𝑅 𝑅𝑅/𝛼𝛼2⋯𝛾𝛾𝑅𝑅 𝑅𝑅/𝛼𝛼𝑥𝑥
𝛾𝛾𝑅𝑅 𝑅𝑅/𝛽𝛽1 𝛾𝛾𝑅𝑅 𝑅𝑅/𝛽𝛽2⋯𝛾𝛾𝑅𝑅 𝑅𝑅/𝛽𝛽𝑗𝑗

, (24)

which is meromorphic if and only if 𝑇𝑇𝑇𝑅𝑅𝑐𝑐 is an integer.
Now, let 𝑐𝑐1𝑅𝑅𝑅𝑅 and 𝑐𝑐2𝑅𝑅𝑅𝑅 be two distinct rational solutions

of the differential Riccati equation (6). If there exists a
rational solution 𝑐𝑐3𝑅𝑅𝑅𝑅 distinct from 𝑐𝑐𝑗𝑗𝑅𝑅𝑅𝑅, 𝑗𝑗 𝑅 1, 2, then
all meromorphic solutions of (6) are rational solutions. If
there exists a transcendental meromorphic solution 𝑤𝑤𝑅𝑅𝑅𝑅,
then there is no rational solution other than 𝑐𝑐𝑗𝑗𝑅𝑅𝑅𝑅, 𝑗𝑗 𝑅 1, 2,
see, for example, [6, pages 393-394]. For difference Riccati
equation (2), Ishizaki obtained a difference analogue, see [3,
Proposition 2.2]. In the following, we give a 𝑅𝑅-difference case
for 𝑅𝑅-difference Riccati equation (4).

eorem 3. Let 𝑅𝑅 𝑞 𝑞 be such that 0 < |𝑅𝑅| < 1. Suppose that
𝑅𝑅-difference Riccati equation (4) possesses two distinct rational
solutions 𝑅𝑅1𝑅𝑅𝑅𝑅 and 𝑅𝑅2𝑅𝑅𝑅𝑅. en there exists a meromorphic
solution 𝑅𝑅3𝑅𝑅𝑅𝑅 distinct from 𝑅𝑅1𝑅𝑅𝑅𝑅 and 𝑅𝑅2𝑅𝑅𝑅𝑅 so that any
meromorphic solution 𝑅𝑅𝑅𝑅𝑅𝑅 of (4) is represented in the form
(13).



4 Journal of Complex Analysis

Proof of eorem 3. Since 𝑔𝑔1(𝑧𝑧𝑧 and 𝑔𝑔2(𝑧𝑧𝑧 are two distinct
rational solutions of (4), we de�ne a translation

𝑔𝑔 (𝑧𝑧𝑧 =
𝑔𝑔1 (𝑧𝑧𝑧 ℎ (𝑧𝑧𝑧 + 𝑔𝑔2 (𝑧𝑧𝑧

ℎ (𝑧𝑧𝑧 + 1
. (25)

en 𝜎𝜎(ℎ𝑧 = 𝜎𝜎(𝑔𝑔𝑧 = 𝜎. Substituting (25) into (4), we conclude
that

ℎ 𝑞𝑞𝑧𝑧 =
𝑔𝑔1 (𝑧𝑧𝑧
𝑔𝑔2 (𝑧𝑧𝑧

ℎ (𝑧𝑧𝑧 , (26)

which is type of (22). So, ℎ(𝑧𝑧𝑧 is a meromorphic solution of
(26) as in the form (24).erefore, we conclude from (25) that
𝑔𝑔3(𝑧𝑧𝑧 is ameromorphic solution of (4), which is distinct from
𝑔𝑔1(𝑧𝑧𝑧 and 𝑔𝑔2(𝑧𝑧𝑧. So, we now deduce fromeorem 2 that any
meromorphic solution of (4) is represented in the form (13).
e proof of eorem 3 is completed.

Example 4. Let 𝑞𝑞 = 𝑞(1𝑞2𝑧, 𝑎𝑎1(𝑧𝑧𝑧 = (𝑧𝑧𝑧 + 𝑧𝑧𝑞2(𝑧𝑧 + 2𝑧 and
𝑎𝑎𝜎(𝑧𝑧𝑧 = (𝑧𝑧 𝑞 𝑧𝑧𝑞(𝑧𝑧 + 2𝑧 in (4) and (5). en functions

𝑔𝑔1 (𝑧𝑧𝑧 = 𝑞2, 𝑔𝑔2 (𝑧𝑧𝑧 = 𝑞
𝑧𝑧 𝑞 2

2 (𝑧𝑧 + 1𝑧
(27)

satisfy 𝑞𝑞-difference Riccati equation (4), and (26) turns into

ℎ 𝑞
1
2
𝑧𝑧 =

𝑧 (𝑧𝑧 + 1𝑧
2 (𝑧𝑧 𝑞 2𝑧

ℎ (𝑧𝑧𝑧 =
𝑞2 [1 𝑞 𝑧𝑧𝑞 (𝑞1𝑧]

1 𝑞 𝑧𝑧𝑞2
ℎ (𝑧𝑧𝑧 . (28)

We note that

𝛾𝛾𝑞𝑞 (𝑧𝑧𝑧 = 1 𝑞 𝑞𝑞
𝑥𝑥𝑞1Γ𝑞𝑞 (𝑥𝑥𝑧 =

𝑞𝑞𝑞 𝑞𝑞∞
𝑞𝑞𝑥𝑥𝑞 𝑞𝑞∞

=
𝑞𝑞𝑞 𝑞𝑞∞
𝑧𝑧𝑞 𝑞𝑞∞

. (29)

us, we conclude from (24) and (29) that

ℎ (𝑧𝑧𝑧 = 𝑧𝑧{log𝑞1𝑞2𝑞2} ⋅
𝛾𝛾𝑞1𝑞2 (𝑞𝑧𝑧𝑧
𝛾𝛾𝑞1𝑞2 (𝑧𝑧𝑞2𝑧

= 𝑧𝑧𝑞1
(𝑧𝑧𝑞2𝑞 𝑞1𝑞2𝑧∞
(𝑞𝑧𝑧𝑞 𝑞1𝑞2𝑧∞

= 𝑧𝑧𝑞1
∏∞

𝑘𝑘=𝜎 1 𝑞 (𝑧𝑧𝑞2𝑧 (𝑞1𝑞2𝑧
𝑘𝑘

∏∞
𝑘𝑘=𝜎 1 + 𝑧𝑧(𝑞1𝑞2𝑧

𝑘𝑘

= 𝑧𝑧𝑞1
∏∞

𝑘𝑘=𝜎 1 + 𝑧𝑧(𝑞1𝑞2𝑧
𝑘𝑘+1

∏∞
𝑘𝑘=𝜎 1 + 𝑧𝑧(𝑞1𝑞2𝑧

𝑘𝑘

= 𝑧𝑧𝑞1 1 + 𝑞
1
2
 𝑧𝑧 1 + 𝑞

1
2

2
𝑧𝑧

⋯1 + 𝑞
1
2

𝑘𝑘
𝑧𝑧⋯

× (1 + 𝑧𝑧𝑧 1 + 𝑞
1
2
 𝑧𝑧 1 + 𝑞

1
2

2
𝑧𝑧

⋯1 + 𝑞
1
2

𝑘𝑘
𝑧𝑧⋯

𝑞1

 =
1

𝑧𝑧 (𝑧𝑧 + 1𝑧
,

𝑔𝑔3 (𝑧𝑧𝑧 =
𝑔𝑔1 (𝑧𝑧𝑧 ℎ (𝑧𝑧𝑧 + 𝑔𝑔2 (𝑧𝑧𝑧

ℎ (𝑧𝑧𝑧 + 1
= 𝑞 (𝑧𝑧 𝑞 2𝑧2

2 𝑧𝑧2 + 𝑧𝑧 + 1
(30)

is ameromorphic solution of (4), which is distinct from 𝑔𝑔1(𝑧𝑧𝑧
and 𝑔𝑔2(𝑧𝑧𝑧. Moreover, we also conclude from (10), (27), and
(5) that

𝑓𝑓1 𝑞
1
2
𝑧𝑧 = 𝑞2𝑓𝑓1 (𝑧𝑧𝑧 , 𝑓𝑓2 𝑞

1
2
𝑧𝑧 =

1 𝑞 𝑧𝑧𝑞2
1 𝑞 𝑧𝑧𝑞 (𝑞1𝑧

𝑓𝑓2 (𝑧𝑧𝑧 ,

(31)

which are corresponding to 𝑔𝑔1(𝑧𝑧𝑧 and 𝑔𝑔2(𝑧𝑧𝑧, respectively, and
are also the types of (22). us, we deduce from (24) that

𝑓𝑓1 (𝑧𝑧𝑧 =
1
𝑧𝑧
, 𝑓𝑓2 (𝑧𝑧𝑧 =

𝛾𝛾𝑞1𝑞2 (𝑧𝑧𝑞2𝑧
𝛾𝛾𝑞1𝑞2 (𝑞𝑧𝑧𝑧

= 𝑧𝑧 + 1 (32)

satisfy second-order linear 𝑞𝑞-difference equation (5).

4. Value Distribution of Solutions of
𝑞𝑞-Difference Riccati Equations and Form
of Solutions of Second-Order Linear
𝑞𝑞-Difference Equations

We �rst consider the value distribution of transcendental
meromorphic solution of 𝑞𝑞-difference Riccati equation (4).

eorem 5. Let 𝑎𝑎1(𝑧𝑧𝑧 and 𝑎𝑎𝜎(𝑧𝑧𝑧 be nonconstant rational
functions. If 𝑔𝑔(𝑧𝑧𝑧 is a zero-order transcendental meromorphic
solution of 𝑞𝑞-difference Riccati equation

𝑔𝑔 𝑞𝑞𝑧𝑧 = 𝑞
𝑎𝑎1 (𝑧𝑧𝑧 𝑔𝑔 (𝑧𝑧𝑧 + 𝑎𝑎𝜎 (𝑧𝑧𝑧

𝑔𝑔 (𝑧𝑧𝑧
(33)

with 𝑞𝑞 𝑞 𝑞 𝑞 {𝜎} and |𝑞𝑞| 𝑞 1, then

(i) if

𝑞𝑞 > 1, 𝑁𝑁 𝑟𝑟, 𝑔𝑔 + 𝑁𝑁𝑟𝑟,
1
𝑔𝑔
 = 𝑆𝑆 𝑟𝑟, 𝑔𝑔 , (34)

then 𝑔𝑔(𝑧𝑧𝑧 has at most one Borel exceptional value;
(ii) if |𝑞𝑞| 𝑞 1, then �evanlinna de�ciencies 𝛿𝛿(𝜎, 𝑔𝑔𝑧 =

𝛿𝛿(∞, 𝑔𝑔𝑧 = 𝜎;

(iii) if |𝑞𝑞| 𝑞 1 and 𝑞𝑞𝑧𝑧2 + 𝑧𝑧𝑎𝑎1(𝑧𝑧𝑧 + 𝑎𝑎𝜎(𝑧𝑧𝑧 ̸≡ 𝜎, then 𝑔𝑔(𝑧𝑧𝑧 has
in�nitely many �xed points.

In particular, we obtain the following theorem.

eorem 6. If 𝑎𝑎1(𝑧𝑧𝑧 = 𝑎𝑎1 and 𝑎𝑎𝜎(𝑧𝑧𝑧 = 𝑎𝑎𝜎( 𝑞 𝜎𝑧 are constants,
and if 𝑞𝑞 𝑞 𝑞𝑞{𝜎} and |𝑞𝑞| 𝑞 1, then 𝑞𝑞-difference Riccati equation
(4) has only rational solutions. Furthermore, if 𝑎𝑎1(𝑧𝑧𝑧 ≡ 𝜎 and
𝑎𝑎𝜎(𝑧𝑧𝑧 = 𝑎𝑎𝜎 is nonzero constant, then (4) has only a nonzero
constant solution 𝑔𝑔(𝑧𝑧𝑧 = 𝑔𝑔, which satis�es 𝑔𝑔2 + 𝑎𝑎𝜎 = 𝜎.

We need some preliminaries to proveeorems 5 and 6.
e theorem of Tumura and Clunie is an important result

in Nevanlinna theory, see [11, 12]. Weissenborn extended it
and obtained the following lemma.
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Lemma 7 (see [13, eorem]). Let ℎ(𝑧𝑧𝑧 be a meromorphic
function and let 𝜙𝜙 be given by

𝜙𝜙 (𝑧𝑧𝑧 = 𝑐𝑐𝑛𝑛 (𝑧𝑧𝑧 ℎ(𝑧𝑧𝑧
𝑛𝑛 + 𝑐𝑐𝑛𝑛𝑛𝑛 (𝑧𝑧𝑧 ℎ(𝑧𝑧𝑧

𝑛𝑛𝑛𝑛 + ⋯ + 𝑐𝑐0 (𝑧𝑧𝑧 ,

𝑇𝑇 𝑟𝑟, 𝑐𝑐𝑗𝑗 = 𝑆𝑆 (𝑟𝑟, ℎ𝑧 , 𝑗𝑗 = 0, 𝑛,𝑗 , 𝑛𝑛 𝑛 𝑛, 𝑛𝑛𝑗
(35)

en either

𝜙𝜙 𝜙 ℎ +
𝑐𝑐𝑛𝑛𝑛𝑛 (𝑧𝑧𝑧
𝑛𝑛𝑐𝑐𝑛𝑛 (𝑧𝑧𝑧


𝑛𝑛
, (36)

or

𝑇𝑇 (𝑟𝑟, ℎ𝑧 ≤ 𝑁𝑁𝑟𝑟,
𝑛
𝜙𝜙
 + 𝑁𝑁 (𝑟𝑟, ℎ𝑧 + 𝑆𝑆 (𝑟𝑟, ℎ𝑧 𝑗 (37)

Lemma 8. Suppose that ℎ(𝑧𝑧𝑧 is a nonconstant meromorphic
function satisfying

𝑁𝑁(𝑟𝑟, ℎ𝑧 + 𝑁𝑁𝑟𝑟,
𝑛
ℎ
 = 𝑆𝑆 (𝑟𝑟, ℎ𝑧 𝑗 (38)

Let

𝜙𝜙 (𝑧𝑧𝑧 = 𝑐𝑐𝑛𝑛 (𝑧𝑧𝑧 ℎ(𝑧𝑧𝑧
𝑛𝑛 + 𝑐𝑐𝑛𝑛𝑛𝑛 (𝑧𝑧𝑧 ℎ(𝑧𝑧𝑧

𝑛𝑛𝑛𝑛 + ⋯ + 𝑐𝑐0 (𝑧𝑧𝑧 (39)

be a polynomial in ℎ(𝑧𝑧𝑧 with 𝑛𝑛 𝑛 𝑛, and coefficients satisfying

𝑇𝑇 𝑟𝑟, 𝑐𝑐𝑗𝑗 = 𝑆𝑆 (𝑟𝑟, ℎ𝑧 , 𝑗𝑗 = 0, 𝑛,𝑗 , 𝑛𝑛 𝑛 𝑛, 𝑛𝑛, 𝑐𝑐𝑛𝑛 (𝑧𝑧𝑧 𝑐𝑐0 (𝑧𝑧𝑧 ̸𝜙 0𝑗
(40)

en

𝑁𝑁𝑟𝑟,
𝑛
𝜙𝜙
 = 𝑛𝑛𝑇𝑇 (𝑟𝑟, ℎ𝑧 + 𝑆𝑆 (𝑟𝑟, ℎ𝑧 (41)

or

𝑁𝑁𝑟𝑟,
𝑛
𝜙𝜙
 ≥ 𝑇𝑇 (𝑟𝑟, ℎ𝑧 + 𝑆𝑆 (𝑟𝑟, ℎ𝑧 𝑗 (42)

us, 𝜙𝜙(𝑧𝑧𝑧 ̸𝜙 0.

Proof of Lemma 8. By differentiating both sides of (39), we
conclude that

𝜙𝜙′ (𝑧𝑧𝑧 =
𝑛𝑛

𝑗𝑗=𝑛

𝑐𝑐′𝑗𝑗 (𝑧𝑧𝑧 + 𝑗𝑗𝑐𝑐𝑗𝑗 (𝑧𝑧𝑧
ℎ′ (𝑧𝑧𝑧
ℎ (𝑧𝑧𝑧

 ℎ(𝑧𝑧𝑧𝑗𝑗𝑗 (43)

us, we deduce from (39) and (43) that

𝑐𝑐′𝑛𝑛 (𝑧𝑧𝑧 + 𝑛𝑛𝑐𝑐𝑛𝑛 (𝑧𝑧𝑧
ℎ′ (𝑧𝑧𝑧
ℎ (𝑧𝑧𝑧

𝜙𝜙 (𝑧𝑧𝑧 𝑛 𝑐𝑐𝑛𝑛𝜙𝜙
′ (𝑧𝑧𝑧

=
𝑛𝑛𝑛𝑛

𝑗𝑗=𝑛

𝑐𝑐𝑗𝑗 (𝑧𝑧𝑧𝑐𝑐
′
𝑛𝑛 (𝑧𝑧𝑧 + 𝑛𝑛𝑐𝑐𝑛𝑛 (𝑧𝑧𝑧

ℎ′ (𝑧𝑧𝑧
ℎ (𝑧𝑧𝑧



𝑛𝑐𝑐𝑛𝑛 (𝑧𝑧𝑧𝑐𝑐
′
𝑗𝑗 (𝑧𝑧𝑧 + 𝑗𝑗𝑐𝑐𝑗𝑗 (𝑧𝑧𝑧

ℎ′ (𝑧𝑧𝑧
ℎ (𝑧𝑧𝑧

 ℎ(𝑧𝑧𝑧𝑗𝑗

+ 𝑐𝑐0 (𝑧𝑧𝑧𝑐𝑐
′
𝑛𝑛 (𝑧𝑧𝑧 + 𝑛𝑛𝑐𝑐𝑛𝑛 (𝑧𝑧𝑧

ℎ′ (𝑧𝑧𝑧
ℎ (𝑧𝑧𝑧

 𝑗

(44)

erefore, (𝑐𝑐′𝑛𝑛(𝑧𝑧𝑧 + 𝑛𝑛𝑐𝑐𝑛𝑛(𝑧𝑧𝑧(ℎ
′(𝑧𝑧𝑧𝑧ℎ(𝑧𝑧𝑧𝑧𝑧𝜙𝜙(𝑧𝑧𝑧 𝑛 𝑐𝑐𝑛𝑛𝜙𝜙

′(𝑧𝑧𝑧 is a
polynomial in ℎ(𝑧𝑧𝑧 with degree no greater than 𝑛𝑛 𝑛 𝑛 and the
term of degree zero is 𝑐𝑐0(𝑧𝑧𝑧(𝑐𝑐

′
𝑛𝑛(𝑧𝑧𝑧 + 𝑛𝑛𝑐𝑐𝑛𝑛(𝑧𝑧𝑧(ℎ

′(𝑧𝑧𝑧𝑧ℎ(𝑧𝑧𝑧𝑧𝑧 ̸𝜙 0.
en

𝑐𝑐′𝑛𝑛 (𝑧𝑧𝑧 + 𝑛𝑛𝑐𝑐𝑛𝑛 (𝑧𝑧𝑧
ℎ′ (𝑧𝑧𝑧
ℎ (𝑧𝑧𝑧

̸𝜙 0𝑗 (45)

Otherwise, if 𝑐𝑐′𝑛𝑛(𝑧𝑧𝑧 + 𝑛𝑛𝑐𝑐𝑛𝑛(𝑧𝑧𝑧(ℎ
′(𝑧𝑧𝑧𝑧ℎ(𝑧𝑧𝑧𝑧 𝜙 0, then 𝑐𝑐𝑛𝑛(𝑧𝑧𝑧ℎ(𝑧𝑧𝑧

𝑛𝑛

is a nonzero constant, a contradiction. We also note that
𝑐𝑐0(𝑧𝑧𝑧(𝑐𝑐

′
𝑛𝑛(𝑧𝑧𝑧 + 𝑛𝑛𝑐𝑐𝑛𝑛(𝑧𝑧𝑧(ℎ

′(𝑧𝑧𝑧𝑧ℎ(𝑧𝑧𝑧𝑧𝑧 is a small function relative
to ℎ(𝑧𝑧𝑧 by (38) and the lemma of logarithmic derivative. Set

𝜇𝜇𝑛 (𝑧𝑧𝑧 = 𝑐𝑐
′
𝑛𝑛 (𝑧𝑧𝑧 + 𝑛𝑛𝑐𝑐𝑛𝑛 (𝑧𝑧𝑧

ℎ′ (𝑧𝑧𝑧
ℎ (𝑧𝑧𝑧

, 𝜈𝜈𝑛 (𝑧𝑧𝑧 = 𝑐𝑐𝑛𝑛𝑗 (46)

en 𝜇𝜇𝑛(𝑧𝑧𝑧 and 𝜈𝜈𝑛(𝑧𝑧𝑧 are small functions relative to ℎ(𝑧𝑧𝑧 and

𝜙𝜙𝑛 (𝑧𝑧𝑧 = 𝜇𝜇𝑛 (𝑧𝑧𝑧 𝜙𝜙 (𝑧𝑧𝑧 𝑛 𝜈𝜈𝑛 (𝑧𝑧𝑧 𝜙𝜙
′ (𝑧𝑧𝑧 (47)

is a polynomial in ℎ(𝑧𝑧𝑧 with degree no greater than 𝑛𝑛 𝑛 𝑛 and
the term of degree zero is small function relative to ℎ(𝑧𝑧𝑧.

If the degree of 𝜙𝜙𝑛(𝑧𝑧𝑧 is greater than zero, then by
repeating the above process, we can get two small functions
𝜇𝜇2(𝑧𝑧𝑧 and 𝜈𝜈2(𝑧𝑧𝑧 such that

𝜙𝜙2 (𝑧𝑧𝑧 = 𝜇𝜇2 (𝑧𝑧𝑧 𝜙𝜙𝑛 (𝑧𝑧𝑧 𝑛 𝜈𝜈𝑛 (𝑧𝑧𝑧 𝜙𝜙
′
𝑛 (𝑧𝑧𝑧 (48)

is a polynomial in ℎ(𝑧𝑧𝑧 with a degree less than the degree of
𝜙𝜙𝑛(𝑧𝑧𝑧 and the term of degree zero is a small function relative
to ℎ(𝑧𝑧𝑧.

We note that such process will be terminated at most
𝑛𝑛 times. us, We can proceed this process to obtain small
functions𝜇𝜇𝑗𝑗(𝑧𝑧𝑧 and𝜈𝜈𝑗𝑗(𝑧𝑧𝑧, where 𝑗𝑗 = 𝑛, 2,𝑗 , 𝑗𝑗, 𝑗𝑗+𝑛 and 𝑗𝑗 ≤ 𝑛𝑛,
such that

𝜙𝜙𝑗𝑗 (𝑧𝑧𝑧 = 𝜇𝜇𝑗𝑗 (𝑧𝑧𝑧 𝜙𝜙𝑗𝑗𝑛𝑛 (𝑧𝑧𝑧 𝑛 𝜈𝜈𝑗𝑗 (𝑧𝑧𝑧 𝜙𝜙
′
𝑗𝑗𝑛𝑛 (𝑧𝑧𝑧 (49)

are polynomial in ℎ(𝑧𝑧𝑧 with deg 𝜙𝜙𝑗𝑗(𝑧𝑧𝑧 𝑧 deg 𝜙𝜙𝑗𝑗𝑛𝑛(𝑧𝑧𝑧 (𝑗𝑗 =
𝑛, 2,𝑗 , 𝑗𝑗𝑧, where 𝜙𝜙0(𝑧𝑧𝑧 𝜙 𝜙𝜙(𝑧𝑧𝑧 and

𝜙𝜙𝑗𝑗+𝑛 (𝑧𝑧𝑧 = 𝜇𝜇𝑗𝑗+𝑛 (𝑧𝑧𝑧 𝜙𝜙𝑗𝑗 (𝑧𝑧𝑧 𝑛 𝜈𝜈𝑗𝑗+𝑛 (𝑧𝑧𝑧 𝜙𝜙
′
𝑗𝑗 (𝑧𝑧𝑧 (50)

is a small function relative to ℎ(𝑧𝑧𝑧. us, we deduce that the
small function 𝜙𝜙𝑗𝑗+𝑛(𝑧𝑧𝑧 can be expressed as a linear differential
polynomial in 𝜙𝜙(𝑧𝑧𝑧 with coefficients being small functions
relative to ℎ(𝑧𝑧𝑧. So,

𝑚𝑚𝑟𝑟,
𝑛
𝜙𝜙
 = 𝑆𝑆 (𝑟𝑟, ℎ𝑧 𝑗 (51)

On the other hand, we deduce from Lemma 7 that either

𝜙𝜙 𝜙 ℎ +
𝑐𝑐𝑛𝑛𝑛𝑛 (𝑧𝑧𝑧
𝑛𝑛𝑐𝑐𝑛𝑛 (𝑧𝑧𝑧


𝑛𝑛

(52)

or

𝑇𝑇 (𝑟𝑟, ℎ𝑧 ≤ 𝑁𝑁𝑟𝑟,
𝑛
𝜙𝜙
 + 𝑁𝑁 (𝑟𝑟, ℎ𝑧 + 𝑆𝑆 (𝑟𝑟, ℎ𝑧 𝑗 (53)

us, we deduce from Valiron-Mohon’ko Lemma, (51), and
(52) that (41) holds and obtain from (38) and (53) that
(42) holds. erefore, 𝜙𝜙(𝑧𝑧𝑧 ̸𝜙 0. e proof of Lemma 8 is
completed.
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Lemma 9 (see [9,eorem 5.2]). Let ℎ(𝑧𝑧𝑧 be a transcendental
meromorphic solution of

ℎ 𝑞𝑞𝑧𝑧 = 𝑅𝑅 (𝑧𝑧𝑧 ℎ (𝑧𝑧𝑧𝑧 =
∑𝑝𝑝
𝑖𝑖=𝑖 𝑎𝑎𝑖𝑖 (𝑧𝑧𝑧 ℎ(𝑧𝑧𝑧

𝑖𝑖

∑𝑞𝑞
𝑗𝑗=𝑖 𝑏𝑏𝑗𝑗𝑏𝑏𝑗𝑗 (𝑧𝑧𝑧 ℎ(𝑧𝑧𝑧

𝑗𝑗 (54)

with meromorphic coefficients 𝑎𝑎𝑖𝑖(𝑧𝑧𝑧𝑧 𝑏𝑏𝑗𝑗(𝑧𝑧𝑧 relative to ℎ(𝑧𝑧𝑧 and
𝑞𝑞 𝑞 𝑞 such that |𝑞𝑞| 𝑞 𝑞. If𝑁𝑁(𝑁𝑁𝑧 ℎ𝑧 𝑁 𝑁𝑁(𝑁𝑁𝑧 𝑞𝑁ℎ𝑧 = 𝑁𝑁(𝑁𝑁𝑧 ℎ𝑧, then
(54) is either of the form

𝑓𝑓 𝑞𝑞𝑧𝑧 = 𝑎𝑎𝑝𝑝 (𝑧𝑧𝑧 𝑓𝑓(𝑧𝑧𝑧
𝑝𝑝 or 𝑓𝑓 𝑞𝑞𝑧𝑧 =

𝑎𝑎𝑖 (𝑧𝑧𝑧
𝑓𝑓(𝑧𝑧𝑧𝑞𝑞

. (55)

Lemma 10 (see [5, eorem 2.2]). Let 𝑓𝑓(𝑧𝑧𝑧 be a nonconstant
zero-order meromorphic solution of

𝑃𝑃 𝑧𝑧𝑧 𝑓𝑓 = 𝑖𝑧 (56)

where 𝑃𝑃(𝑧𝑧𝑧 𝑓𝑓𝑧 is a 𝑞𝑞-difference polynomials in 𝑓𝑓(𝑧𝑧𝑧. If
𝑃𝑃(𝑧𝑧𝑧 𝑃𝑃𝑧 ̸≡ 𝑖 for a small function 𝑃𝑃(𝑧𝑧𝑧 relative to 𝑓𝑓(𝑧𝑧𝑧, then

𝑚𝑚𝑁𝑁𝑧
𝑞

𝑓𝑓 𝑓 𝑃𝑃
 = 𝑜𝑜 𝑇𝑇 𝑁𝑁𝑧 𝑓𝑓 (57)

on a set of logarithmic density 1.

Lemma 11 (see [2, eorem 2.2.5 and Corollary 2.2.7]).
Let 𝑓𝑓(𝑧𝑧𝑧 be a meromorphic function. en for all irreducible
rational functions in 𝑓𝑓(𝑧𝑧𝑧,

𝑅𝑅 𝑧𝑧𝑧 𝑓𝑓 (𝑧𝑧𝑧 =
∑𝑝𝑝
𝑖𝑖=𝑖 𝑎𝑎𝑖𝑖 (𝑧𝑧𝑧 𝑓𝑓(𝑧𝑧𝑧

𝑖𝑖

∑𝑞𝑞
𝑗𝑗=𝑖 𝑏𝑏𝑗𝑗 (𝑧𝑧𝑧 𝑓𝑓(𝑧𝑧𝑧

𝑗𝑗 𝑧 (58)

with meromorphic coefficients 𝑎𝑎𝑖𝑖(𝑧𝑧𝑧𝑧 𝑏𝑏𝑗𝑗(𝑧𝑧𝑧, the characteristic
function of 𝑅𝑅(𝑧𝑧𝑧 𝑓𝑓(𝑧𝑧𝑧𝑧 satis�es

𝑇𝑇 𝑅𝑅 𝑧𝑧𝑧 𝑓𝑓 (𝑧𝑧𝑧 = 𝑑𝑑𝑇𝑇 𝑁𝑁𝑧 𝑓𝑓 𝑁 𝑂𝑂 (Ψ (𝑁𝑁𝑧𝑧 𝑧 (59)

where 𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑝𝑝𝑧 𝑞𝑞𝑑 and Ψ(𝑁𝑁𝑧 = 𝑑𝑑𝑑𝑖𝑖𝑧𝑗𝑗𝑑𝑇𝑇(𝑁𝑁𝑧 𝑎𝑎𝑖𝑖𝑧𝑧 𝑇𝑇(𝑁𝑁𝑧 𝑏𝑏𝑗𝑗𝑧𝑑.
In the particular case when

𝑇𝑇 𝑁𝑁𝑧 𝑎𝑎𝑖𝑖 = 𝑁𝑁 𝑁𝑁𝑧 𝑓𝑓 𝑧 𝑖𝑖 = 𝑖𝑧 𝑞𝑧𝑖 𝑧 𝑝𝑝𝑧

𝑇𝑇 𝑁𝑁𝑧 𝑏𝑏𝑗𝑗 = 𝑁𝑁 𝑁𝑁𝑧 𝑓𝑓 𝑧 𝑗𝑗 = 𝑖𝑧 𝑞𝑧𝑖 𝑧 𝑞𝑞𝑧
(60)

we have

𝑇𝑇 𝑁𝑁𝑧 𝑅𝑅 𝑧𝑧𝑧 𝑓𝑓 (𝑧𝑧𝑧 = 𝑑𝑑𝑇𝑇 𝑁𝑁𝑧 𝑓𝑓 𝑁 𝑁𝑁 𝑁𝑁𝑧 𝑓𝑓 . (61)

We also use the observation [7, page 2] that, for any meromor-
phic function 𝑓𝑓(𝑧𝑧𝑧 and any constant 𝑞𝑞 𝑞 𝑞 𝑞 𝑑𝑖𝑑,

𝑇𝑇 𝑁𝑁𝑧 𝑓𝑓 𝑞𝑞𝑧𝑧 = 𝑇𝑇 𝑞𝑞 𝑁𝑁𝑧 𝑓𝑓 𝑁 𝑂𝑂 (𝑞𝑧 . (62)

Proof of eorem 5. Suppose that 𝑔𝑔(𝑧𝑧𝑧 is a zero-order tran-
scendental meromorphic solution of 𝑞𝑞-difference Riccati
equation (4).

(i) Suppose that 𝑔𝑔(𝑧𝑧𝑧 has two �nite Borel exceptional
values 𝑎𝑎 and 𝑏𝑏( 𝑏 𝑖𝑧 𝑎𝑎𝑧. For the case where one of 𝑎𝑎 and 𝑏𝑏 is
in�nite, we can use a similar method to prove. Set

ℎ (𝑧𝑧𝑧 =
𝑔𝑔 (𝑧𝑧𝑧 𝑓 𝑎𝑎
𝑔𝑔 (𝑧𝑧𝑧 𝑓 𝑏𝑏

. (63)

Since𝑁𝑁(𝑁𝑁𝑧 𝑔𝑔𝑧𝑁𝑁𝑁(𝑁𝑁𝑧 𝑞𝑁𝑔𝑔𝑧 = 𝑁𝑁(𝑁𝑁𝑧 𝑔𝑔𝑧, we deduce from (63) that

𝑁𝑁(𝑁𝑁𝑧 ℎ𝑧 𝑁 𝑁𝑁𝑁𝑁𝑧
𝑞
ℎ
 = 𝑁𝑁 (𝑁𝑁𝑧 ℎ𝑧 . (64)

We also conclude from (63) that

𝑔𝑔 (𝑧𝑧𝑧 =
𝑎𝑎 𝑓 𝑏𝑏ℎ (𝑧𝑧𝑧
𝑞 𝑓 ℎ (𝑧𝑧𝑧

. (65)

Now, substituting (65) into (4), we conclude that

ℎ 𝑞𝑞𝑧𝑧=
𝑏𝑏𝑎𝑎𝑞 (𝑧𝑧𝑧𝑁𝑎𝑎𝑖 (𝑧𝑧𝑧𝑁𝑎𝑎𝑏𝑏 ℎ (𝑧𝑧𝑧𝑓𝑎𝑎𝑎𝑎𝑞 (𝑧𝑧𝑧𝑁𝑎𝑎𝑖 (𝑧𝑧𝑧𝑁𝑎𝑎

2

𝑏𝑏𝑎𝑎𝑞 (𝑧𝑧𝑧𝑁𝑎𝑎𝑖 (𝑧𝑧𝑧𝑁𝑏𝑏
2 ℎ (𝑧𝑧𝑧𝑓𝑎𝑎𝑎𝑎𝑞 (𝑧𝑧𝑧𝑁𝑎𝑎𝑖 (𝑧𝑧𝑧𝑁𝑎𝑎𝑏𝑏

.

(66)

By the assumptions of eorem 5, we get

𝑏𝑏𝑎𝑎𝑞 (𝑧𝑧𝑧 𝑁 𝑎𝑎𝑖 (𝑧𝑧𝑧 𝑁 𝑎𝑎𝑏𝑏 ̸≡ 𝑖𝑧 𝑏𝑏𝑎𝑎𝑞 (𝑧𝑧𝑧 𝑁 𝑎𝑎𝑖 (𝑧𝑧𝑧 𝑁 𝑏𝑏
2 ̸≡ 𝑖.

(67)

us, we deduce from Lemma 9, (64), and (66) that

ℎ 𝑞𝑞𝑧𝑧 = 𝑐𝑐 (𝑧𝑧𝑧 ℎ(𝑧𝑧𝑧𝑘𝑘𝑧 𝑘𝑘 𝑞 𝑘 𝑞 𝑑𝑖𝑑 𝑧 (68)

where 𝑇𝑇(𝑁𝑁𝑧 𝑐𝑐(𝑧𝑧𝑧𝑧 = 𝑁𝑁(𝑁𝑁𝑧 ℎ𝑧.
If 𝑘𝑘 𝑘 𝑞, we conclude from (66) and (68) that

𝑐𝑐 (𝑧𝑧𝑧 𝑏𝑏𝑎𝑎𝑞 (𝑧𝑧𝑧 𝑁 𝑎𝑎𝑖 (𝑧𝑧𝑧 𝑁 𝑏𝑏
2 ℎ(𝑧𝑧𝑧𝑘𝑘𝑁𝑞

𝑓 𝑐𝑐 (𝑧𝑧𝑧 𝑎𝑎𝑎𝑎𝑞 (𝑧𝑧𝑧 𝑁 𝑎𝑎𝑖 (𝑧𝑧𝑧 𝑁 𝑎𝑎𝑏𝑏 ℎ(𝑧𝑧𝑧
𝑘𝑘

𝑓 𝑏𝑏𝑎𝑎𝑞 (𝑧𝑧𝑧 𝑁 𝑎𝑎𝑖 (𝑧𝑧𝑧 𝑁 𝑎𝑎𝑏𝑏 ℎ (𝑧𝑧𝑧 𝑁 𝑎𝑎𝑎𝑎𝑞 (𝑧𝑧𝑧 𝑁 𝑎𝑎𝑖 (𝑧𝑧𝑧 𝑁 𝑎𝑎
2

= 𝑖.
(69)

us, we deduce from Lemma 8 and (64) that (69) is a
contradiction. If 𝑘𝑘 𝑘 𝑓𝑞, we use the same method as above to
get another contradiction. erefore, 𝑔𝑔(𝑧𝑧𝑧 at most one Borel
exceptional value.

(ii) We �rst prove 𝛿𝛿(𝑖𝑧 𝑔𝑔𝑧 = 𝑖. We obtain from (4) that

𝑃𝑃𝑞 𝑧𝑧𝑧 𝑔𝑔 = 𝑔𝑔 (𝑧𝑧𝑧 𝑔𝑔 𝑞𝑞𝑧𝑧 𝑁 𝑎𝑎𝑞 (𝑧𝑧𝑧 𝑔𝑔 (𝑧𝑧𝑧 𝑁 𝑎𝑎𝑖 (𝑧𝑧𝑧 = 𝑖. (70)

Since 𝑃𝑃𝑞(𝑧𝑧𝑧 𝑖𝑧 = 𝑎𝑎𝑖(𝑧𝑧𝑧 ̸≡ 𝑖, we deduce from Lemma 10 and
(70) that

𝑚𝑚𝑁𝑁𝑧
𝑞
𝑔𝑔
 = 𝑁𝑁 𝑁𝑁𝑧 𝑔𝑔 (71)

on a set 𝐸𝐸 of logarithmic density 1. erefore,

𝑖 𝑘 𝛿𝛿 𝑖𝑧 𝑔𝑔 = li𝑑
𝑁𝑁𝑟𝑟

𝑚𝑚 𝑁𝑁𝑧 𝑞𝑁𝑔𝑔
𝑇𝑇 𝑁𝑁𝑧 𝑔𝑔

𝑘 li𝑑
𝑁𝑁𝑟𝑟𝑧𝑁𝑁𝑞𝐸𝐸

𝑚𝑚 𝑁𝑁𝑧 𝑞𝑁𝑔𝑔
𝑇𝑇 𝑁𝑁𝑧 𝑔𝑔

= 𝑖.

(72)

us, 𝛿𝛿(𝑖𝑧 𝑔𝑔𝑧 = 𝑖.
We second prove 𝛿𝛿(𝑟𝑧 𝑔𝑔𝑧 = 𝑖. Set 𝑦𝑦(𝑧𝑧𝑧 = 𝑞𝑁𝑔𝑔(𝑧𝑧𝑧. en

𝑇𝑇 𝑁𝑁𝑧 𝑦𝑦 = 𝑇𝑇 𝑁𝑁𝑧 𝑔𝑔 𝑁 𝑂𝑂 (𝑞𝑧 𝑧 𝑁𝑁 𝑁𝑁𝑧 𝑦𝑦 = 𝑁𝑁 𝑁𝑁𝑧 𝑔𝑔 . (73)
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Now, substituting 𝑔𝑔𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 into (4), we conclude that

𝑃𝑃2 𝑔𝑔𝑧 𝑔𝑔 𝑔 𝑔𝑔 𝑞𝑞𝑔𝑔 𝑎𝑎0 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔 + 𝑎𝑎𝑔 𝑔𝑔𝑔𝑔 + 𝑔 𝑔 0. (74)

Since 𝑃𝑃2𝑔𝑔𝑔𝑧 0𝑔 𝑔 𝑔 ̸≡ 0, we obtain from Lemma 10 and (74)
that

𝑚𝑚𝑟𝑟𝑧
𝑔
𝑔𝑔
 𝑔 𝑆𝑆 𝑟𝑟𝑧 𝑔𝑔 (75)

on a set 𝐸𝐸 of logarithmic density 1. erefore,

𝑁𝑁𝑟𝑟𝑧
𝑔
𝑔𝑔
 𝑔 𝑇𝑇 𝑟𝑟𝑧 𝑔𝑔 + 𝑆𝑆 𝑟𝑟𝑧 𝑔𝑔 (76)

on a set 𝐸𝐸 of logarithmic density 1. us, we conclude from
𝑔𝑔𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 and (76) that

𝑁𝑁𝑟𝑟𝑧 𝑔𝑔 𝑔 𝑁𝑁𝑟𝑟𝑧
𝑔
𝑔𝑔
 𝑔 𝑇𝑇 𝑟𝑟𝑧 𝑔𝑔 + 𝑜𝑜 𝑇𝑇 𝑟𝑟𝑧 𝑔𝑔

𝑔 𝑇𝑇 𝑟𝑟𝑧 𝑔𝑔 + 𝑆𝑆 𝑟𝑟𝑧 𝑔𝑔
(77)

on a set 𝐸𝐸 of logarithmic density 1, and so,

0 ≤ 𝛿𝛿 ∞𝑧 𝑔𝑔 𝑔 𝑔 − lim
𝑟𝑟𝑟∞

𝑁𝑁𝑟𝑟𝑧 𝑔𝑔
𝑇𝑇 𝑟𝑟𝑧 𝑔𝑔

≤ 𝑔 − lim
𝑟𝑟𝑟∞𝑧𝑟𝑟𝑟𝐸𝐸

𝑁𝑁 𝑟𝑟𝑧 𝑔𝑔
𝑇𝑇 𝑟𝑟𝑧 𝑔𝑔

𝑔 0.

(78)

us, 𝛿𝛿𝑔∞𝑧 𝑔𝑔𝑔 𝑔 0.
(iii) Set 𝑔𝑔𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑔𝑔. en

𝑇𝑇 𝑟𝑟𝑧 𝑔𝑔 𝑔 𝑇𝑇 𝑟𝑟𝑧 𝑔𝑔 + 𝑆𝑆 𝑟𝑟𝑧 𝑔𝑔 𝑧 𝑆𝑆 𝑟𝑟𝑧 𝑔𝑔 𝑔 𝑆𝑆 𝑟𝑟𝑧 𝑔𝑔 . (79)

Substituting 𝑔𝑔𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑔𝑔 into (4), we conclude that

𝑃𝑃3 𝑔𝑔𝑧 𝑔𝑔 𝑔 𝑔𝑔 𝑔𝑔𝑔𝑔 𝑔𝑔 𝑞𝑞𝑔𝑔 + 𝑔𝑔𝑔𝑔 𝑞𝑞𝑔𝑔 + 𝑞𝑞𝑔𝑔𝑔𝑔 𝑔𝑔𝑔𝑔

+ 𝑞𝑞𝑔𝑔2 + 𝑔𝑔𝑎𝑎𝑔 𝑔𝑔𝑔𝑔 + 𝑎𝑎0 𝑔𝑔𝑔𝑔 𝑔 0.
(80)

Since 𝑃𝑃3𝑔𝑔𝑔𝑧 0𝑔 𝑔 𝑞𝑞𝑔𝑔2 + 𝑔𝑔𝑎𝑎𝑔𝑔𝑔𝑔𝑔 + 𝑎𝑎0𝑔𝑔𝑔𝑔 ̸≡ 0, we deduce from
Lemma 10 and (80) that

𝑚𝑚𝑟𝑟𝑧
𝑔
𝑔𝑔
 𝑔 𝑆𝑆 𝑟𝑟𝑧 𝑔𝑔 (81)

on a set 𝐸𝐸 of logarithmic density 1. erefore

𝑁𝑁𝑟𝑟𝑧
𝑔

𝑔𝑔 − 𝑔𝑔
 𝑔 𝑁𝑁𝑟𝑟𝑧

𝑔
𝑔𝑔
 𝑔 𝑇𝑇 𝑟𝑟𝑧 𝑔𝑔 + 𝑜𝑜 𝑇𝑇 𝑟𝑟𝑧 𝑔𝑔

𝑔 𝑇𝑇 𝑟𝑟𝑧 𝑔𝑔 + 𝑆𝑆 𝑟𝑟𝑧 𝑔𝑔
(82)

on a set 𝐸𝐸 of logarithmic density 1. is shows that 𝑔𝑔𝑔𝑔𝑔𝑔 has
in�nitely many �xed points if 𝑞𝑞𝑔𝑔2 + 𝑔𝑔𝑎𝑎𝑔𝑔𝑔𝑔𝑔 + 𝑎𝑎0𝑔𝑔𝑔𝑔 ̸≡ 0.

Proof of eorem 6. Suppose �rst that 0 < |𝑞𝑞| < 𝑔 and (4)
with nonzero constant coefficients 𝑎𝑎𝑔𝑔𝑔𝑔𝑔 and 𝑎𝑎0𝑔𝑔𝑔𝑔 admits a
meromorphic solution 𝑔𝑔𝑔𝑔𝑔𝑔. We assert that 𝑔𝑔𝑔𝑔𝑔𝑔 is rational.
In fact, we conclude from Lemma 11, (4), and (62) that

𝑇𝑇 𝑟𝑟𝑧 𝑟𝑟 ≤ 𝑇𝑇 𝑞𝑞 𝑟𝑟𝑧 𝑟𝑟 + 𝐴𝐴𝑧 𝑟𝑟 𝐴 𝐴𝐴0𝑧 (83)

where 𝐴𝐴 𝐴 𝐴𝑔𝑟𝑟𝑔 𝑔 m𝐴𝐴𝐴𝑇𝑇𝑔𝑟𝑟𝑧 𝑎𝑎0𝑔𝑧 𝑇𝑇𝑔𝑟𝑟𝑧 𝑎𝑎𝑔𝑔} 𝐴 0𝑧 𝐴𝐴0(𝐴0) is
�xed number.

us, for any 𝑟𝑟 𝐴 𝐴𝐴0, there exists an 𝑛𝑛 𝑟 𝑛 such that
𝐴𝐴0
𝑞𝑞𝑛𝑛−𝑔

≤ 𝑟𝑟 <
𝐴𝐴0
𝑞𝑞𝑛𝑛

. (84)

By an inductive argument, we deduce from (84) that

𝑇𝑇 𝑟𝑟𝑧 𝑟𝑟 ≤ 𝑇𝑇 𝑞𝑞𝑛𝑛𝑟𝑟𝑧 𝑟𝑟 + 𝐴𝐴𝑛𝑛

≤ 𝑇𝑇 𝐴𝐴0𝑧 𝑟𝑟 + 𝐴𝐴
log 𝑟𝑟

log 𝑔𝑔 𝑞𝑞
−

log 𝐴𝐴0
log 𝑔𝑔 𝑞𝑞

+ 𝑔

𝑔 𝑂𝑂 log 𝑟𝑟 .
(85)

Suppose now that |𝑞𝑞| 𝐴 𝑔 and (4) with nonzero constant
coefficients 𝑎𝑎𝑔𝑔𝑔𝑔𝑔 and 𝑎𝑎𝑔𝑔𝑔𝑔𝑔 admits a meromorphic solution
𝑔𝑔𝑔𝑔𝑔𝑔. Replacing 𝑔𝑔 by 𝑔𝑔𝑔𝑞𝑞 in (4), we proceed in a similar
method as above to get (85) again. erefore, 𝑔𝑔𝑔𝑔𝑔𝑔 is rational
solution of (4).

Now, we affirm that 𝑔𝑔𝑔𝑔𝑔𝑔 must be nonzero constant if
𝑎𝑎𝑔𝑔𝑔𝑔𝑔 ≡ 0 and 𝑎𝑎0𝑔𝑔𝑔𝑔 𝑔 𝑎𝑎0𝑔 ≠ 0𝑔 is a constant.Otherwise, if𝑔𝑔𝑔𝑔𝑔𝑔
is nonconstant rational and has a pole 𝑔𝑔0 ≠ 0, we conclude
from (4) that 𝑔𝑔𝑔𝑔𝑔𝑔 has in�nitely many poles of the forms
𝑞𝑞2𝑔𝑛𝑛−𝑔𝑔𝑔𝑔0 and in�nitely many zeros of the forms 𝑞𝑞2𝑔𝑛𝑛−𝑔𝑔+𝑔𝑔𝑔0
for all 𝑛𝑛 𝑟 𝑛. Conversely, If 𝑔𝑔𝑔𝑔𝑔𝑔 is nonconstant rational and
has a zero 𝑔𝑔0 ≠ 0, we conclude from (4) that 𝑔𝑔𝑔𝑔𝑔𝑔 has in�nitely
many zeros of the forms 𝑞𝑞2𝑔𝑛𝑛−𝑔𝑔𝑔𝑔0 and in�nitelymany poles of
the forms 𝑞𝑞2𝑔𝑛𝑛−𝑔𝑔+𝑔𝑔𝑔0 for all 𝑛𝑛 𝑟 𝑛. ese are both impossible
since 𝑔𝑔𝑔𝑔𝑔𝑔 is rational.us, the only possible pole (resp. zero)
of 𝑔𝑔𝑔𝑔𝑔𝑔 is at 0. So 𝑔𝑔𝑔𝑔𝑔𝑔may have the form 𝑔𝑔𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑘𝑘𝑔𝑘𝑘 𝑟 𝑘𝑔,
where 𝑔𝑔 is a nonzero constant. If 𝑘𝑘 ≠ 0, we get a contradiction
from (4).erefore, 𝑘𝑘 𝑔 0 and (4) has only a nonzero constant
solution 𝑔𝑔𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔, which satis�es 𝑔𝑔2 + 𝑎𝑎0 𝑔 0. e proof of
eorem 6 is completed.

We now consider the form of meromorphic solutions of
(5), which is according to eorem 6. In fact, more details
about meromorphic solutions of (5) have been studied in [7,
14]. Here, we only consider the case that all coefficients are
constants.

eorem 12. If 𝑎𝑎𝑔𝑔𝑔𝑔𝑔 ≡ 0 and 𝑎𝑎0𝑔𝑔𝑔𝑔 𝑔 𝑎𝑎0 is constant, and
if 𝑞𝑞 𝑟 𝑞 𝑞 𝐴0} and |𝑞𝑞| ≠ 𝑔, then every meromorphic solution
𝑟𝑟𝑔𝑔𝑔𝑔 of second-order linear 𝑞𝑞-difference equation (5) has the
form 𝑟𝑟𝑔𝑔𝑔𝑔 𝑔 𝑓𝑓𝑔𝑔𝑘𝑘, where 𝑓𝑓 𝑟 𝑞 𝑞 𝐴0} and 𝑘𝑘 𝑟 𝑘 satisfying
𝑞𝑞2𝑘𝑘 + 𝑎𝑎0 𝑔 0.

We �rst list a lemma needed below.

Lemma 13 (see [14, eorem 2.1]). Suppose that 𝑞𝑞 𝑟 𝑞 𝑞
𝐴0} and |𝑞𝑞| ≠ 𝑔. Let 𝑎𝑎0𝑧 𝑎𝑎𝑔𝑧… 𝑧 𝑎𝑎𝑛𝑛 be complex constants and let
𝑄𝑄𝑔𝑔𝑔𝑔 be of the reduced form𝑄𝑄𝑔𝑔𝑔𝑔 𝑔 𝑄𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

l, where 𝑄𝑄𝑔𝑔𝑔𝑔𝑔 is a
polynomial of degree 𝑔𝑔 and 𝑙𝑙 𝑟 𝑛𝑙 𝐴0}. en all meromorphic
solutions 𝑟𝑟𝑔𝑔𝑔𝑔 of

𝑛𝑛

𝑗𝑗𝑔0
𝑎𝑎𝑗𝑗 𝑔𝑔𝑔𝑔 𝑟𝑟 𝑞𝑞

𝑗𝑗𝑔𝑔 𝑔 𝑄𝑄 𝑔𝑔𝑔𝑔 (86)



8 Journal of Complex Analysis

are of the reduced form 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓2𝑓𝑓𝑓𝑓𝑧𝑓𝑓
𝑓𝑓, where 𝑓𝑓2𝑓𝑓𝑓𝑓 is a

polynomial and 𝑓𝑓 𝑝 𝑝𝑝.

Proof of eorem 12. We deduce from Lemma 13 that all
meromorphic solutions 𝑓𝑓𝑓𝑓𝑓𝑓 of (5) are of the form 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓
𝑓𝑓2𝑓𝑓𝑓𝑓𝑧𝑓𝑓

𝑓𝑓, where 𝑓𝑓2𝑓𝑓𝑓𝑓 and 𝑓𝑓 are de�ned as Lemma 13. us,
we conclude fromeorem 6 and (10) that

𝑑𝑑 𝑓 𝑑𝑑 𝑓𝑓𝑓𝑓 𝑓
𝑓𝑓 𝑞𝑞𝑓𝑓
𝑓𝑓 𝑓𝑓𝑓𝑓

𝑓
1
𝑞𝑞𝑓𝑓

⋅
𝑓𝑓2 𝑞𝑞𝑓𝑓
𝑓𝑓2 𝑓𝑓𝑓𝑓

, (87)

where 𝑑𝑑 is de�ned as eorem 6. From (87), we obtain that
there exists𝛽𝛽 𝛽 𝛽𝛽𝛽𝛽𝛽 and𝑚𝑚 𝛽 𝑚𝑚𝛽𝛽𝛽 such that𝑓𝑓2𝑓𝑓𝑓𝑓 𝑓 𝛽𝛽𝑓𝑓

𝑚𝑚,
and so𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓2𝑓𝑓𝑓𝑓𝑧𝑓𝑓

𝑓𝑓 𝑓 𝛽𝛽𝑓𝑓𝑚𝑚𝑧𝑓𝑓𝑓𝑓 𝑓∶ 𝛽𝛽𝑓𝑓𝑘𝑘, where 𝑘𝑘 𝑓 𝑚𝑚𝑘𝑓𝑓 𝛽
ℤ. Now, substituting 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝛽𝛽𝑓𝑓𝑘𝑘 into (5), we conclude that 𝑘𝑘
satis�es 𝑞𝑞2𝑘𝑘 + 𝑎𝑎𝛽 𝑓 𝛽. e proof of eorem 12 is completed.

Example 14. Let 𝑞𝑞 𝛽 𝛽 𝛽 𝛽𝛽𝛽, 𝑞𝑞𝑞𝑞 𝑞 1, 𝑎𝑎1𝑓𝑓𝑓𝑓 𝑧 𝛽 and 𝑎𝑎𝛽𝑓𝑓𝑓𝑓 𝑓
𝑘1𝑧𝑞𝑞2. en second-order 𝑞𝑞-difference equation (5) is solved
by 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 1𝑧𝑓𝑓. Obviously, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 1𝑧𝑓𝑓 and 𝑘𝑘 𝑓 𝑘1 satisfy the
conclusions described byeorem 12.

5. Linear 𝑞𝑞-Difference Equations of
Second-Order

Let 𝑦𝑦1𝑓𝑓𝑓𝑓 and 𝑦𝑦2𝑓𝑓𝑓𝑓 be meromorphic solutions of (5). We
de�ne the 𝑞𝑞-Casorati determinant of meromorphic functions
𝑦𝑦1𝑓𝑓𝑓𝑓 and 𝑦𝑦2𝑓𝑓𝑓𝑓 by

𝐶𝐶𝑞𝑞 𝑓𝑓𝑓𝑓 𝑓 𝐶𝐶𝑞𝑞 𝑦𝑦1, 𝑦𝑦2; 𝑓𝑓 𝑓 
𝑦𝑦1 𝑓𝑓𝑓𝑓 𝑦𝑦2 𝑓𝑓𝑓𝑓
𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑦𝑦2 𝑞𝑞𝑓𝑓

 . (88)

en the 𝑞𝑞-Casorati determinant 𝐶𝐶𝑞𝑞𝑓𝑓𝑓𝑓 vanishes identically
on 𝛽 if and only if the functions 𝑦𝑦1𝑓𝑓𝑓𝑓 and 𝑦𝑦2𝑓𝑓𝑓𝑓 are linearly
dependent over the �eld of functions 𝜙𝜙𝑓𝑞𝑞𝑓𝑓𝑓 𝑓 𝜙𝜙𝑓𝑓𝑓𝑓. On the
other hand, 𝑑𝑑1𝑓𝑓𝑓𝑓 and 𝑑𝑑2𝑓𝑓𝑓𝑓 are linear independent if and
only if𝐶𝐶𝑞𝑞𝑓𝑑𝑑1, 𝑑𝑑2; 𝑓𝑓𝑓 ̸𝑧 𝛽. From this de�nition, we have some
properties on the 𝑞𝑞-Casorati determinant𝐶𝐶𝑞𝑞𝑓𝑓𝑓𝑓 as follows.

eorem 15. If 𝑦𝑦1𝑓𝑓𝑓𝑓 and 𝑦𝑦2𝑓𝑓𝑓𝑓 are nontrivial meromorphic
solutions of (5), then 𝑞𝑞-Casorati determinant 𝐶𝐶𝑞𝑞𝑓𝑦𝑦1, 𝑦𝑦2; 𝑓𝑓𝑓
satis�es a �rst-order 𝑞𝑞-difference equation

Δ𝑞𝑞𝐶𝐶𝑞𝑞 𝑓𝑓𝑓𝑓 𝑓 𝑎𝑎𝛽 𝑘 1𝐶𝐶𝑞𝑞 𝑓𝑓𝑓𝑓 . (89)

Conversely, we assume that 𝑦𝑦1𝑓𝑓𝑓𝑓𝑓 ̸𝑧 𝛽𝑓 and 𝑦𝑦2𝑓𝑓𝑓𝑓 satisfy (89).
If 𝑦𝑦1𝑓𝑓𝑓𝑓 is a meromorphic solution of (5), then 𝑦𝑦2𝑓𝑓𝑓𝑓 is also a
meromorphic solution of (5).

Proof of eorem 15. Suppose �rst that 𝑦𝑦1𝑓𝑓𝑓𝑓 and 𝑦𝑦2𝑓𝑓𝑓𝑓 are
nontrivial meromorphic solutions of (5), we conclude that

𝐶𝐶𝑞𝑞 𝑞𝑞𝑓𝑓

𝑓 𝐶𝐶𝑞𝑞 𝑦𝑦1, 𝑦𝑦2; 𝑞𝑞𝑓𝑓 𝑓 



𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑦𝑦2 𝑞𝑞𝑓𝑓

𝑦𝑦1 𝑞𝑞
2𝑓𝑓 𝑦𝑦2 𝑞𝑞

2𝑓𝑓




𝑓 



𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑦𝑦2 𝑞𝑞𝑓𝑓
𝑘𝑎𝑎1𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑘 𝑎𝑎𝛽 𝑓𝑓𝑓𝑓 𝑦𝑦1 𝑓𝑓𝑓𝑓 𝑘𝑎𝑎1𝑦𝑦2 𝑞𝑞𝑓𝑓 𝑘 𝑎𝑎𝛽 𝑓𝑓𝑓𝑓 𝑦𝑦2 𝑓𝑓𝑓𝑓





𝑓 



𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑦𝑦2 𝑞𝑞𝑓𝑓
𝑘𝑎𝑎𝛽 𝑓𝑓𝑓𝑓 𝑦𝑦1 𝑓𝑓𝑓𝑓 𝑘𝑎𝑎𝛽 𝑓𝑓𝑓𝑓 𝑦𝑦2 𝑓𝑓𝑓𝑓





𝑓 𝑎𝑎𝛽 𝑓𝑓𝑓𝑓 



𝑦𝑦1 𝑓𝑓𝑓𝑓 𝑦𝑦2 𝑓𝑓𝑓𝑓
𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑦𝑦2 𝑞𝑞𝑓𝑓




𝑓 𝑎𝑎𝛽 𝑓𝑓𝑓𝑓𝐶𝐶𝑞𝑞 𝑓𝑓𝑓𝑓 .

(90)

erefore,

Δ𝑞𝑞𝐶𝐶𝑞𝑞 𝑓𝑓𝑓𝑓 𝑓 𝐶𝐶𝑞𝑞 𝑞𝑞𝑓𝑓 𝑘 𝐶𝐶𝑞𝑞 𝑓𝑓𝑓𝑓 𝑓 𝑎𝑎𝛽 𝑓𝑓𝑓𝑓 𝑘 1𝐶𝐶𝑞𝑞 𝑓𝑓𝑓𝑓 . (91)

Second, if 𝑦𝑦1𝑓𝑓𝑓𝑓𝑓 ̸𝑧 𝛽𝑓 and 𝑦𝑦2𝑓𝑓𝑓𝑓 satisfy (89), then we have





𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑦𝑦2 𝑞𝑞𝑓𝑓

𝑦𝑦1 𝑞𝑞
2𝑓𝑓 𝑦𝑦2 𝑞𝑞

2𝑓𝑓



𝑓 𝑎𝑎𝛽 𝑓𝑓𝑓𝑓 



𝑦𝑦1 𝑓𝑓𝑓𝑓 𝑦𝑦2 𝑓𝑓𝑓𝑓

𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑦𝑦2 𝑞𝑞𝑓𝑓



. (92)

We note that, for any meromorphic function 𝑐𝑐𝑓𝑓𝑓𝑓 ̸𝑧 𝛽,





𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑦𝑦2 𝑞𝑞𝑓𝑓

𝑦𝑦1 𝑞𝑞
2𝑓𝑓 𝑦𝑦2 𝑞𝑞

2𝑓𝑓




𝑓 



𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑦𝑦2 𝑞𝑞𝑓𝑓

𝑦𝑦1 𝑞𝑞
2𝑓𝑓 + 𝑐𝑐 𝑓𝑓𝑓𝑓 𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑦𝑦2 𝑞𝑞

2𝑓𝑓 + 𝑐𝑐 𝑓𝑓𝑓𝑓 𝑦𝑦2 𝑞𝑞𝑓𝑓



.

(93)

In particular, we take 𝑐𝑐𝑓𝑓𝑓𝑓 𝑓 𝑎𝑎1𝑓𝑓𝑓𝑓. us,





𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑦𝑦2 𝑞𝑞𝑓𝑓

𝑦𝑦1 𝑞𝑞
2𝑓𝑓 + 𝑎𝑎1 𝑓𝑓𝑓𝑓 𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑦𝑦2 𝑞𝑞

2𝑓𝑓 + 𝑎𝑎1 𝑓𝑓𝑓𝑓 𝑦𝑦2 𝑞𝑞𝑓𝑓




𝑓 𝑎𝑎𝛽 𝑓𝑓𝑓𝑓 



𝑦𝑦1 𝑓𝑓𝑓𝑓 𝑦𝑦2 𝑓𝑓𝑓𝑓

𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑦𝑦2 𝑞𝑞𝑓𝑓



.

(94)

So, we have





𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑦𝑦2 𝑞𝑞𝑓𝑓

𝑦𝑦1 𝑞𝑞
2𝑓𝑓 + 𝑎𝑎1 𝑓𝑓𝑓𝑓 𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑦𝑦2 𝑞𝑞

2𝑓𝑓 + 𝑎𝑎1 𝑓𝑓𝑓𝑓 𝑦𝑦2 𝑞𝑞𝑓𝑓




+ 



𝑦𝑦1 𝑞𝑞𝑓𝑓 𝑦𝑦2 𝑞𝑞𝑓𝑓
𝑎𝑎𝛽 𝑓𝑓𝑓𝑓 𝑦𝑦1 𝑓𝑓𝑓𝑓 𝑎𝑎𝛽 𝑓𝑓𝑓𝑓 𝑦𝑦2 𝑓𝑓𝑓𝑓




𝑓 𝛽.

(95)
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From this, we conclude that

𝑦𝑦1 𝑞𝑞𝑞𝑞 𝑦𝑦2 𝑞𝑞
2𝑞𝑞 + 𝑎𝑎1 (𝑞𝑞) 𝑦𝑦2 𝑞𝑞𝑞𝑞 + 𝑎𝑎0 (𝑞𝑞) 𝑦𝑦2 (𝑞𝑞)

= 𝑦𝑦2 𝑞𝑞𝑞𝑞 𝑦𝑦1 𝑞𝑞
2𝑞𝑞 + 𝑎𝑎1 (𝑞𝑞) 𝑦𝑦1 𝑞𝑞𝑞𝑞 + 𝑎𝑎0 (𝑞𝑞) 𝑦𝑦1 (𝑞𝑞) .

(96)

Since 𝑦𝑦1(𝑞𝑞)( ̸≡ 0) is a meromorphic solution of (5), we have

𝑦𝑦1 𝑞𝑞
2𝑞𝑞 + 𝑎𝑎1 (𝑞𝑞) 𝑦𝑦1 𝑞𝑞𝑞𝑞 + 𝑎𝑎0 (𝑞𝑞) 𝑦𝑦1 (𝑞𝑞) = 0, (97)

and so,

𝑦𝑦2 𝑞𝑞
2𝑞𝑞 + 𝑎𝑎1 (𝑞𝑞) 𝑦𝑦2 𝑞𝑞𝑞𝑞 + 𝑎𝑎0 (𝑞𝑞) 𝑦𝑦2 (𝑞𝑞) = 0. (98)

is shows that 𝑦𝑦2(𝑞𝑞) is a meromorphic solution of (5). e
proof of eorem 15 is completed.

eorem 16. (i) Let 𝑦𝑦1(𝑞𝑞) and 𝑦𝑦2(𝑞𝑞) be linear indepen-
dent meromorphic solutions of (5), and let𝐶𝐶𝑞𝑞(𝑞𝑞) be the 𝑞𝑞-
Casoratian determinant of 𝑦𝑦1(𝑞𝑞) and 𝑦𝑦2(𝑞𝑞). en 𝑦𝑦2(𝑞𝑞) is
represented as 𝑦𝑦2(𝑞𝑞) = 𝑧𝑧(𝑞𝑞)𝑦𝑦1(𝑞𝑞), where 𝑧𝑧(𝑞𝑞) satis�es

Δ𝑞𝑞𝑧𝑧 (𝑞𝑞) =
𝐶𝐶𝑞𝑞 (𝑞𝑞)

𝑦𝑦1 (𝑞𝑞) 𝑦𝑦1 𝑞𝑞𝑞𝑞
. (99)

(ii) Let 𝑦𝑦1(𝑞𝑞) be a nontrivial meromorphic solution of (5),
and let 𝐶𝐶𝑞𝑞(𝑞𝑞) be a meromorphic solution of (89). If 𝑧𝑧(𝑞𝑞)
satis�es (99), then 𝑦𝑦2(𝑞𝑞) = 𝑧𝑧(𝑞𝑞)𝑦𝑦1(𝑞𝑞) is a meromorphic
solution of (5).

Proof of eorem 16. (i) From the de�nition of 𝐶𝐶𝑞𝑞(𝑞𝑞), we
obtain

𝐶𝐶𝑞𝑞 (𝑞𝑞) = 𝑦𝑦1 (𝑞𝑞) 𝑦𝑦2 𝑞𝑞𝑞𝑞 − 𝑦𝑦2 (𝑞𝑞) 𝑦𝑦1 𝑞𝑞𝑞𝑞 . (100)

is shows that 𝑦𝑦2(𝑞𝑞) satis�es �rst-order 𝑞𝑞-difference equa-
tion of type

𝑦𝑦2 𝑞𝑞𝑞𝑞 = 𝑦𝑦2 (𝑞𝑞) ⋅
𝑦𝑦1 𝑞𝑞𝑞𝑞
𝑦𝑦1 (𝑞𝑞)

+
𝐶𝐶𝑞𝑞 (𝑞𝑞)
𝑦𝑦1 (𝑞𝑞)

. (101)

By substituting 𝑦𝑦2(𝑞𝑞) = 𝑧𝑧(𝑞𝑞)𝑦𝑦1(𝑞𝑞) into (101), we conclude
that

𝑧𝑧 𝑞𝑞𝑞𝑞 𝑦𝑦1 𝑞𝑞𝑞𝑞 = 𝑧𝑧 (𝑞𝑞) 𝑦𝑦1 (𝑞𝑞) ⋅
𝑦𝑦1 𝑞𝑞𝑞𝑞
𝑦𝑦1 (𝑞𝑞)

+
𝐶𝐶𝑞𝑞 (𝑞𝑞)
𝑦𝑦1 (𝑞𝑞)

, (102)

and so we obtain the desired form (99).
(ii) Obviously, we conclude from (99) and (89) that

𝑧𝑧 𝑞𝑞𝑞𝑞 = 𝑧𝑧 (𝑞𝑞) +
𝐶𝐶𝑞𝑞 (𝑞𝑞)

𝑦𝑦1 (𝑞𝑞) 𝑦𝑦1 𝑞𝑞𝑞𝑞
,

𝑧𝑧 𝑞𝑞2𝑞𝑞 = 𝑧𝑧 𝑞𝑞𝑞𝑞 +
𝐶𝐶𝑞𝑞 𝑞𝑞𝑞𝑞

𝑦𝑦1 𝑞𝑞𝑞𝑞 𝑦𝑦1 𝑞𝑞2𝑞𝑞

= 𝑧𝑧 𝑞𝑞𝑞𝑞 +
𝑎𝑎0 (𝑞𝑞)𝐶𝐶𝑞𝑞 (𝑞𝑞)

𝑦𝑦1 𝑞𝑞𝑞𝑞 𝑦𝑦1 𝑞𝑞2𝑞𝑞
.

(103)

Since 𝑦𝑦2(𝑞𝑞) = 𝑧𝑧(𝑞𝑞)𝑦𝑦1(𝑞𝑞),𝐶𝐶𝑞𝑞(𝑞𝑞) = 𝑦𝑦1(𝑞𝑞)𝑦𝑦2(𝑞𝑞𝑞𝑞)−𝑦𝑦2(𝑞𝑞)𝑦𝑦1(𝑞𝑞𝑞𝑞),
and

𝑦𝑦1 𝑞𝑞
2𝑞𝑞 + 𝑎𝑎1 (𝑞𝑞) 𝑦𝑦1 𝑞𝑞𝑞𝑞 + 𝑎𝑎0 (𝑞𝑞) 𝑦𝑦1 (𝑞𝑞) = 0, (104)

we conclude from (103), and (104) that

𝑦𝑦2 𝑞𝑞
2𝑞𝑞

= 𝑧𝑧 𝑞𝑞2𝑞𝑞 𝑦𝑦1 𝑞𝑞
2𝑞𝑞

= 𝑧𝑧 (𝑞𝑞) +
𝐶𝐶𝑞𝑞 (𝑞𝑞)

𝑦𝑦1 (𝑞𝑞) 𝑦𝑦1 𝑞𝑞𝑞𝑞
+

𝑎𝑎0 (𝑞𝑞)𝐶𝐶𝑞𝑞 (𝑞𝑞)
𝑦𝑦1 𝑞𝑞𝑞𝑞 𝑦𝑦1 𝑞𝑞2𝑞𝑞

𝑦𝑦1 𝑞𝑞
2𝑞𝑞

= 𝑧𝑧 (𝑞𝑞) 𝑦𝑦1 𝑞𝑞
2𝑞𝑞 +

𝑦𝑦1 𝑞𝑞
2𝑞𝑞 + 𝑎𝑎0 (𝑞𝑞) 𝑦𝑦1 (𝑞𝑞)
𝑦𝑦1 (𝑞𝑞) 𝑦𝑦1 𝑞𝑞𝑞𝑞

⋅𝐶𝐶𝑞𝑞 (𝑞𝑞)

= 𝑧𝑧 (𝑞𝑞) 𝑦𝑦1 𝑞𝑞
2𝑞𝑞 +

−𝑎𝑎1 (𝑞𝑞) 𝑦𝑦1 𝑞𝑞𝑞𝑞
𝑦𝑦1 (𝑞𝑞) 𝑦𝑦1 𝑞𝑞𝑞𝑞

⋅𝐶𝐶𝑞𝑞 (𝑞𝑞)

=
𝑦𝑦2 (𝑞𝑞)
𝑦𝑦1 (𝑞𝑞)

⋅ −𝑎𝑎1 (𝑞𝑞) 𝑦𝑦1 𝑞𝑞𝑞𝑞 − 𝑎𝑎0 (𝑞𝑞) 𝑦𝑦1 (𝑞𝑞) −
𝑎𝑎1 (𝑞𝑞)
𝑦𝑦1 (𝑞𝑞)

⋅ 𝑦𝑦1 (𝑞𝑞) 𝑦𝑦2 𝑞𝑞𝑞𝑞 − 𝑦𝑦2 (𝑞𝑞) 𝑦𝑦1 𝑞𝑞𝑞𝑞

= −𝑎𝑎1 (𝑞𝑞) 𝑦𝑦2 𝑞𝑞𝑞𝑞 − 𝑎𝑎0 (𝑞𝑞) 𝑦𝑦2 (𝑞𝑞) .
(105)

is yields that 𝑦𝑦2(𝑞𝑞) = 𝑧𝑧(𝑞𝑞)𝑦𝑦1(𝑞𝑞) is a meromorphic solution
of (5). e proof of eorem 16 is completed.
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