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Abstract: According to the Nevanlinna theory, many researches have undertaken the behaviors of meromorphic solutions of
complex ordinary differential equations (ODEs). Most of these researches have concentrated on the value distribution and growth
of meromorphic solutions of ODEs. However, the existence of a meromorphic general solution is often used as a way to identify
equations that are integrable. Especially, the existence of global meromorphic solutions of differential equation f

′′
+A(z)f = 0

with entire coefficient can be settled, resulting in the characterization of Schwarzian derivatives. This is concerning with the
linearly independent solutions of linear differential equations f

′′
+ h(z)

(z−z0)2 f = 0. The purpose of this present paper is to find
explicit solutions of differential equation in terms of finite combinations of known functions, that is, we use local series methods
and reduction of order to solve all linearly independent solutions of some third-order ODEs f

′′′
+ h(z)

(z−z0)3 = 0 with entire
coefficient h(z) in the neighborhood of z0.
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1. Introduction
Ordinary differential equations(ODEs) in the complex

domain is an area of mathematics admitting several ways
of approach, which basic results can be found in a large
number of text-books of differential equations, see, e.g. [12,
13, 16]. At present, many researches focus our interest on
Nevanlinna theory, and have undertaken the value distribution
of meromorphic solutions of ODEs, see, e.g. [2-8, 11,13-15,
17-18].

However, finding explicit solutions of ODEs in terms of
finite combinations of known functions is more difficult.
However, it was observed in the late nineteenth and early
twentieth centuries that ODEs whose general solutions are
meromorphic appear to be integrable in that they can be solved
explicitly or they are the compatibility conditions of certain
types of linear problems [1]. The condition that the general
solution is meromorphic can be replaced by the condition that
the ODE possesses the Painlvé property, that is, all solutions
are single-valued about all movable singularities.

Finite order functions have special properties and so they
have been the subject of intense study [10]. The major result
concerning the order of growth of meromorphic solutions of
first order ODEs is the following theorem due to Gol’dberg.

Theorem 1.1. [6] All meromorphic solutions of the first
order ODE

Ω(z, f, f
′
) = 0, (1)

where Ω is polynomial in all its arguments, are of finite order.
A generalization of Gol’dberg’s result to second order

algebraic equations have been conjectured by Bank [2].
Hayman [9] described a further generalization of Bank’s
conjecture to nth-order ODEs. If f(z) is a meromorphic
solution of

Ω(z, f, f
′
, · · · , f (n)) = 0, (2)

where Ω is polynomial in z, f, f
′
, · · · , f (n), then we have

T (r, f) < a expn−1(brc), 0 ≤ r < +∞, (3)
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where a, b and c are constants and expj(x) is defined by

exp0(x) = x, exp1(x) = ex,

expj(x) = exp{expj−1(x)}.

In this paper, we will focus our interest on finding
explicit solutions of differential equation in terms of
finite combinations of known functions, that is, we use
local series methods and reduction of order to solve all
linearly independent solutions of some third-order differential
equations.

The remainder of the paper is organized as follows. In
Section 2, we recalled some results on the existence of global
meromorphic solutions of second-order ODE

f
′′

+
h(z)

(z − z0)2
f = 0,

which resulted in the characterzation of Schwarzian
derivatives. In Section 3, the explicit solutions of differential
equation in terms of finite combinations of known functions to
solve some third-order ODEs

f
′′′

+
h(z)

(z − z0)3
= 0

with entire coefficient h(z) in the neighborhood of z0 have
been arrived.

2. Explicit Solutions of Second Order
Differential Equation

When considering the formal form of second order
differential equation

f
′′

+A(z)f = 0, (4)

where A(z) is meromorphic, we need first to find out whether
its meromorphic solutions exist or not. The existence of global
meromorphic solutions of (4) can be settled, resulting in the
characterzation of Schwarzian derivatives, see Theorem 2.1
and Corllary 2.2 obtained by Herold[12].

Theorem 2.1. [12] Let G ⊂ C be a simply connected
domain, such that A(z) is meromorphic in G. The quotient
of any two local solutions of (4) is meromorphic and admits
a meromorphic continuation into the whole G if and only if at
all poles ofA(z), the Laurent expansion ofA(z) around z0 has
the form

A(z) =
b0

(z − z0)2
+

b1
z − z0

+ b2 + ..., (5)

where

4b0 = 1−m2,m is integer and m ≥ 2, (6)

and

D(z0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1−m 0 · · · 0 b1
b1 4− 2m · · · 0 b2

b2 b1
. . . 0 b3

...
...

...
...

...
bm−2 bm−3 · · · (m− 1)2 − (m− 1)m bm−1
bm−1 bm−2 · · · b1 bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (7)

Moreover, these continuations g of local quotients all satisfy,
in G,

Sg :=

(
g

′′

g′

)′

− 1

2

(
g

′′

g′

)2

= 2A(z).

Corollary 2.1. [12] Let G ⊂ C be a simple connected
domain such that A(z) is meromorphic in G. The differential
equation (4) admits two linearly independent meromorphic
solutions inG if and only if at all poles z0 ofA(z), the Laurent
expansion ofA(z) is of the form (5), satisfying (6) with an odd
integer m ≥ 3 and (7).

In order to prove Theorem 2.1, Herold first gave out explicit
solutions of equation

f
′′

+
h(z)

(z − z0)2
f = 0, (8)

where h(z) is analysis in |z − z0| < R,R > 0. Obviously,
(8) is just a simplified form of (4) and satisfies (5) and some
special conditions. He decared

Theorem 2.2. [12] Suppose h(z) is analytic in |z− z0| < R,
and consider the differential equation (8) in the disc |z− z0| <
R. Let ρ1, ρ2 be the roots of

ρ(ρ− 1) + h(z0) = 0,

assuming that ρ1− ρ2 ∈ Z\{0}. Denote by D = D(r) the slit
disc

D := {z||z − z0| < r}\{z0 + t|0 ≤ t < r}.

Then (8) admits, in some slit disc D = D(r), r ≤ R, two
linearly independent solutions f1, f2 of the following form

f1 = (z − z0)ρ1
∞∑
i=0

ai(z − z0)i, a0 6= 0,

f2 = kf1(z) log(z − z0) + (z − z0)ρ2
∞∑
j=0

bj(z − z0)j ,
(9)

where either k = 0 or k = 1.
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3. General Solutions of Third Order
Differential Equation

In this section, we discuss about linearly independent
solutions of the following third order differential equation.

f
′′′

+
h(z)

(z − z0)3
f = 0, (10)

where h(z) is analytic |z − z0| < R. We want to find explicit
solutions of linear differential equation (10) in terms of finite
combinations of known functions, and obtain

Theorem 3.1. Suppose h(z) is analytic |z − z0| < R, and
consider the differential equation (10) in the disc |z−z0| < R.
Let ρ1, ρ2, ρ3 be the roots of

ρ(ρ− 1)(ρ− 2) + h(z0) = 0,

assuming that ρi−ρj ∈ Z\{0}, 1 ≤ i < j ≤ 3 and h(z0) 6= 0.
Then (10) admits, in some slit disc D = D(r), r ≤ R, three
linearly independent solutions f1, f2, f3 of one of forms:

f1 = (z − z0)ρ1
∞∑
i=0

ci(z − z0)i,

f2 = (z − z0)ρ2
∞∑
i=0

c∗i (z − z0)i,

f3 = (z − z0)ρ3
∞∑
i=0

c∗∗i (z − z0)i,

(11)

and 

f1 = (z − z0)ρ1
∞∑
i=0

ci(z − z0)i,

f2 = (z − z0)ρ2
∞∑
i=0

c∗i (z − z0)i,

f3 = ξkf1 log(z − z0)

+ γkf1

∫ (
f2
f1

)′

log(z − z0)dz

+ (z − z0)−ρ2−ρ1+1Φ(z),

(12)

where Φ(z) is analytic in D.
The idea of the proof is to submit the Laurent series of f(z)

and h(z) to (10) and to compare with their coefficients. By
this way, we can conclude the indicial equation ρ(ρ − 1)(ρ −
2) +h(z0) = 0. Theorem 3.1 shows the finite combinations of
known functions f1, f2 and f3 when h(z0) 6= 0. If h(z0) = 0,
we further obtain

Theorem 3.2. Suppose h(z) is analytic |z − z0| < R, and
consider the differential equation (10) in the disc |z−z0| < R.
Let ρ1, ρ2, ρ3 be the roots of

ρ(ρ− 1)(ρ− 2) + h(z0) = 0,

assuming that ρi − ρj ∈ Z\{0}, 1 ≤ i < j ≤ 3, and
h(z0) = 0. Then except the forms of (11),(12), (10) also

admits , in some slit disc D = D(r), r ≤ R, three linearly
independent solutions f1, f2, f3 of one of forms:

f1 = (z − z0)2
∑∞
i=0 ci(z − z0)i,

f2 = f1
∫
g1dz = k1f1 log(z − z0)

+ (z − z0)ρ1−1φ3(z),

f3 = f1
∫
g2dz = k2f1 log(z − z0)

+ (z − z0)ρ1+1φ4(z).

(13)


f1 = (z − z0)2

∑∞
i=0 ci(z − z0)i,

f2 = c1f1 log(z − z0) + (z − z0)ρ1−1φ1(z),

f3 = d2f1 log(z − z0) + (z − z0)ρ1−2φ1(z).

(14)


f1 =

∑∞
i=0 ci(z − z0)i,

f2 = f1
∫
g1dz = (z − z0)ρ1+1φ5(z),

f3 = f1
∫
g2dz = (z − z0)ρ1+1φ6(z).

(15)


f1 = (z − z0)

∑∞
i=0 ci(z − z0)i,

f2 = (z − z0)ρ1+1φ7(z),

f3 = ξ1f1
∫

Φ(z) log(z − z0) + ς1f1 log(z − z0)

+(z − z0)ρ1−1φ8(z).

(16)


f1 =

∑∞
i=0 ci(z − z0)i,

f2 = (z − z0)ρ1+2φ9(z),

f3 = ξ2f1
∫

(z − z0)Φ(z) log(z − z0)dz

+(z − z0)ρ1+1φ10(z).

(17)



f1 = (z − z0)
∑∞
i=0 ci(z − z0)i,

f2 = (z − z0)ρ1+2φ11(z),

f3 = ξ3f1
∫

(z − z0)Φ(z) log(z − z0)dz

+ς3f1 log(z − z0)

+(z − z0)ρ1−2φ12(z).

(18)

where Φ(z) and φj(z), j = 1, 2, · · · , 12 are analytic.
We now give some Lemmas to prove theorems.
The general solutions of differential equation come from

the finite combinations of known functions. The number and
forms of known functions can detect the forms of solutions. If
two known functions are determinate, we have

Lemma 3.1. Suppose that (10) possesses two linearly
meromorphic solutions f1 = (z− z0)ρ1

∑∞
i=0 ai(z− z0)i and

f2 = (z − z0)ρ2
∑∞
i=0 bi(z − z0)i, satisfying that ρ1 6= ρ2.

Then another solution of (10) is of the form

f3 = ξkf1 log(z − z0) + γkf1

∫
(
f2
f1

)′ log(z − z0)dz

+ (z − z0)−ρ2−ρ1+1Φ(z),

(19)

where Φ(z) is analytic.
Proof. Assume that f = f1F is a solution of (10). Then

f ′ = f ′1F + f1F,

f ′′ = f ′′1 F + 2f ′1F
′ + f1F

′′,

f ′′′ = f ′′′1 F + 3f ′′1 F
′ + 3f ′1F

′′ + f1F
′′′.
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Substituting the above equations into (10), we obtain

f1g
′′ + 3f ′1g

′ + 3f ′′1 g = 0, (20)

where g = F ′.
In order to get f3, we need to solve the equation (20). Since

f2 is also a solution of (10),we can calculate that g1 =
(
f2
f1

)′
is one solution of (20).

Assume again that g = g1G is one solution of (20). Then
we have

g′ = g′1G+ g1G
′,

g′′ = g′′1G+ 2g′1G
′ + g1G

′′.

Substituting the above equations into (20), we obtain

(2f1g
′
1 + 3f ′1g1)W = −f1g1W ′, (21)

where W = G′.
Solve the equation (21) and we have W = cg−21 f−31 .

Substituting W into g = g1G, then g2 = g1
∫
Wdz =

g1
∫
cg−21 f−31 dz is a solution of (20). What’s more, let f3 =

f1
∫
g2dz and then f3 is the solution of (10) that is arrived.

We now calculate the explicit form of f3. Actually

g−21 =

[(
f2
f1

)′]−2
= (z − z0)−2ρ2+2ρ1+2Φ1(z),

G = c

∫
g−21 f−31 dz = γk log(z − z0)

+ (z − z0)−2ρ2−ρ1+3Φ2(z),

g2 = g1G = γkg1 log(z − z0) + (z − z0)−ρ2−2ρ1+2Φ3(z).

Hence

f3 = f1

∫
g2dz = ξkf1 log(z − z0)

+ γkf1

∫
g1 log(z − z0)dz + (z − z0)−ρ2−ρ1+3Φ(z),

where Φ1(z),Φ2(z),Φ3(z),Φ(z) are analytic.
However, if just one known function is determinate, we have
Lemma 3.2. Suppose that (10) just possesses one solution

f1 = (z − z0)ρ1
∑∞
i=0 ai(z − z0)i. Then all other solutions of

(10) admits one of the following forms: (13)−(18).
Proof. Using the same method as in Lemma 3.3, we still

need to solve equation (20), while in this case g(z) is unknown.
We need to find out a set of linearly independent solutions
g1 and g2. Then let f2 = f1

∫
g1dz, f3 = f1

∫
g2dz and

such f2,f3 are the solutions of (10). Assume that g(z) =
(z − z0)k

∑∞
i=0 ci(z − z0)i. In the following, we will split

our proofs into six cases.
Case 1. Suppose that ρ1 6= 0, 1 and k 6= 0, 1. Then

f1 = a0(z − z0)ρ1 + a1(z − z0)ρ1+1 + ...,

f ′1 = a0ρ(z − z0)ρ1−1 + a1(ρ+ 1)(z − z0)ρ1 + ...,

f ′′1 = a0ρ(ρ− 1)(z − z0)ρ1−2 + a1(ρ+ 1)ρ(z − z0)ρ1−1 + ...,

g = c0(z − z0)k + c1(z − z0)k+1 + ...,

g′ = c0k(z − z0)k−1 + c1(k + 1)(z − z0)k + ...,

g′′ = c0k(k − 1)(z − z0)k−2 + c1(k + 1)k(z − z0)k−1 + ....

Substitute the above equations into (20) and compare the
coefficients of the lowest term (z − z)ρ1+k−2, we obtain

a0c0k(k − 1) + 3a0ρ1c0k + 3a0ρ1(ρ1 − 1)c0 = 0.

It is necessary to notice that4 = −3(ρ1 − 1)2 + 4 ≥ 0 and
ρ1 ∈ Z, hence ρ1 = 2, k = −2 or k = −3.

When ρ1 = 2, k = −2, for any n ∈ Z,

f1 = a0(z − z0)2 + ...+ an(z − z0)n+2 + ...,

f ′1 = 2a0(z − z0) + ...+ (n+ 2)an(z − z0)n+1 + ...,

f ′′1 = 2a0 + ...+ (n+ 2)(n+ 1)an(z − z0)n + ...,

g1 = c0(z − z0)−2 + ...+ cn(z − z0)n−2 + ...,

g′1 = −2c0(z − z0)−3 + ...+ (n− 2)cn(z − z0)n−3 + ...,

g′1,= 6c0(z − z0)−4 + ...+ (n− 2)(n− 3)cn(z − z0)n−4 + ....

Substitute the above equations into (20) and consider the
coefficients of the lowest term (z − z0)n−2, we have

[a0(n− 2)(n− 3)cn + ...+ 6anc0]

+ 3[2a0(n− 2)cn + ...+ (n+ 2)an(−2c0)]

+ 3[2a0cn + ...+ (n+ 2)(n− 1)anc0] = 0,

and then

c1 = −3a1c0
2a0

,

c2 = −11a1c1 + 18a2c0
6a0

,

...,

cn =

∑k
i=1Ki(n)aicn−i
n(n+ 1)a0

,

...,

where

Ki(n) = (n− i− 2)(n− i− 3) + 3(i+ 2)(n− i− 2)

+ 3(i+ 2)(i+ 1) ≤ 7(n+ 2)2.

We now affirm that the formal power series g1 = (z −
z0)−2

∑∞
i=0 ci(z − z0)i converges. If we can prove that for

some r ∈ (0, R) and some M > 0,|ci|ri ≤ M holds for
i = 0, 1, 2, ..., we have lim sup |ci|

1
i ≤ 1

r and therefore
g1(z) converges. Actually, suppose that there exists some
r > 0,M > 0 such that |ci|ri ≤ M for i = 0, 1, ..., n − 1.
Since (z − z0)ρ1

∑∞
i=1 ai(z − z0)i converges and vanishes

at z = z0, decreasing r if needed, we have for each n,∑∞
i=0 |ai|ri ≤

(n+1)|a0|
7(n+2)2 . Then for i = n,

|cn|rn ≤
∑n
i=1 | Ki || ai | ri | cn−i | rn−i

n(n+ 1) | a0 |
≤M.
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Hence g1 = (z − z0)−2
∑∞
i=0 ci(z − z0)i converges and is

one solution of (20). Using the same method we can prove that
when ρ1 = 2, k = −3 , g2 = (z − z0)−3

∑∞
i=0 di(z − z0)i is

also a solution of (20). Therefore, we obtain the other solutions
of (10) as follows:

f2 = f1

∫
g1dz = c1f1 log(z − z0) + (z − z0)ρ1−1φ1(z),

f3 = f1

∫
g2dz = d2f1 log(z − z0) + (z − z0)ρ1−2φ1(z).

Case 2. Suppose that ρ1 6= 0, 1 and k = 0. Then by
comparing the coefficients of the term (z − z)ρ1−2 in (20) we
obtain

a0ρ1(ρ1 − 1)c0 = 0.

Therefore ρ1 = 0 or ρ1 = 1 , a contradiction.
Case 3. Suppose that ρ1 6= 0, 1 and k = 1. Then by

comparing the coefficients of the term (z − z)ρ1−1 in (20) we
obtain

3a0ρ1c0 + 3a0ρ1(ρ1 − 1)c0 = 0.

Therefore ρ1 = 0 , a contradiction.
Case 4. Suppose that ρ1 = 0 and k 6= 0, 1. Then by

comparing the coefficients of the term (z − z0)k−2 in (20) we
obtain

a0c0k(k − 1) = 0.

Therefore k = 0 or k = 1, a contradiction.
Case 5. Suppose that ρ1 = 1 and k 6= 0, 1. Then by

comparing the coefficients of the term (z − z0)k−1 in (20),
we obtain

a0c0k(k − 1) + 3a0c0k = 0.

Therefore k = −2. In this case g1 = (z −
z0)−2

∑∞
i=0 si(z − z0)i is a solution of (20). By Lemma 3.3,

another solution of (20) is

g2 = g1G = g1

∫
g−21 f−31 dz = Φ3(z).

Hence, we have three linearly dependent solutions of (10) as
follows:

f1 = (z − z0)

∞∑
i=0

ai(z − z0)i,

f2 = f1

∫
g1dz = k1f1 log(z − z0) + (z − z0)ρ1−1φ3(z),

f3 = f1

∫
g2dz = (z − z0)ρ1+1φ4(z).

Case 6. Suppose that %1 = 0 and k = 0. Then by comparing the coefficient of the term (z − z0)n in (20), we obtain the form
of common term

c2 = −3a1c1 + 3a2c1
2a0

,

c3 = −8a1c2 + 12a2c1 + 18a3c0
6a0

,

...,

cn = −
∑n
i=1Ki(n)cian−i
n(n− 1)a0

.

Here c0, c1 is determined arbitrarily.
Using the same method as in Case 1, we can prove that the formal power series g1 =

∑∞
i=0 ci(z − z0)i converge. By Lemma

3.3,

g2 = g1G = g1

∫
g−21 f−31 dz =

∞∑
i=0

ξi(z − z0)i.
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Hence

f2 = f1

∫
g1dz = (z − z0)ρ1+1φ5(z),

f3 = f1

∫
g2dz = (z − z0)ρ1+2φ6(z).

Similarly,
for ρ1 = 1, k = 0,

f2 = (z − z0)ρ1+1φ7(z),

f3 = ξ1f1

∫
Φ(z) log(z − z0) + ς1f1 log(z − z0) + (z − z0)ρ1−1φ8(z).

for ρ1 = 0, k = 1,

f2 = (z − z0)ρ1+2φ9(z),

f3 = ξ2f1

∫
(z − z0)Φ(z) log(z − z0)dz + (z − z0)ρ1+1φ10(z).

for ρ1 = 1, k = 1,

f2 = (z − z0)ρ1+2φ11(z),

f3 = ξ3f1

∫
(z − z0)Φ(z) log(z − z0)dz + ς3f1 log(z − z0) + (z − z0)ρ1−2φ12(z).

Remark 3.1. It is necessary to realize that, in Lemma 3.4, all
cases of solutions satisfy additional condition h(z0) = 0.

Based on the above lemmas, we can prove Theorem 3.1 and
3.2.

Proof. of Theorem 3.1. Suppose that

f(z) = (z − z0)ρ
∞∑
i=0

ci(z − z0)i,

and

h(z) =

∞∑
i=0

βi(z − z0)i.

Then we conclude that

f ′′′(z) = c0ρ(ρ− 1)(ρ− 2)(z − z0)ρ−3

+ c1(ρ+ 1)ρ(ρ− 1)(z − z0)ρ−2 + ...

Substituting the above into (10), we obtain

c0ϕ0(ρ) = 0,

c1ϕ0(ρ+ 1) + c0ϕ1(ρ) = 0,

...,

cnϕ0(ρ+ n) + cn−1ϕ1(ρ) + ...+ c1ϕn−1(ρ)

+ c0ϕn(ρ) = 0,

...,

(22)

where {
ϕ0(ρ) = ρ(ρ− 1)(ρ− 2) + h(z0),

ϕi(ρ) = βi.

As ρ1, ρ2, ρ3 are distinct roots of ρ(ρ−1)(ρ−2)+h(z0) = 0,
without loss of generalization, we may assume that ρ1 > ρ2 >
ρ3.

When ρ = ρ1, for any k ∈ Z, ϕ0(ρ1 + k) 6= 0, then

ck = −ck−1β1 + ...+ c0βk
ϕ0(ρ1 + k)

.

Besides we need to prove that the formal power series f1 =
(z − z0)ρ1

∑∞
i=0 ci(z − zi0) converges. Actually assume that

|ci|ri ≤ M for i = 0, 1, ..., n − 1, and we need to prove that
such inequality still holds for i = n.By (22) we have

|ϕ0(ρ+ n)||cn| ≤
n∑
i=1

|cn−i||βi|.

By simple calculation we have

ϕ0(ρ+ n) = ϕ0(ρ+ n)− ϕ0(ρ)

= (ρ+ n)(ρ+ n− 1)(ρ+ n− 2)

+ β0 − ρ(ρ− 1)(ρ− 2)− β0.

Hence |ϕ0(ρ+ n)| ≥ cn3.
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Therefore

|ϕ0(ρ+ n)||cn|rn ≤
n∑
i=1

|cn−i|rn−i|βi|ri

≤M
∑

i = 1n|βi|ri ≤Mck.

Then
|cnrn| ≤

Mck

cn3
≤M.

When ρ = ρ2, there exists k1 = ρ1 − ρ2 such that
ϕ0(ρ2 + k1) = 0. If

c∗k1−1β1 + ...+ c∗0βk1 = 0, (23)

then we may determine c∗k1 arbitrarily and for k 6= k1,

c∗k = −
c∗k−1β1 + ...+ c∗0βk

ϕ0(ρ2 + k)
.

Therefore f2 = (z − z0)ρ2
∑∞
i=0 c

∗
i (z − zi0) converges as a

solution of (10). However if (23) doesn’t hold, we cannot find
out the form of f2 in this way.

When ρ = ρ3, there exists k2 = ρ2 − ρ3 and k3 = ρ1 − ρ3
such that ϕ0(ρ2 + ki) = 0, i = 2, 3. If

c∗∗k2−1β1 + ...+ c∗0βk2 = 0 (24)

as well as
c∗∗k3−1β1 + ...+ c∗∗0 βk3 = 0 (25)

holds, we may determine c∗∗k2 and c∗∗k3 arbitrarily and for k 6=
k2, k3,

c∗∗k = −
c∗∗k−1β1 + ...+ c∗∗0 βk

ϕ0(ρ3 + k)
.

Therefore f3 = (z− z0)ρ3
∑∞
i=0 c

∗∗
i (z− zi0) converges as a

solution of (10). However if either (24) or (25) does not hold,
we cannot find out the form of f3 in this way. Thus, we need
split our proofs into three cases.

Case i. When (23),(24) and (25) hold, we can immediately
find out the form of f1, f2, f3 as (11).

Case ii. When (23) holds, either (24) or (25) doesn’t hold,
then f1, f2 are known solutions of (10) and by Lemma 3.3 we
can find out the form of f1, f2, f3 as (12).

Case iii. When none of (23), (24), (25) holds, then f1 is the
only known solution of (10). In this case, h(z0) 6= 0, so that
ρ1 6= 0, 1, 2 . By Lemma 3.4, we know that in this case we
cannot find out suitable form of f1, f2, f3.

Proof. of Theorem 3.2. Using the smilar method as in
Theorem 3.1, except Case i and Case ii hold, we further deduce
from Lemm 3.4 that one of the forms of f1, f2, f3 as (13)−(18)
holds. In this case, h(z0) = 0, none of (23) , (24),(25) holds,
and f1 is the only known solution of (10).

For a special case, we also obtain
Theorem 3.3. Suppose h(z) is analytic |z − z0| < R, and

consider the differential equation (10) in the disc |z−z0| < R.

Let ρ1, ρ2, ρ3 be the roots of

ρ(ρ− 1)(ρ− 2) + h(z0) = 0,

assuming that ρ1 = ρ2 while ρ2 6= ρ3, ρi ∈ Z, i = 1, 2, 3 and
h(z0) 6= 0.

Then (10)admits three linearly independent solutions
f1, f2, f3 of the following forms

f1 = (z − z0)ρ1
∞∑
i=0

ai(z − z0)i

f2 = (z − z0)ρ2
n∑
i=0

bi(z − z0)i

f3 = ξkf1 log(z − z0) + γkf1

∫ (
f2
f1

)′
log(z − z0)dz

+ (z − z0)−ρ3−ρ1+1Φ(z)

Proof. Assume that ρ1 > ρ3. Similarly as in the proof of
Theorem 3.1, f1 = (z − z0)ρ1

∑∞
i=0 ai(z − z0)i is a solution

of (10).
Let k = ρ3 − ρ1, then if c∗kβ1 + ...+ c0βk = 0, we have

f2 = (z − z0)ρ2
n∑
i=0

bi(z − z0)i.

By Lemma 3.3, we have

f3 = ξkf1 log(z − z0) + γkf1

∫ (
f2
f1

)′

log(z − z0)dz

+ (z − z0)−ρ3−ρ1+1Φ(z).

If c∗kβ1 + ... + c0βk 6= 0, which means that we cannot find
out the form of f2 in this way. As h(z0) 6= 0, by Lemma 3.4,
we cannot find the solutions of (10).

Remark 3.2. Suppose h(z) is analytic |z − z0| < R, and
consider the differential equation (10) in the disc |z−z0| < R.
Let ρ1, ρ2, ρ3 be the roots of

ρ(ρ− 1)(ρ− 2) + h(z0) = 0

assuming that ρ1 = ρ2 = ρ3 ∈ Z. Though h(z0) 6= 0 in this
case, we cannot calculate out the explicit forms of solutions of
(10) by Lemma 3.3 and 3.4.

4. Conclusion and Further Discussion
It is well known that every holomorphic function on a

simply connected domain in the complex plane can be realized
as the Schwarzian derivative of a function that is meromorphic
on a given domain. Furthermore, This function is essentially
unique by a Möbius transformation. Thus, various results
about solutions to second order differential equations with
meromorphic coefficients are related to this theme.

In this paper, our main result are concerned with a very
particular type of a third order differential equation (10). We
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use local series methods and reduction of order to solve all
linearly independent solutions of some third-order ODEs (10).
Thus, the explicit solutions of differential equation (10) in
terms of finite combinations of known functions.

Throughout our paper, our results are raised from a very
natural question. Some profound questions should be further
discussed. Second order ODE of (8) has connection to
Teichmuller theory. But, when n is greater than or equal to 3,
we do not know whether there is connections with Teichmuller
theory or not. Similar results hold if we take an n-th order
differential equations of the same type to (10). It is more
complicated for us to detect all linearly independent solutions
of some n-order ODEs by using local series methods and
reduction of order. We need to use computer technology on
a large scale.
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