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Abstract We consider the existence, the growth, poles, zeros, fixed points and the Borel

exceptional value of solutions for the following difference equations relating to Gamma

function y(z + 1)− y(z) = R(z) and y(z + 1) = P (z)y(z).
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1 Introduction and Results

It is well known that Gamma function is defined

Γ(z) =
e−γz

z

∞∏
n=1

(
1 +

z

n

)
−1

e
z
n ,

where γ = lim
n→∞

[
1 + 1

2 + · · ·+
1
n
− log n

]
cannot satisfy any algebraic differential equation

whose coefficients are rational functions. But it satisfies the difference equation

Γ(z + 1) = zΓ(z).

And the Gaussian psi function is defined by Ψ(z) = Γ′(z)
Γ(z) , which satisfies the difference equation

Ψ(z + 1)−Ψ(z) =
1

z
.

Both of Γ(z) and Ψ(z) are meromorphic functions in C with simple poles at z = 0,−1, · · · and

the order of growth σ(Γ) = σ(Ψ) = 1.

In this paper, we consider difference equations more general than above

y(z + 1)− y(z) = R(z) (1.1)

and

y(z + 1) = P (z)y(z), (1.2)
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where R(z) is a rational function, P (z) is a polynomial.

Bank and Kaufman [1] gave the following result concerning the existence and the growth

restriction of solutions of difference equations.

Theorem A For any rational function R(z), equation (1.1) always has a meromorphic

solution y(z) such that T (r, y) = O(r) as r →∞.

In this paper, we assume the reader is familiar with the basic notions of Nevanlinna’s

value distribution theory (see e.g. [2–5]). In addition, we use the notations σ(f) to denote the

order of growth of the meromorphic function f(z), λ(f) and λ( 1
f
) to denote, respectively, the

exponents of convergence of zeros and poles of f(z). We also use the notation τ(f) to denote

the exponent of convergence of fixed points of f defined by

τ(f) = lim sup
r→∞

logN
(
r, 1

f−z

)
log r

.

Recently, a number of papers (including [6–20]) focused on complex difference equations

and difference analogues of Nevanlinna’s theory. As the difference analogues of Nevanlinna’s

theory are investigated, many results on the complex difference equations were got rapidly.

Many papers (including [6, 11, 12, 15–20] ) mainly deal with the growth of meromorphic

solutions of difference equations.

The goal of our research is to consider the existence, the growth, poles, zeros, fixed points

and the Borel exceptional value of solutions of (1.1) and (1.2). We will prove the following four

theorems.

Theorem 1 For any rational function R(z) �≡ 0, consider equation (1.1), the following

statements holds.

(1) Equation (1.1) must have a meromorhpic solution y(z) satisfies λ(y) = σ(y) = 1, and

all its transcendental meromorphic solutions of finite order satisfy λ(y) = σ(y) ≥ 1.

(2) Every transcendental meromorphic solution y(z) of finite order of it has at most one

Borel exceptional value.

(3) If its solution y(z) has infinitely many poles, then λ
(
1
y

)
≥ 1.

(4) If R(z) �≡ 1 and y(z) is its transcendental meromorphic solution of finite order, then

the exponent of convergence of fixed points of y(z) satisfies τ(y) = σ(y).

Theorem 2 Let R(z) = P (z)
Q(z) �≡ 0 be a rational function where P (z), Q(z) are irreducible

polynomials, degP (z) = p, degQ(z) = q, p − q = s. Consider equation (1.1), the following

statements hold.

(1) If s = −1, then (1.1) has no rational solution.

(2) If s ≥ 0 and y(z) = m(z)
n(z) is a rational solution of (1.1) where m(z), n(z) are irreducible

polynomials with degm(z) = m, deg n(z) = n, then m− n = s+ 1.

(3) If s ≤ −2 and y(z) is defined as in (2), then m− n = s+ 1 or m− n = 0.

(4) If q = 0 (i.e. Q(z) is a nonzero constant), then (1.1) must has a polynomial solution

y(z) = as+1z
s+1 + · · ·+ a1z + a0 (as+1 �= 0), coefficients as+1, · · · , a1 of which can be decided

by coefficients of R(z), and the coefficient a0 may take any constant.

By Theorem 1, we can obtain the following corollary.
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Corollary 1 For the Gauss psi function Ψ(z) = Γ′(z)
Γ(z) (see [21, Chapter 7]), we have

λ(Ψ) = λ

(
1

Ψ

)
= τ(Ψ) = σ(Ψ) = 1.

Theorem 3 Let P (z) be a polynomial with degP (z) = p ≥ 1. Consider the difference

equation (1.2), then

(1) Equation (1.2) has no nonzero rational solution;

(2) Every transcendental meromorphic solution of (1.2) satisfies σ(y) ≥ 1, and has at most

one Borel exceptional value.

The following Examples 1–6 show the existences and the forms of rational solutions of

Theorem 2. Examples 2–4 show that there assuredly exist two cases m − n = s + 1 and

m − n = 0 under condition (3) of Theorem 2. Example 6 shows properties on transcendental

solutions in Theorem 1.

Example 7 shows that the condition R(z) �≡ 1 in Theorem 1(4) cannot be omitted.

Example 1 The difference equation

y(z + 1)− y(z) =
z2 + 3z + 1

(z + 1)(z + 2)

has a solution y(z) = z2

z+1 , where s = 2− 2 = 0 and m− n = 2− 1 = 1 = s+ 1.

Example 2 The difference equation

y(z + 1)− y(z) =
−1

z(z + 1)

has a solution y(z) = 1
z
, where s = −2 and m− n = −1 = s+ 1.

Example 3 The difference equation

y(z + 1)− y(z) =
3

(z + 3)(z + 2)

has a solution y(z) = z−1
z+2 , where s = −2 and m− n = 0.

Example 4 The difference equation

y(z + 1)− y(z) =
−4(z − 1)

z(z + 1)(z − 2)(z − 3)

has a solution y(z) = (z−1)(z−2)
z(z−3) , where s = −3 and m− n = 0.

Example 5 The difference equation

y(z + 1)− y(z) =
1

z

has a transcendental solution y(z) = Ψ(z) and has no rational solution. Equations

y(z + 1)− y(z) =
z

(z − 1)(z − 2)
and y(z + 1)− y(z) =

z(z − 1)

((z − 2)(z − 3)(z − 4)

have no rational solutions.

Example 6 The difference equation y(z + 1) − y(z) = 2z + 1 has the following three

solutions:
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(1) A polynomial solution y1(z) = z2+ a0 (a0 may be any constant), where s = 1− 0 = 1

and m− n = 2− 0 = 2 = s+ 1;

(2) A finite order solution y2(z) = e2πiz + z2 which satisfies λ(y2) = τ(y2) = σ(y2) = 1;

(3) A infinite order solution y3(z) = ee
2πiz

+ z2.

Example 7 The difference equation y(z + 1)− y(z) = 1 has a solution y(z) = e2πiz + z,

which has no fixed point.

2 Proof of Theorem 1

We need the following lemmas for the proof of Theorem 1.

Lemma 2.1 [7] Let f be a transcendental meromorphic function satisfying

lim sup
r→∞

T (r, f)

r
= 0. (2.1)

Then f(z + 1)− f(z) is transcendental.

Lemma 2.2 For any rational function R(z) �≡ 0, the difference equation (1.1) must have

a transcendental meromorphic solution y(z) satisfying σ(y) = 1.

Proof By Theorem A, we see that the difference equation (1.1) always has a meromorphic

solution y1(z) such that T (r, y1) = O(r) as r →∞. If y1 is transcendental, then we set y(z) =

y1(z). Now suppose that y1 is a rational function. Since any periodic function with period 1

satisfies the corresponding homogeneous difference equation

y(z + 1)− y(z) = 0

of (1.1), we take a meromorphic periodic function y0(z) with period 1 and σ(y0) = 1. Set

y(z) = y1(z) + y0(z). Then for two cases above, y(z) satisfies (1.1) and T (r, y) = O(r), namely,

y is transcendental and σ(y) ≤ 1.

If σ(y) < 1, then y satisfies (2.1). By Lemma 2.1, we see y(z+1)− y(z) is transcendental,

which contradicts our assumption that R(z) is a rational function. So σ(y) = 1.

Lemma 2.3 [11, 13] Let f be a meromorphic function of finite order and c ∈ C. Then

m

(
r,

f(z + c)

f(z)

)
= S(r, f),

where S(r, f) denotes S(r, f) = o{T (r, f)}.

Lemma 2.4 [13, 20] Let w(z) be a nonconstant finite order meromorphic solution of

P (z, w) = 0,

where P (z, w) is a difference polynomial in w(z). If P (z, a) �≡ 0 for a meromorphic function

a(z) satisfying T (r, a) = S(r, w), then

m

(
r,

1

w − a

)
= S(r, w).

Lemma 2.5 (see [22]) Let g(z) be an entire function of order σ(g) = α < ∞. Then

for any given ε > 0, there is a set E ∈ (1,∞) that has finite linear measure mE and finite

logarithmic measure lmE, such that for all z satisfying |z| = r �∈ [0, 1]
⋃

E,

exp{−rα+ε} ≤ |g(z)| ≤ exp{rα+ε}. (2.2)
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Remark 2.6 Let g be a meromorphic function of order σ(g) = α < ∞. Then by

Lemma 2.5, we easily obtain that for any given ε > 0, there is a set E ∈ (1,∞) that has

finite linear measure mE and finite logarithmic measure lmE, such that for all z satisfying

|z| = r �∈ [0, 1]
⋃

E, (2.2) holds.

Proof of Theorem 1 (1) By Lemma 2.2, we see that (1.1) must have a transcendental

meromorphic solution y(z) which is of order of growth σ(y) = 1. By Lemma 2.3 and (1.1), we

obtain that

m

(
r,

R(z)

y(z)

)
= m

(
r,

y(z + 1)

y(z)
− 1

)
= m

(
r,

y(z + 1)

y(z)

)
= S(r, y).

So,

N

(
r,

R(z)

y(z)

)
= N

(
r,

1

y(z)

)
+O(log r) = T (r, y) + S(r, y).

Hence λ(y) = σ(y) = 1.

If y(z) is a transcendental solution with σ(y) < 1, then y(z+1)−y(z) is transcendental by

Lemma 2.1. This contradicts our supposition that R(z) is a rational function. Hence σ(y) ≥ 1.

Using the same method as above, we have λ(y) = σ(y).

(2) Now, we prove that a finite order meromorphic solution y(z) has at most one Borel

exceptional value.

Suppose that y(z) has two Borel exceptional value a and b(�= 0, a). We will result in a

contradiction.

First, we suppose that a, b are finite value. We set

f(z) =
y(z)− a

y(z)− b
. (2.3)

Then σ(f) = σ(y) and

λ(f) = λ(y − a) < σ(y), λ

(
1

f

)
= λ(y − b) < σ(y).

Hence, f(z) may be rewritten as

f(z) = π(z)eδzn

, (2.4)

where δ(�= 0) is a constant, n is a positive integer and σ(f) = n, π(z)(�≡ 0) is a meromorphic

function with

σ(π) < σ(f) = n. (2.5)

By (2.3), we have

y(z) =
a− bf(z)

1− f(z)
. (2.6)

Substituting (2.6) into (1.1), we obtain that

R(z)f(z + 1)f(z) + (b− a−R(z))f(z + 1) + (a− b− R(z))f(z) +R(z) = 0. (2.7)

By (2.4), we have

f(z + 1) = π(z + 1)eδ(z+1)n = π(z + 1)eδzn+δnzn−1+···+δ = π1(z)e
δzn

, (2.8)
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where π1(z) = π(z + 1)eδnzn−1+···+δ (�≡ 0) and

σ(π1) ≤ max{σ(π), n− 1}. (2.9)

Substituting (2.4) and (2.8) into (2.7), we obtain that

R(z)π(z)π1(z)e
2δzn

+ [(b− a−R(z))π1(z) + (a− b−R(z))π(z)]eδzn

+R(z) = 0. (2.10)

By (2.5) and (2.9), we see that

max{σ(π), σ(π1)} = d < σ(f) = n.

By Lemma 2.5 and Remark 2.6, we see that, for any given ε (0 < 2ε < n − d), there is a set

E ⊆ (1,∞) with finite linear measure, such that for all z satisfying |z| = r �∈ [0, 1]
⋃

E,

exp{−rd+ε} ≤ |R(z)π1(z)π(z)| ≤ exp{rd+ε} (2.11)

and

|(b− a−R(z))π1(z) + (a− b−R(z))π(z)| ≤ exp{rd+ε}. (2.12)

For sufficiently large |z| = r, we have |R(z)| ≤ rk where k (> 0) is some constant.

Now we can choose points zj = rje
iθj , j = 1, 2, · · ·, satisfying rj →∞, rj �∈ [0, 1]

⋃
E, and

exp{2δzn
j } = exp{2|δ|rn

j }. (2.13)

Thus, by (2.11)–(2.13) and d+ ε < n, we obtain that∣∣∣R(zj)π(zj)π1(zj)e
2δzn

j + [(b− a−R(zj))π1(zj) + (a− b−R(zj))π(zj)]e
δzn

j +R(zj)
∣∣∣

≥ exp
{
−rd+ε

j

}
exp

{
2|δ|rn

j

}
− exp

{
rd+ε
j

}
exp

{
|δ|rn

j

}
− rk

j

≥ exp
{
2|δ|rn

j (1− o(1))
}
(1− o(1)). (2.14)

Thus, (2.14) contradicts (2.10).

Second, we suppose that a is a finite value and b = ∞. We set f(z) = y(z) − a. Then

σ(f) = σ(y) and

λ(f) = λ(y − a) < σ(y), λ

(
1

f

)
= λ

(
1

y

)
< σ(y).

Hence, f(z) may be rewritten as

f(z) = π(z)eδzn

,

where n, δ and π(z) are defined as above. And f(z + 1) may be rewritten as

f(z + 1) = π1(z)e
δzn

,

where π1(z) is defined as above. Since f(z + 1)− f(z) = y(z + 1)− y(z), we have

f(z + 1)− f(z) = (π1(z)− π(z))eδzn

= R(z). (2.15)

By R(z) �≡ 0, we see that π1(z) − π(z) �≡ 0. Thus by (2.5), (2.9) and the fact that R(z) is a

rational function, we see that (2.15) is a contradiction.
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(3) Now, we suppose that y(z) has infinitely many poles. Then we will prove λ( 1
y
) ≥

1. Suppose that a set A = {xj + iyj |j = 1, · · · , s} consists of all poles of R(z). Set M =

max{|xj |+ |yj|+1 : 1 ≤ j ≤ s}. Then there is no pole of R(z) in regions D1 = {z : Re z > M},

D2 = {z : Re z < −M}, D3 = {z : Im z > M} and D4 = {z : Im z < −M}.

Since y(z) has infinitely many poles, we see that there is at least one Dj such that y has

infinitely many poles in Dj. If y has infinitely many poles in D1, then there exists a point

z1 ∈ D1 such that y(z1) = ∞. Thus for any n ∈ N, z1 + n ∈ D1 and R(z1 + n) �= ∞, and by

(1.1), we see y(z1 + n) =∞. Hence λ( 1
y
) ≥ 1.

If y has infinitely many poles in D3 or D4, we can use the same method to prove λ( 1
y
) ≥ 1.

If y has infinitely many poles in D2, then there exists a point z2 ∈ D2 such that y(z2) =∞.

We may rewrite (1.1) as

y(z)− y(z − 1) = R(z − 1).

In D2, R(z − 1) has no pole, using the same method as above, we obtain that, for any n ∈

N, y(z2 − n) =∞. So, λ( 1
y
) ≥ 1.

(4) Suppose R(z) �≡ 1. We prove that the exponent of convergence of fixed points of y

satisfies τ(y) = σ(y). Set

f(z) = y(z)− z.

Then f(z) is a transcendental meromorphic function and

σ(f) = σ(y), τ(y) = λ(f), S(r, f) = S(r, y).

Substituting y(z) = f(z) + z into (1.1), we obtain that

P (z, f) := f(z + 1)− f(z) + 1−R(z) = 0.

Since P (z, 0) = 1−R(z) �≡ 0, by Lemma 2.4, we see that

N

(
r,
1

f

)
= T (r, f) + S(r, f).

Hence τ(y) = λ(f) = σ(f) = σ(y).

3 Proof of Theorem 2

We need the following lemmas for the proof of Theorem 2.

Lemma 3.1 Let m(z) and n(z) be irreducible polynomials with degm(z) = m and

deg n(z) = n, m+ n ≥ 1 . Then

(1) If m �= n, then deg[m(z + 1)n(z)−m(z)n(z + 1)] = m+ n− 1;

(2) If m = n, then deg[m(z + 1)n(z)−m(z)n(z + 1)] ≤ m+ n− 2.

Proof Suppose that

m(z) = amzm + am−1z
m−1 + · · ·+ a0, n(z) = bnzn + bn−1z

n−1 + · · ·+ b0,

where am, · · · , a0, bn, · · · , b0 are constants, ambn �= 0. Since

m(z + 1)n(z)−m(z)n(z + 1) = Azm+n−1 +Bzm+n−2 + · · · ,
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where A = ambn(m− n) and

B =

{
1

2
ambn(m(m− 1)− n(n− 1)) + ambn−1(m− n+ 1) + am−1bn(m− n− 1)

}
,

we see that

(1) If m �= n, then by ambn(m− n) �= 0, we have

deg[m(z + 1)n(z)−m(z)n(z + 1)] = m+ n− 1;

(2) If m = n, then by ambn(m− n) = 0, we have

m(z + 1)n(z)−m(z)n(z + 1) = (ambn−1 − am−1bn)z
m+n−2 + · · · ,

so, deg[m(z + 1)n(z)−m(z)n(z + 1)] ≤ m+ n− 2.

Proof of Theorem 2 (1) Suppose that s = −1 and (1.1) has a rational solution

y(z) = m(z)
n(z) where m(z), n(z) are irreducible polynomials, degm(z) = m, degn(z) = n.

Clearly, y(z) cannot be a constant by R(z) (�≡ 0). So, m+ n ≥ 1. If m > n, then

y(z + 1)− y(z) =
m(z + 1)n(z)−m(z)n(z + 1)

n(z + 1)n(z)
=

P (z)

Q(z)
. (3.1)

By Lemma 3.1, we have

m+ n− 1 + q = 2n+ p,

i.e.,

m− n = p− q + 1 = s+ 1 = 0.

This contradicts our supposition that m > n.

If m = n, then by Lemma 3.1, we have

deg[m(z + 1)n(z)−m(z)n(z + 1)] ≤ m+ n− 2.

If deg[m(z + 1)n(z)−m(z)n(z + 1)] = m+ n− 2, then by (3.1), we have

m+ n− 2 + q = p+ 2n,

i.e.,

0 = m− n = p− q + 2 = −1 + 2 = 1.

This is a contradiction. If deg[m(z + 1)n(z) − m(z)n(z + 1)] = m + n − k (k ≥ 3), then we

obtain that

0 = m− n = s+ k = k − 1 (k ≥ 3).

This is also a contradiction.

If m < n, then by Lemma 3.1 and (3.1), we obtain that

0 > m− n = p− q + 1 = s+ 1 = −1 + 1 = 0.

This is also a contradiction. Hence (1.1) has no rational solution.

(2) Suppose that s ≥ 0 and y(z) = m(z)
n(z) is a rational solution of (1.1) where m(z) and

n(z) are defined as in the proof of Lemma 3.1.
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First, suppose that s > 0. Then P (z)
Q(z) → ∞ (as z → ∞). If m = n, then, as z → ∞, we

have y(z)→ am

bn
, y(z + 1)→ am

bn
. So, as z →∞,

y(z + 1)− y(z)→ 0.

This contradicts (1.1). If m < n, then, using the same method as above, we have y(z + 1) −

y(z) → 0. This is also a contradiction. Hence we have m > n. By Lemma 3.1 and (3.1), we

obtain that m− n = s+ 1.

Second, suppose that s = 0. Using the same method as above, we get m− n = s+ 1.

(3) Suppose that s ≤ −2 and y(z) = m(z)
n(z) is a rational solution of (1.1).

If m > n, then by Lemma 3.1 and (3.1), we obtain that

m− n = s+ 1 ≤ −2 + 1 = −1.

This is a contradiction. Hence we have m ≤ n.

If m < n, then by Lemma 3.1, we have m− n = s+ 1. Hence y(z) satisfies m− n = s+ 1

or m = n.

(4) Suppose that q = 0, i.e., R(z) ≡ P (z) is a polynomial of degP = s. Set

P (z) = dsz
s + ds−1z

s−1 + · · ·+ d0 (ds �= 0). (3.2)

Suppose that

y(z) = amzm + am−1z
m−1 + · · ·+ a0 (am �= 0)

is a solution of (1.1). Then

y(z + 1)− y(z) = ammzm−1 + [C2
mam − C1

m−1am−1]z
m−2

+ · · ·+ [Cj
mam + C

j−1
m−1am−1 + · · ·+ C1

m−(j−1)am−(j−1)]z
m−j

+ · · ·+ [am + am−1 + · · ·+ a1], (3.3)

where Cd
h (h = 2, · · · , m; d = 1, · · · , h) are usual notations for the binomial coefficients. Sub-

stituting (3.2) and (3.3) into (1.1), we obtain that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m = s+ 1,

am = as+1 =
1

s+ 1
ds+1−1,

am−1 = as+1−1 =
1

s+ 1− 1

(
ds+1−2 − C2

s+1as+1

)
,

am−(j−1) = as+1−(j−1) =
1

s+ 1− (j − 1)

(
ds+1−j − C

j
s+1as+1

−C
j−1
s+1−1as+1−1 − · · · − C2

s+1−(j−2)as+1−(j−2)

)
,

· · ·

a1 = as+1−s =
1

s+ 1− s
(d0 − as+1 − as − · · · − a2) .

(3.4)

Thus, coefficients as+1, · · · , a1 can be decided by coefficients of R(z), and the coefficient a0 may

take any constant.

Theorem 2 is thus proved.
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4 Proof of Corollary 1

By [21, Chapter 7], we see that Ψ(z) satisfies the difference equation

Ψ(z + 1)−Ψ(z) =
1

z
.

Since we have known that λ
(
1
Ψ

)
= σ(Ψ) = 1, by Theorem 1(1), we see that λ(Ψ) = σ(Ψ) = 1.

By Theorem 1(4) and R(z) = 1
z
(�≡ 1), we see that Ψ(z) has infinitely many fixed points

and the exponent of convergence of its fixed points satisfies τ(Ψ) = σ(Ψ) = 1.

Thus, Corollary 1 is proved.

5 Proof of Theorem 3

We need the following remark and lemmas for the proof of Theorem 3.

Remark 5.1 Following Hayman [23, p.75–76], we define an ε-set to be a countable union

of open discs not containing the origin, and subtending angles at the origin whose sum is finite.

If E is an ε-set, then the set of r ≥ 1 for which the circle S(0, r) meets E has finite logarithmic

measure, and for almost all real θ the intersection of E with the ray arg z = θ is bounded.

Lemma 5.2 [7] Let g be a function transcendental and meromorphic in the complex

plane of order less than 1. Let h > 0. Then there exists an ε-set E such that

g′(z + c)

g(z + c)
→ 0,

g(z + c)

g(z)
→ 1 (as z →∞ in C\E)

uniformly in c for |c| ≤ h. Furthermore, E may be chosen so that for large z not in E the

function g has no zeros or poles in |ζ − z| ≤ h.

Lemma 5.3 [11] Let c1, c2 be two complex numbers such that c1 �= c2 and let f(z) be

a finite order meromorphic function. Let σ be the order of f(z), then for each ε > 0, we have

m

(
r,

f(z + c1)

f(z + c2)

)
= O(rσ−1+ε).

Proof of Theorem 3 Suppose that y(z) (�≡ 0) is a meromorphic solution of (1.2).

Clearly, y(z) is not a constant by (1.2). Suppose that y(z) = m(z)
n(z) is a rational function,

where m(z) and n(z) are irreducible polynomials with degm(z) = m, deg n(z) = n andm+n ≥

1. By (1.2), we have

m(z + 1)n(z)− P (z)m(z)n(z + 1) = 0. (5.1)

But the left side of (5.1) is a polynomial of degree p+m+n. So, (5.1) is a contradiction. Hence

y(z) has no nonzero rational solution.

Now suppose that y(z) is transcendental and σ(y) < 1. Then by Lemma 5.2, there exists

an ε-set E such that

y(z + 1) = y(z)(1 + o(1)) as z →∞ in C\E. (5.2)

By (1.2) and (5.2), we have that

y(z)(1 + o(1)− P (z)) = 0 as z →∞ in C\E. (5.3)
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Since for sufficiently large |z| = r and z in C\E,

|1 + o(1)− P (z)| > 1,

we obtain y(z) ≡ 0 by (5.3). This is a contradiction. So, σ(y) ≥ 1.

Now, we prove that y(z) has at most one Borel exceptional value. First, suppose that

a (�= ∞) and ∞ are two Borel exceptional values of y(z). Set f(z) = y(z)− a. Then f(z) has

Borel exceptional values 0 and ∞, and can be rewritten as

f(z) = H(z)eh(z), (5.4)

where H(z) is a meromorphic function, h(z) is a nonconstant polynomial of deg h(z) = h, and

σ(H) < deg h(z) = h. By (1.2) and (5.4), we obtain that

H(z + 1)

H(z)

1

P (z)
eh(z+1)−h(z) = 1. (5.5)

If h = 1, set h(z) = αz + β (α �= 0, β are constants), then h(z + 1)− h(z) = α. Thus, by

Lemma 5.2 and σ(H) < h = 1, there exists an ε-set E such that

H(z + 1)

H(z)
= 1 + o(1) as z →∞ in C\E. (5.6)

Thus, by h(z + 1)− h(z) = α, degP (z) ≥ 1 and (5.6), we see that

H(z + 1)

H(z)

1

P (z)
eh(z+1)−h(z) → 0 as z →∞ in C\E.

This contradicts (5.5).

If h ≥ 2, then deg[h(z + 1)− h(z)] = h− 1 ≥ 1 and σ(H) = σ < h. By (1.2) and (5.4), we

have that
H(z + 1)

H(z)
= P (z)eh(z)−h(z+1). (5.7)

By Lemma 5.3, we see that, for any given ε (0 < 2ε < h− σ),

m

(
r,

H(z + 1)

H(z)

)
= O

(
rσ−1+ε

)
. (5.8)

But

m
(
r, P (z)eh(z)−h(z+1)

)
= Crh−1, (5.9)

where C �= 0 is a constant.

Since h− σ > 2ε, by (5.8) and (5.9), we see that (5.7) is a contradiction.

Second, suppose that a (�=∞) and b (�= 0, a,∞) are two Borel exceptional values of y(z).

Set

f(z) =
y(z)− a

y(z)− b
. (5.10)

Then f(z) has Borel exceptional values 0 and ∞, and can be rewritten as (5.4). By (5.10), we

have

y(z) =
a− bf(z)

1− f(z)
. (5.11)



1292 ACTA MATHEMATICA SCIENTIA Vol.31 Ser.B

Substituting (5.11) into (1.2), we obtain that

(1− P (z))bf(z + 1)f(z) + (aP (z)− b)f(z + 1) + (bP (z)− a)f(z) + a− aP (z) = 0.

Using the same method as in proof of Theorem 1(2), we can deduce a contradiction.

Hence, y(z) has at most one Borel exceptional value.

Theorem 3 is thus proved.

6 On the c-Separated Paired Value of f(z) (see [14])

In [14], Halburd and Korhonen introduced the concept of the c-separated paired value for

meromorphic functions f(z).

The counting function nc(r, a), a ∈ C, which is the number of equal terms in the beginning

of Taylor series expansions of f(z) and f(z + c) in a neighborhood of z0. We call such points

c-separated a-pairs of f(z) in the disc {z : |z| ≤ r}.

The integrated counting function is defined as follows:

Nc(r, a) :=

∫ r

0

nc(t, a)− nc(0, a)

t
dt+ nc(0, a) log r.

Similarly,

Nc(r,∞) :=

∫ r

0

nc(t,∞)− nc(0,∞)

t
dt+ nc(0,∞) log r,

where nc(r,∞) is the number of c-separated pole pairs of f , which are exactly the c-separated

0-pairs of 1
f
.

A natural difference analogue of N(r, a) is

Ñc(r, a) := N(r, a)−Nc(r, a), (6.1)

which counts the number of those a-points (or poles) of f which are not in c-separated pairs.

A difference analogue of the index of multiplicity θ(a, f) is called the c-separated pair

index, defined as follows:

πa(a, f) := lim inf
r→∞

Nc(r, a)

T (r, f)
, (6.2)

where a is either a slowly moving periodic function with period c, or a = ∞. Similarly, we

define

Πc(a, f) := 1− lim sup
r→∞

Ñc(r, a)

T (r, f)
, (6.3)

which is an analogue of

Θc(a, f) := 1− lim sup
r→∞

N(r, a)

T (r, f)
.

Lemma 6.1 (see [14]) Let c ∈ C, and let f be a meromorphic function of finite order such

that f(z + c)− f(z) �≡ 0. Then Πc(a, f) = 0 except for at most countably many meromorphic

periodic functions a with period c such that a satisfies

T (r, a) = S(r, f)
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and ∑
a

(δ(a, f) + πc(a, f)) ≤
∑

a

Πc(a, f) ≤ 2. (6.4)

Definition 6.1 (see [14]) We say that a is an exceptional paired value of f with the

separation c if f(z) = a, then also f(z + c) = a with the same or higher multiplicity.

Clearly, for every exceptional paired value of f ,

N(r, a) ≤ Nc(r, a) +O(log r).

Thus, we see that if a is an exceptional paired value of f with the separation c, then

1 ≤ Πc(a, f) ≤ 2.

Lemma 6.2 (see [14]) If a finite order meromorphic function f has three exceptional

paired values with the separation c, then f is a periodic function with period c.

From Lemma 6.2, we see that, under the meaning of Definition 6.1, a finite order mero-

morphic function f has at most two exceptional paired values if f is not a periodic function

with period c.

By Definition 6.1, we see that all Picard exceptional values of f(z) are also exceptional

paired values. But from Definition 6.1 only, we cannot directly see that if all Borel exceptional

values of f(z) are also exceptional paired value.

Now, we give the following definition which slightly modifies Definition 6.1.

Definition 6.2 We say that a is an exceptional paired value of finite order meromorphic

function f with separation c if

Πc(a, f) ≥ 1.

Thus, by Definition 6.2, we see that, for a finite order meromorphic function f , its Borel

exceptional value must be the exceptional paired value with separation c. In fact, if a is the

Borel exceptional value of f , then

lim sup
r→∞

N(r, a)

T (r, f)
= 0,

so, Πc(a, f) = 1 by (6.1), (6.3) and the fact that Nc(r, a) ≥ 0.

By Definition 6.2 and (6.4), we see that under the meaning of Definition 6.2, a finite order

meromorphic function f has at most two exceptional paired values if f is not a periodic function

with period c.

From Definition 6.1 or Definition 6.2, we see that ∞ must be an exceptional paired value

of every transcendental solution of (1.1) (or (1.2)). Thus, we can see that equations (1.2) and

(1.2) has the following property.

For any rational function R(z) �≡ 0 (or a nonconstant polynomial P (z)), every finite order

transcendental meromorphic solution y(z) of (1.1) (or (1.2)) has at most one finite exceptional

paired value with separation 1.
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